Honours in Statistics

- Statistics is fundamentally about signal-noise separation: distinguishing meaningful patterns from random variation, confounding factors, and measurement error
- This core skill enables both understanding (explaining past phenomena through causal inference, regression and hypothesis testing) and foresight (making reliable predictions about future or unobserved outcomes)
- Should I choose Data Science or Statistics?
 - Statistics...
 - Data science is primarily about the "how" developing computational methods to extract information from complex, large-scale data
 - Statistics is fundamentally about the "why" and "should we believe it" providing the theoretical framework to assess reliability, causation, and the
 strength of evidence
 - Look at the lists of courses and projects (a fair amount of overlap)

- Under the umbrella of signal-to-noise separation stats spans a wide range of subjects from applied through computational to theoretical;
 - accordingly, our mandatory core includes one course in theory (Probability and Mathematical Statistics or Probability and Martingale Theory) and one in more applied area (Statistical Consulting or Advanced Statistical Modelling)
- Try to find a project or more generally a direction that feels right for you from:
 - Statistical Bioinformatics
 - Shila Ghazanfar: Assessing continuous changes in correlation structure for replicated single cell data
 - Ellis Patrick: Data-driven decision making for precision medicine
 - Jean Yang: Methods towards precision medicine
 - Pengyi Yang: Developing deep-learning based methods for integrative analysis of single-cell and spatial omics data

- Areas and projects (continued)
 - Time series
 - Jennifer Chan: Modelling covariance matrix time series using Wishart distribution
 - Shelton Peiris: Vector Autoregressive Fractionally Integrated Moving Average (VARFIMA) Processes and Applications
 - Statistical learning
 - Tiangang Cui: Motion tracking and uncertainty estimation during radiotherapy via Rosenblatt transports (with Nicholas Hindley)
 - Rachel Wang: Mini-batch Gibbs sampling for large-scale inference
 - Bayesian analysis
 - Clara Grazian: Approximate Bayesian Computation via composite likelihood
 - John Ormerod: Bayesian Moment Propagation

- Areas and projects (continued...)
 - Mathematical statistics
 - Michael Stewart: Mixture model selection near the boundary
 - Qiying Wang: Threshold effects in nonlinear cointegrating regression
 - Other projects in statistics
 - Uri Keich: Competition-based approach to False Discovery Rate (FDR) control
 - Linh Nghiem: Sparse sufficient dimension reduction via distance covariance (with Andi Han)
 - Garth Tarr: Stable feature selection in high dimensional models