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ABSTRACT. We determine the precise number of isomorphism classes of elliptic
curves over Fq(t) with char(Fq) = 3,2. The key idea is to obtain the exact un-
weighted number of rational points on the classifying stacks BQ12, BQ24 and BZ ,
where Q12 and Q24 denote the dicyclic groups of orders 12 and 24, respectively,
and Z denotes the non-reduced group scheme of order 2. This computation,
inspired by the classical work of [dJ02] and performed via motivic height zeta
functions of height moduli spaces constructed in [BPS22], establishes a complete
determination of the total number of isomorphism classes of rational points on
M1,1 over any rational function field k(t) with perfect residue field char(k)≥ 0.

1. INTRODUCTION

The families of abelian varieties defined over a global field are fundamental. In
this paper, we study families of elliptic curves over function fields. By a family, we
mean specifically an elliptic fibration, that is an algebraic surface X that admits a
proper flat morphism f : X → C to a smooth projective curve C/k over a field k
such that a general fiber is a smooth curve of genus one. Such an X is sometimes
called an elliptic surface in other literature. It is natural to work with the case when
there exists a distinguished section s : C ,→ X coming from the identity points on
each of the elliptic fibers. An elliptic fibration is called relatively-minimal if none
of the fibers contain any (−1)-curves.

It is natural to ask how many elliptic fibrations f : X → C exist. This ques-
tion is equivalent to determining the total number of rational points on M1,1 over
a function field K = k(C). For proper stacks, unlike schemes, there is a distinc-
tion between rational and integral points. Moreover, rational points have extra
automorphism groups. In the case where K = Fq(t) with char(Fq) > 3, the exact
number of isomorphism classes of elliptic curves over K is established in [BPS22,
Theorem 9.7]. The proof relies on the height moduli framework developed in
[BPS22, Theorems 1.2 & 5.1] by Bejleri, Satriano, and the author. Specifically, the
method involves extracting coefficients of rational motivic height zeta functions
Zλ⃗(t) associated to the height moduli spaces and their variants on the correspond-
ing inertia stacks IZλ⃗(t) as described in [BPS22, Theorem 8.9]. In the present
work, we extend the enumerations to the remaining cases char(Fq) = 2,3 inspired
by the classical work of [dJ02].

Specifically, we establish the following sharp enumeration of elliptic curves over
a global function field K = Fq(t) with precise lower order main terms. Recall that
the height of the discriminant of an elliptic curve E over K is given by ht(∆) :=
qdeg∆ = q12n for some integer n (also called the Faltings height of E).
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Theorem 1.1. Let n ∈ Z≥0. The counting functionN w(Fq(t), B) (resp. N (Fq(t), B)),
which gives the weighted count (resp. unweighted count) of the number of isomor-
phism classes of minimal elliptic curves over P1

Fq
ordered by the multiplicative height

of the discriminant ht(∆) = q12n ≤ B, is given by the following.

N w(Fq(t), B) =

�

q9 − 1
q8 − q7

�

B5/6 − B1/6

(1) For q = 3r

• r is odd :

N (Fq(t), B) = 2

�

q9 − 1
q8 − q7

�

B5/6 − 2B1/6

+ 2
�

q7 − 1
q7 − q6

�

B2/3 − 2

�

q3 − 1
q4 − q3

�

B1/3

• r is even :

N (Fq(t), B) = 2

�

q9 − 1
q8 − q7

�

B5/6 − 2B1/6

+ 4
�

q7 − 1
q7 − q6

�

B2/3 − 4

�

q3 − 1
q4 − q3

�

B1/3

(2) For q = 2r

• r is odd :

N (Fq(t), B) = 2

�

q9 − 1
q8 − q7

�

B5/6 − 2B1/6

+

�

q8 − 1
q8 − q7

�

B3/4 −
�

q5 − 1
q6 − q5

�

B1/2

− 2q+ 4

• r is even :

N (Fq(t), B) = 2

�

q9 − 1
q8 − q7

�

B5/6 − 2B1/6

+ 5

�

q8 − 1
q8 − q7

�

B3/4 − 5
�

q5 − 1
q6 − q5

�

B1/2

− 2q+ 4

Remark 1.2. The lower order main term of order B1/6 present in both the weighted
and unweighted counts comes from subtracting the µ2 twist families of generically
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singular isotrivial j =∞ elliptic curves. And the lower order main terms of order
B2/3 & B1/3 for char(Fq) = 3 and B3/4 & B1/2 for char(Fq) = 2 in the unweighted
count N (Fq(t), B) come from counting the Q12 and Q24 twist families of isotrivial
elliptic curves having strictly additive bad reductions with extra automorphisms
concentrated at the supersingular j-invariant j = 0.

1.1. Outline of the paper. In Section 2, we compute the motivic classes in the
Grothendieck ring of stacks of the inertia stack IM1,1 for char(k) ≥ 0 and height
moduli in the case of weighted projective stacks. In Section 3, we count the exact
unweighted number of rational points on the classifying stacksBQ12, BQ24 andBZ ,
where Q12 and Q24 denote the dicyclic groups of orders 12 and 24, respectively, and
Z denotes the non-reduced group scheme of order 2. Afterward, we enumerate
elliptic curves over Fq(t) with char(Fq) = 3, 2 and prove Theorem 1.1.

2. MOTIVES & POINT COUNTS OVER FINITE FIELDS

In this section, we briefly review the arithmetic of algebraic stacks over a perfect
field k, with a focus on the case when k = Fq is a finite field. Afterward, we
introduce motivic invariants of moduli stacks via the Grothendieck ring K0(Stckk)
of k-stacks. We compute the motives of M1,1 and its inertia stack IM1,1. We also
recall the height moduli spaces on 0-dimensional weighted projective stack P(a)
for later computation of the motives of height moduli spaces on the classifying
stacks BQ12, BQ24 and BZ , where Q12 and Q24 denote the dicyclic groups of orders
12 and 24, respectively, and Z denotes the non-reduced group scheme of order 2.

Due to the presence of automorphisms, point counts of an algebraic stack X over
finite fields are weighted.

Definition 2.1. The weighted point count of an algebraic stack X with finite inertia
over Fq is defined as a sum

#q(X ) :=
∑

x∈X (Fq)/∼

1
|Aut(x)|

,

where X (Fq)/∼ is the set of Fq–isomorphism classes of Fq–points of X .

The main advantage of the weighted point count is that it is algebro-topological
as it depends only on the cohomology of X and is equal to the usual point count of
the coarse moduli space via the Grothendieck-Lefschetz trace formula for algebraic
stacks proven by classical works of [Beh93, Sun12].

It is important to note that the above sum runs over the set X (Fq)/ ∼ of iso-
morphism classes over Fq thus the weighted point count #q(X ) is not equal to the
number |X (Fq)/ ∼ | of Fq–isomorphism classes when there is a non-trivial auto-
morphism |Aut(x)| ≠ 1 for some stacky point x ∈ X (Fq)/ ∼. Because of this,
for enumeration purposes, it is important to consider the unweighted count of iso-
morphism classes. The following result of [HP23] shows that the unweighted point
count is also natural and depends on the arithmetic of the inertia stack of X .
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Theorem 2.2 (Theorem 1.1. of [HP23]). Let X be an algebraic stack over Fq of
finite type with quasi-separated finite type diagonal and let I(X ) be the inertia stack
of X . Then,

|X (Fq)/∼ |= #q(I(X ))

In this paper, we study proportions via motivic classes in the Grothendieck ring
K0(Stckk) of k-stacks. We review some properties of the Grothendieck ring of stacks
introduced in [Eke25].

Definition 2.3. [Eke25, §1] The Grothendieck ring of stacks K0(Stckk) is the abelian
group generated by classes {X }k for each algebraic stack X of finite type over k
with affine inertia modulo the relations
• {X }k = {Z}k + {X ∖Z}k for Z ⊂ X a closed substack,
• {E}k = {X ×k An}k for E a vector bundle of rank n on X .

Multiplication on K0(Stckk) is induced by {X }k{Y}k := {X ×k Y}. There is a dis-
tinguished element L := {A1}k ∈ K0(Stckk), called the Lefschetz motive. We drop
the subscript if k is clear.

We denote by K ′0(Stckk) the ring obtained by imposing only the cut-and-paste
relation but not the vector bundle relation and denote the class of a stack in this ring
by {X }′. The Grothendieck ring is universal among all additive and multiplicative
invariants. For instance, when k = Fq, the point counting measure {X } 7→ #q(X )
is a well-defined ring homomorphism #q : K0(StckFq

) → Q giving the weighted
point count #q(X ) of X over Fq. When {X } is mixed Tate i.e. a polynomial in the
Lefschetz motive L := {A1

k} which serves as a natural “measure” of the affine line,
the weighted point count is a polynomial in q.

Recall that an algebraic group G is special in the sense of [Ser58] and [Gro58],
if every G-torsor is Zariski-locally trivial; for example Ga, GLd , SLd are special and
PGL2, PGL3 are non-special. If X → Y is a G-torsor and G is special, then we have
{X }= {G} · {Y} ([Eke25, Prop. 1.1 iii)]).

Finally, we can use the following result to access unweighted point counts.

Proposition 2.4. [dFLNU07, Prop. 5.3] The association X 7→ IX extends to a
unique ring homomorphism

I : K ′0(Stckk)→ K ′0(Stckk)

which we call the inertia operator.

Note that I does not descend to a well defined operator on K0(Stckk) as in
[Eke25, Prop. 1.1 iii)]. In order to keep track of the primitive roots of unity con-
tained in Fq, we define the following auxiliary function.

δ(x) :=

�

1 if x divides q− 1,
0 otherwise.

Proposition 2.5. Let k be a perfect field with char(k) ∤ a, b. The motivic classes of
the weighted projective stack P(a, b) and its inertia stack IP(a, b) in K0(Stckk) are
equal to

{P(a, b)}= L+ 1
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{IP(a, b)}= gcd(a, b) · (L+ 1) +δ(a) · (a− gcd(a, b)) +δ(b) · (b− gcd(a, b))

Proof. As P(a, b) :=
�

(A2∖ {0})/Gm

�

we have {P(a, b)} = L
2−1
L−1 = L + 1 which

holds as Gm = GL1 is a special group. For the inertia stack IP(a, b), note that

IP(a, b) = ⊔gcd(a,b)P(a, b)⊔a−gcd(a,b) P(a)⊔b−gcd(a,b) P(b)

by [HP23, Proposition 3.5] which translates to

{IP(a, b)}= gcd(a, b)·{P(a, b)}+δ(a)·(a−gcd(a, b))·{P(a)}+δ(b)·(b−gcd(a, b))·{P(b)}

As P(r) :=
�

(A1∖ {0})/Gm

�

hence {P(r)} = L−1
L−1 = 1 we get the desired formula.

■

Note that computing the exact weighted point count #q(I(X )) of the inertia
stack via algebro-topological method is useful as we are able to deduce the exact
unweighted point count of the underlying stack |X (Fq)/∼ |.

Let us illustrate this important discrepancy with an example. One can ask how
many isomorphism classes of elliptic curves are there over Fq.

Proposition 2.6. Let k be a perfect field. The motivic class of the fine modular curve
M1,1 of smooth elliptic curves in K0(Stckk) is equal to

�

M1,1

	

= L

The motivic classes of the inertia stack IM1,1 for char(k) ̸= 2, 3 is equal to

�

IM1,1

	

= 2L+δ(6) · 4+δ(4) · 2

which translates to the following for k = Fq with char(Fq) ̸= 2,3

�

IM1,1

	

= 2L+ 6, if q ≡ 1 mod 12,

= 2L+ 2, if q ≡ 5 mod 12,

= 2L+ 4, if q ≡ 7 mod 12,

= 2L, if q ≡ 11 mod 12.

The motivic classes of the inertia stack IM1,1 for char(Fq) = 2,3 is equal to

�

IM1,1

	

= 2L+ 1, if q = 2r with r odd,

= 2L+ 5, if q = 2r with r even,

= 2L+ 2, if q = 3r with r odd,

= 2L+ 4, if q = 3r with r even.
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Proof. The weighted point count is identical over any field which follows from the
coarse moduli space M1,1

∼= P1 over SpecZ thus we have
�

M1,1

	

=
�

M1,1 − { j =∞}
	

=
(L+ 1)− 1 = L. The classes

�

I(M1,1 − { j = 0} − { j = 1728})
	

= 2(L− 2) of the
inertia stack for char(k) ̸= 3, 2 follows as the automorphism group of a geometric
point of M1,1 is of order 2 away from j = 0 and j = 1728 (c.f. [Sil09, Ap. A, Prop.
1.2]). It remains to find out how many Fq–points j = 0, 1728 have respectively
depending on the primitive roots of unity contained in Fq. This is δ(6) ·6 for j = 0
and δ(4) · 4 for j = 1728.

For the classes of the inertia stack for char(Fq) = 3, 2, the classes
�

I(M1,1 − { j = 0}
	

=
2(L − 1) of the inertia stack follows as the automorphism group of a geometric
point of M1,1 is of order 2 away from j = 0 (c.f. [Sil09, Ap. A, Prop. 1.2]). For
q = 3r , It remains to find out how many Fq–points j = 0 has which is the number
of Fq–isomorphism classes of supersingular elliptic curves. For r odd we have 4 iso-
morphism classes and for r even we have 6 isomorphism classes from [CJ04, Thm.
3.5]. Thus we have

�

IM1,1

	

= 2(L−1)+4 for r odd and
�

IM1,1

	

= 2(L−1)+6
for r even. Similarly for the number of Fq–isomorphism classes of supersingular
elliptic curves for q = 2r , for r odd we have 3 isomorphism class and for r even
we have 7 isomorphism classes from [Men93, Thm. 3.6 & 3.7]. Thus we have
�

IM1,1

	

= 2(L− 1) + 1 for r odd and
�

IM1,1

	

= 2(L− 1) + 5 for r even.
■

Let us briefly recall the formulation of height moduli spaces on weighted pro-
jective stack P(λ⃗) := P(λ0, . . . ,λN ) and L = O(1). By [BPS22, Theorem 4.28]
the height moduli space Mn,C(P(λ⃗),O(1)) was constructed as a moduli space of
λ⃗-weighted linear series (L, s0, . . . , sN ) on the curve C .

Definition 2.7. A λ⃗-weighted linear series on C is a tuple (L, s0, . . . , sN ) where si ∈
H0(C , L⊗λi). The tuple is minimal if for all x ∈ C(ksep), there exists j such that
νx(s j)< λ j where νx is the order of vanishing at x .

Particularly, M1,1
∼= P(4,6) over Z

�

1
6

�

with L the Hodge line bundle by the
short Weierstrass equation y2 = x3 + a4 x + a6, where ζ · ai = ζiai for ζ ∈ Gm and
i = 4, 6. The minimal weighted linear series on the smooth projective curve C are
Weierstrass data which are rational points on M1,1 over K = k(C). And in [BPS22,
§7], the moduli stacks of elliptic surfaces over k with char(k) ̸= 2, 3 of stacky
height n with fixed singular fibers are identified with the height moduli spaces.
As Aut(P1) = PGL2, it is natural to consider PGL2 stack quotient

�

Wmin
n /PGL2

�

as
was done in [PS25, Main Theorem 1.2]. Note that the 12th root of the minimal
discriminant of an elliptic curve is known to be the Faltings height (c.f. [Lan24,
Remark 1.2]). In the cited paper, Landesman showed that the Faltings height on
M1,1 in characteristic 3 is not a height function in the sense of [ESZB23].

We now consider the motives
n

Wmin
n,P1

k

o

of the height moduli spaceMn,P1
k
(P(a, b),O(1)) =

Wmin
n in the Grothendieck ring K0(Stckk). In [BPS22, §8 and §9], the exact mo-

tivic classes in the Grothendieck ring K0(Stckk) of stacks of height moduli spaces
(together with their inertia stacks) of k(t)-points on weighted projective stacks
P(λ⃗) := P(λ0, . . . ,λN ) with L=O(1) were determined as follows.
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Theorem 2.8 (Theorems 9.1 and 9.2 of [BPS22]). The classes
�

Wmin
n

	

are given by
the following formulas:

�

Wmin
0

	

= {PN}
�

Wmin
1

	

= {PN}(L|λ⃗| −L) +LN+1{P|λ⃗|−N−2}
�

Wmin
n≥2

	

= L(n−2)|λ⃗|+N+2(L|λ⃗|−1 − 1){P|λ⃗|−1}

This is proven via extracting the coefficients of rational motivic height zeta func-
tions Zλ⃗(t) of height moduli spaces with its variant on the inertia stacks IZλ⃗(t) in
[BPS22, Theorem 8.9]. The rationality follows from establishing the stratification
by minimality defect in [BPS22, Corollary 6.2] where we stratify the complement
of Wmin

n inside Wn ∖W∞n into strata corresponding to minimal weighted linear
series of smaller height.

For later counting purposes, it is important to work out the
n

Wmin
n,P1

k

o

for 0-

dimensional weighted projective stack P(a).

Corollary 2.9. The classes
�

Wmin
n

	

for P(a) are given by the following formulas:
�

Wmin
0

	

= 1
�

Wmin
1

	

= La +La−1 + . . .+L2

�

Wmin
n≥2

	

= L(n−2)a+2(La−1 − 1){Pa−1}

We also need slightly modified motive formula for
n

Wmin
n,P1

k

o

for P(b̌) which be-

haves as a virtual (−1)-dimensional weighted projective stack. We will define this
motive formally to facilitate subsequent operations involving formal addition and
subtraction in the Grothendieck ring of stacks.

Definition 2.10. The classes
�

Wmin
n

	

for P(b̌) are given by the following formulas:
�

Wmin
1

	

= Lb−1 +Lb−2 + . . .+L+ 1
�

Wmin
n≥2

	

= L(n−2)b+1(Lb−1 − 1){Pb−1}

3. COUNTING ISOMORPHISM CLASSES OF E/Fq(t)

In counting the exact unweighted number of isomorphism classes of E/Fq(t),
it is vital to understand the families of elliptic curves that are non-constant (i.e.
height n≥ 1) and isotrivial (i.e. a fixed j-invariant) with extra automorphisms (i.e.
more than the generic hyperelliptic involution automorphism of order 2) having
strictly additive bad reductions (i.e. potentially good reduction) which leads to
various lower order main terms that are hidden from the exact weighted number
of isomorphism classes of E/Fq(t) (c.f. [BPS22, Rmk 9.8]).

In this regard, for char(Fq) = 3, 2, the automorphism group of a geometric point
of M1,1 is of order 2 away from j = 0 (c.f. [Sil09, Ap. A, Prop. 1.2]). In char(Fq) =
2, the generic geometric points with jg ̸= 0 have the stabilizer groups of Z =
Spec k[x]/(x2− 1) which is non-reduced as x2− 1= (x − 1)2. The automorphism
group of a geometric point at j = 0 is Q12 (resp. Q24) the dicyclic group of order

7



12 (resp. 24). The dicyclic groups are non-abelian with order 4n for n ≥ 3 and
each contains a unique element of order 2.

A given generalized Weierstrass form F = x3+a2 x2+a4 x+a6− y2−a1 x y−a3 y ,
where ai ∈ H0(OP1(in)) defines an E/Fq(t) and if F defines an E/Fq(t)with a fixed
j-invariant then as explained in [Sil09, Ap. A, Prop. 1.1] there exists a coordinate
change of the form x 7→ x + b1 and y 7→ y + b1 x + b3 with bi ∈ H0(OP1(in)) such
that for char(Fq) = 3 and j = 0 has the following normal Weierstrass form

y2 = x3 + a4 x + a6

As explained in [dJ02, §4.13 (b2)], there exists a unique choice of the pair (b1, b3)
so that we get

y2 = x3 + a′4 x + a′6
where a′4 is a nonzero section of O(4n) and a′6 is any section of O(6n). As in the
paragraph before [dJ02, Prop. 4.14], we have (q4n+1 − 1)q6n+1q4n+2 as the total
number of Weierstrass polynomials which are non-constant and isotrivial with j =
0 where (q4n+1−1) corresponds to counting a nonzero section of O(4n) and q6n+1

corresponds to counting any section of O(6n) and q4n+2 corresponds to counting
any sections of O(n) and O(3n) due to (b1, b3) worth of freedom.

After dividing out the coordinate change factor of q6n+3(q − 1) consisting of
(b1, b2, b3) worth of freedom and a nonzero scalar λ ∈ k∗, we have

(q4n + . . .+ 1) · q4n = (q8n + . . .+ q4n) = (q8n + . . .+ 1)− (q4n−1 + . . .+ 1)

This expression is the total number of minimal Weierstrass forms that are isotriv-
ial with j = 0 upto height n. Using the relation of [dJ02, (4.13.1)], we see that
counting the weighted number of rational points of height n ≥ 1 on the classify-
ing stacks BQ12 (the stacky point of M1,1 at j = 0) has the same cardinality as
counting the weighted number of rational points on P(8)−P(4̌).

Proposition 3.1. The classes
�

Wmin
n

	

for the classifying stack BQ12 of dicyclic group
of order 12 are given by the following formulas:
�

Wmin
0

	

= 1
�

Wmin
1

	

= (L8 + . . .+L2)− (L3 +L2 +L+ 1)
�

Wmin
n≥2

	

= L(n−2)8+2(L7 − 1){P7} −L(n−2)4+1(L3 − 1){P3}

Proof. At height n= 0 we only have a constant map to j = 0 which means Wmin
0 has

the motive of
�

P0
	

= 1. For height n= 1, we have the motive of
�

Wmin
1 (P(8),O(1))

	

=
L8+L7+L6+L5+L4+L3+L2 from this we need to subtract

�

Wmin
1 (P(4̌),O(1))

	

=
L3 + L2 + L+ 1. For height n ≥ 2, we have the motive of

�

Wmin
n≥2(P(8),O(1))

	

=
L8n−14(L7−1){P7} from this we subtract

�

Wmin
n≥2(P(4̌),O(1))

	

= L4n−7(L3−1){P3}.
■

As for char(Fq) = 2 and j ̸= 0 has the following normal Weierstrass form

y2 + a1 x y = x3 + a2 x2 + a6
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As explained in [dJ02, §4.13 (c1)], there exists a unique choice of the pair (b2, b3)
so that we get

y2 + a′1 x y = x3 + a′2 x2 + (a′1)
6

where a′1 is a nonzero section of O(n) and a′2 is any section of O(2n). As in the
paragraph before [dJ02, Prop. 4.14], we have (q − 1)(qn+1 − 1)q2n+1q5n+2 as the
total number of Weierstrass polynomials which are non-constant and isotrivial with
a certain fixed jg ̸= 0 where (q − 1) corresponds to M1,1 − { j = 0} and (qn+1 −
1) corresponds to counting a nonzero section of O(n) and q2n+1 corresponds to
counting any section of O(2n) and q5n+2 corresponds to counting any sections of
O(2n) and O(3n) due to (b2, b3) worth of freedom.

After dividing out the coordinate change factor of q6n+3(q − 1) consisting of
(b1, b2, b3) worth of freedom and a nonzero scalar λ ∈ k∗, we have

(qn + . . .+ 1) · qn = (q2n + . . .+ qn) = (q2n + . . .+ 1)− (qn−1 + . . .+ 1)

This expression is the total number of minimal Weierstrass forms that are isotriv-
ial with jg ̸= 0 upto height n. Using the relation of [dJ02, (4.13.1)], we see that
counting the weighted number of rational points of height n≥ 1 on the classifying
stack BZ (the generic stacky point of M1,1 at jg ̸= 0) has the same cardinality as
counting the weighted number of rational points on P(2)−P(1̌).

Proposition 3.2. The classes
�

Wmin
n

	

for the classifying stack BZ of non-reduced
group scheme of order 2 are given by the following formulas:

�

Wmin
0

	

= 1
�

Wmin
1

	

= L2 − 1
�

Wmin
n≥2

	

= L(n−2)2+2(L− 1){P1}

Proof. At height n= 0 we only have a constant map to j = 0 which means Wmin
0 has

the motive of
�

P0
	

= 1. For height n= 1, we have the motive of
�

Wmin
1 (P(2),O(1))

	

=
L2 from this we need to subtract

�

Wmin
1 (P(1̌),O(1))

	

= 1. For height n ≥ 2, we
have the motive of

�

Wmin
n≥2(P(2),O(1))

	

= L2n−2(L− 1){P1} from this we subtract
nothing as
�

Wmin
n≥2(P(1̌),O(1))

	

= 0.
■

Lastly, as for char(Fq) = 2 and j = 0 has the following normal Weierstrass form

y2 + a3 y = x3 + a4 x + a6

As explained in [dJ02, §4.13 (c2)], there exists a unique choice of b2 so that we
get

y2 + a′3 y = x3 + a′4 x + a′6
where a′3 is a nonzero section of O(3n) and a′4 (resp. a′6) is any section of O(4n)
(resp. O(6n)). As in the paragraph before [dJ02, Prop. 4.14], we have (q3n+1 −
1)q4n+1q6n+1q2n+1 as the total number of Weierstrass polynomials which are non-
constant and isotrivial with j = 0 where (q3n+1 − 1) corresponds to counting a
nonzero section of O(3n) and q4n+1 (resp. q6n+1) corresponds to counting any
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section of O(4n) (resp. O(6n)) and q2n+1 corresponds to counting any sections of
O(2n) due to b2 worth of freedom.

After dividing out the coordinate change factor of q6n+3(q − 1) consisting of
(b1, b2, b3) worth of freedom and a nonzero scalar λ ∈ k∗, we have

(q3n + . . .+ 1) · q6n = (q9n + . . .+ q6n) = (q9n + . . .+ 1)− (q6n−1 + . . .+ 1)

This expression is the total number of minimal Weierstrass forms that are isotriv-
ial with j = 0 upto height n. Using the relation of [dJ02, (4.13.1)], we see that
counting the weighted number of rational points of height n ≥ 1 on the classify-
ing stacks BQ24 (the stacky point of M1,1 at j = 0) has the same cardinality as
counting the weighted number of rational points on P(9)−P(6̌).

Proposition 3.3. The classes
�

Wmin
n

	

for the classifying stack BQ24 of dicyclic group
of order 24 are given by the following formulas:
�

Wmin
0

	

= 1
�

Wmin
1

	

= (L9 + . . .+L2)− (L5 + . . .+ 1)
�

Wmin
n≥2

	

= L(n−2)9+2(L8 − 1){P8} −L(n−2)6+1(L5 − 1){P5}

Proof. At height n= 0 we only have a constant map to j = 0 which means Wmin
0 has

the motive of
�

P0
	

= 1. For height n= 1, we have the motive of
�

Wmin
1 (P(9),O(1))

	

=
L9+L8+L7+L6+L5+L4+L3+L2 from this we need to subtract

�

Wmin
1 (P(6̌),O(1))

	

=
L5+L4+L3+L2+L+1. For height n≥ 2, we have the motive of

�

Wmin
n≥2(P(9),O(1))

	

=
L9n−16(L8−1){P8} from this we subtract

�

Wmin
n≥2(P(6̌),O(1))

	

= L6n−11(L5−1){P5}.
■

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove for q = 3r case first. We recall that the weighted
count N w(Fq(t), B) in [BPS22, Theorem 9.7] is the same for all positive charac-
teristic as shown in [dJ02, Proposition 4.12]. As for the unweighted count, we
multiply 2 to the weighted count N w(Fq(t), B) since any stacky point away from
j = 0 has the hyperelliptic involution automorphism group of order 2 (c.f. [Sil09,
Ap. A, Prop. 1.2]).

For j = 0, we take the weighted count in Proposition 3.1 and multiply appro-
priate factors which are (4− 2) = 2 for r odd case and (6− 2) = 4 for r even case
depending on the parity of prime power of 3 as there are 4 isomorphism classes
(resp. 6 isomorphism classes) of supersingular elliptic curves for r odd case (resp.
r even case) (c.f. [CJ04, Thm. 3.5]) and -2 comes from taking into account the
hyperelliptic involution.

Thus for the unweighted count, we would like to compute the following.

When r is odd:

N (Fq(t), B) = 2 ·N w(Fq(t), B) + 2 · (#qWn,P1(8)−#qWn,P1(4̌))
10



When r is even:

N (Fq(t), B) = 2 ·N w(Fq(t), B) + 4 · (#qWn,P1(8)−#qWn,P1(4̌))

We first compute the following by summing over n≥ 2
j

logqB
12

k

∑

n=2

#qWn,P1(8) =
q7 − 1
q7 − q6

· (B2/3 − q8)

j

logqB
12

k

∑

n=2

#qWn,P1(4̌) = −
�

q3 − 1
q · (q3 − q2)

�

· (B1/3 − q4)

which leads to the following as we sum over all n≥ 0:

#qWn,P1(8)−#qWn,P1(4̌) =
�

q7 − 1
q7 − q6

�

· (B2/3 − q8)−
�

q3 − 1
q4 − q3

�

· (B1/3 − q4)

+ (q8 + . . .+ q2)− (q3 + q2 + q+ 1) + 1

=
�

q7 − 1
q7 − q6

�

B2/3 −
�

q3 − 1
q4 − q3

�

B1/3

from which the result follows.

We now prove for q = 2r case. We recall that the weighted countN w(Fq(t), B) in
[BPS22, Theorem 9.7] is the same for all positive characteristic as shown in [dJ02,
Proposition 4.12]. As for the unweighted count, we multiply 2 to the weighted
count N w(Fq(t), B) since any stacky point away from j = 0 has the hyperelliptic
involution automorphism group of order 2 (c.f. [Sil09, Ap. A, Prop. 1.2]). There
needs to be an adjustment, however, as the weighted number of rational points on
P(2) and P(2)−P(1̌) differ at height n= 1. The difference of

�

Wmin
1 (P(2))
	

= L2

and
�

Wmin
1 (P(2)−P(1̌))

	

= L2 − 1 is −1.

Thus taking account of all points for every jg ̸= 0, we need to subtract (q − 1)
from the total number of weighted count corresponding to M1,1 − { j = 0} for a
certain fixed jg ̸= 0. And then we need to add 1 from the total number of weighted
count as we subtract the rational points landing on j =∞ since we do not want
to count the generically singular j =∞ isotrivial elliptic curves.

Lastly for j = 0, we take the weighted count in Proposition 3.3 and multiply
appropriate factors which are (3 − 2) = 1 for r odd case and (7 − 2) = 5 for r
even case depending on the parity of prime power of 2 as there are 3 isomorphism
classes (resp. 7 isomorphism classes) of supersingular elliptic curves for r odd case
(resp. r even case) (c.f. [Men93, Thm. 3.6 & 3.7]) and -2 comes from taking into
account the hyperelliptic involution.

Thus for the unweighted count, we would like to compute the following.
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When r is odd:

N (Fq(t), B) = 2 · (N w(Fq(t), B)− (q− 1) + 1) + (#qWn,P1(9)−#qWn,P1(6̌))

When r is even:

N (Fq(t), B) = 2 · (N w(Fq(t), B)− (q− 1) + 1) + 5 · (#qWn,P1(9)−#qWn,P1(6̌))

We first compute the following by summing over n≥ 2
j

logqB
12

k

∑

n=2

#qWn,P1(9) =
q8 − 1
q8 − q7

· (B3/4 − q9)

j

logqB
12

k

∑

n=2

#qWn,P1(6̌) = −
�

q5 − 1
q · (q5 − q4)

�

· (B1/2 − q6)

which leads to the following as we sum over all n≥ 0:

#qWn,P1(9)−#qWn,P1(6̌) =
q8 − 1
q8 − q7

· (B3/4 − q9)−
�

q5 − 1
q6 − q5

�

· (B1/2 − q6)

+ (q9 + . . .+ q2)− (q5 + q4 + q3 + q2 + q+ 1) + 1

=

�

q8 − 1
q8 − q7

�

B3/4 −
�

q5 − 1
q6 − q5

�

B1/2

from which the result follows.
■
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