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Abstract. We construct examples of 3-manifolds M which have at least two

inequivalent embeddings in S4 such that in each case the complementary re-

gions have abelian fundamental groups.

A TOP locally flat embedding of a closed connected 3-manifold M in S4 is abelian
if each of the fundamental groups πX and πY of the two complementary regions X
and Y is abelian. If M has such an embedding then either β = β1(M) = 1, 3, 4 or 6
and H1(M) = H1(M ;Z) ∼= Zβ , or H1(M) ∼= C2

n or Z2⊕C2
n, for some n > 0 [5, The-

orem 8.1]. In all cases the abelian groups πX and πY have balanced presentations.
If M is a homology 3-sphere then it has an essentially unique abelian embedding
(and the complementary regions are then contractible), while if H1(M) ∼= Z then
it has at most one such embedding [5, Theorem 8.9].

We shall show that there are examples with more than one abelian embedding.
Our strategy is to find a link L which has several distinct partitions into a pair of
sublinks, each of which is trivial (or split Ap1, as defined below), and to consider the
associated embeddings of the manifold M = M(L) obtained by 0-framed surgery
on L. For appropriate choices of L the embeddings are abelian, and we can use the
essential uniqueness of the JSJ decomposition of M to show that the embeddings
are distinct. One example with β = 6 has (at least) 5 abelian embeddings.

At the end we attach a short section outlining how surgery may be applied when
β = 0 and the complementary regions have fundamental group Cn, for some n > 0.

1. the examples

Embeddings j and j̃ of a 3-manifold M in S4 are equivalent if there are self-
homeomorphisms φ of M and ψ of S4 such that ψj = j̃φ. Let jX : M → X and
jY : M → Y be the inclusions of M into each of the complementary regions for the
embedding j (and similarly for j′). In particular, if the image of the complementary
regions X and Y under ψ are X ′ and Y ′ then H1(φ) maps the kernel of H1(jX)
onto the kernel of H1(jX′) and the kernel of H1(jY ) onto the kernel of H1(jY ′).
Thus in order to show that two embeddings of M are not equivalent it shall suffice
to show that there is no such automorphism of H1(M).

Our examples shall all be variations on the Borromean rings link Bo. All the
proper sublinks of Bo are trivial links, and the exterior X(Bo) is hyperbolic [8,
Exercise 3.3.10]. We shall say that a knot K in S3 is Ap1 if it has Alexander
polynomial ∆K = 1. Every Ap1 knot bounds a TOP locally flat disc in D4 with
complement having fundamental group Z [3, Theorem 11.7B]. A link in S3 is split
Ap1 if it is a split link and each component is an Ap1 knot. Such links are slice links,
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and have a set of slice discs with complement having free fundamental group. We
shall also arrange that the nontrivial components have hyperbolic exterior, as this
may simplify the invocation of JSJ arguments. There are infinitely many hyperbolic
Ap1 knots [6].

The simplest nontrivial Ap1 knot is the Kinoshita-Teresaka knot K = 1142n,
which is an 11 crossing knot with ∆K = 1. It is hyperbolic, and bounds a smooth
disc DK in D4 such that π1(D4 \DK) ∼= Z. See [4, Figure 1.4]. (If we could find 4
other such hyperbolic Ap1 knots we could avoid any appeal to TOP surgery.)

Let L be the 3-component link obtained from Bo by replacing the third com-
ponent Bo3 by a nontrivial Ap1 knot K. (See Figure 1, in which Ko ⊂ D3 is the
tangle obtained by deleting a small ball around a point on K ⊂ S3.) The link L
has two distinct partitions into a pair of sublinks, each of which is a split Ap1 link:
P = {{Bo1, Bo2},K} and P ′ = {{Bo1,K},K2}.

Let M = M(L) and let j and j′ : M → S4 be the embeddings determined by
these partitions, together with the obvious slice discs (as in [5, Chapter 2]). It is
easy to see that in each case πX ∼= Z2 and πY ∼= Z, and so j and j′ are abelian
embeddings. (In each case X ' T 2 and Y ' S1 ∨ 2S2 [5, Theorem 8.17].)
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Figure 1.

The group H1(M) is freely generated by the images of the meridians {a, p, x}.
The 3-manifold M has a JSJ decomposition of which one piece is homeomorphic to
Doo × S1, where Doo is the “pair of pants”, i.e., the twice punctured disc. Two of
the boundary components of this piece are identified, to give a copy of To×S1 in M .
Homology considerations show that the JSJ decomposition has no other such piece,
and so self-homeomorphisms of M must leave this piece invariant, up to isotopy. In
particular, there is no self-homeomorphism carrying the image of x in H1(M) into
the subgroup generated by the other meridians. Since jY ∗(x) generates H1(Y ) and
j′Y ∗(x) = 0, it follows that j and j′ are not equivalent.

If we tie distinct hyperbolic Ap1 knots K1,K2 and K3 in each component of
Bo then the three partitions P12 = {{K1,K2},K3}, P13 = {{K1,K3},K2}. and
P23 = {K1, {K2,K3}} are distinct. The JSJ decomposition of M(L) has 4 pieces:
X(K1), X(K2), X(K3) and X(Bo). These are distinct, by Lemma 1 below, and so
M has three inequivalent abelian embeddings.

Lemma 1. Let K be a knot in S3 and let µK be a meridian loop for K. Then the
3-manifold N with boundary T obtained by 0-framed surgery on K in the exterior
X(µK) ∼= S1 ×D2 is homeomorphic to X(K).

Proof. The cocore of the surgery on S3 giving M(K) is isotopic to the image of µK
in X(K) ⊂M(K). Deleting a regular neighbourhood of this core from M(K) gives
back X(K). �
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For the other cases we shall need links with at least 4 components.
If β = 2 then πX ∼= πY ∼= Z ⊕ Cn, for some n > 1, and we start by replacing

Bo3 by its (2, 2n)-cable. If β = 4 then πX ∼= πY ∼= Z2, and we replace Bo3 by two
parallel unlinked components. Call the resulting link Bo(+).

In each case we then insert nontrivial Ap1 knots into the second and fourth
components of Bo(+). The new 4-component link L has two partitions into split
sublinks which are also slice links:

P = {{L1, L3}, {L2, L4}} and P ′ = {{L1, L4}, {L2, L3}}.

The associated embeddings are abelian, and the JSJ argument again goes through
(provided n 6= 1).

If n = 0 (so β = 4) then each of the 2-component sublinks of Bo(+) is trivial,
but the embedding associated to the partition P = {{L1, L2}, {L3, L4}} is not
abelian. We may modify the second component of Bo(+), as in Figure 3, so that
it represents the commutator of the meridians of the third and fourth components.
Each of the 2-component sublinks of the resulting link remains trivial. Now tie
distinct hyperbolic Ap1 knots in each of the second, third and fourth components.
Then the 3 partitions of the resulting L into pairs of disjoint 2-component sublinks
each give rise to an abelian embedding of M(L), and once again these embeddings
are distinct.

The case β = 6 involves a little more effort. In [5, Example 8.3] we considered
the links obtained as preimages of the Whitehead link Wh under 2- and 3-fold
branched cyclic covers of S3, branched over an unknotted axis. The associated
manifolds M(L) have abelian embeddings. However these links do not have distinct
partitions leading to abelian embeddings. The 3-fold cover of Wh (with respect to
this branching) is the link of Figure 2.
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Figure 2. A 6-component link

We shall label the components of the preimage of one component of this link with
A,B,C and the other components with R,S and T . Each of the six consecutive
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triples {A, T,B}, {T,B,R}, {B,R,C}, {R,C, S}, {C, S,A} and {S,A, T} is a non-
trivial Brunnian link, while all 2-component sublinks and all the other 3-component
sublinks are trivial. Each component represents the commutator of the meridians
of its immediate neighbours (up to inversion). Thus the embedding determined by
P = {{A,B,C}, {R,S, T}} and the obvious set of slice discs is abelian.

We may modify B,C,R and S to represent [c, s], [a, r], [c, t] and [b, r] (up to
inversion), while the only nontrivial 3-component sublinks are {A, T,B}, {T,B,R},
{B,R,C}, {R,C, S}, {C, S,A} and {S,A, T}, and {A,C,R}, {B,C, S}, {B,R, S}
and {C,R, S}. Figure 3 shows only the modification to R. (Note that the trivial
link {C,R, T} becomes a copy of Bo, if we ignore the other 3 components.)
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Figure 3. Modifying R so that it represents [c, t].

After further modifications to B,C and S we insert distinct nontrivial hyper-
bolic Ap1 knots into each of the components R,S and T , to obtain a link with
two partitions P and P ′ = {{A,B,R}, {C, S, T}} which each give rise to abelian
embeddings j and j′ of M(L). The JSJ decomposition of M(L) has 3 distinct
hyperbolic components corresponding to R,S and T , by Lemma 1. It follows as
before that M(L) has no self-homeomorphisms which permute the basis of H1(M)
in a manner necessary for an equivalence between j and j′.

A 6-component link L = {A,B,C,R, S, T} has 10 partitions into pairs of 3-
component sublinks. If each component of one sublink of a partition represents
a commutator of meridians of two components of the other sublink then some of
these partitions cannot represent abelian embeddings. Suppose for example that
P = {{A,B,C}, {R,S, T}} is a partition such that A represents the commutator
[s, t] of the meridians for S and T in the exterior of {R,S, T}. Then {A,S, T}
cannot be a slice link, since the nilpotent completion of a slice link group is that
of a free group – see [4, Chapter 12.7]. Consideration of the combinatorics of the
problem then suggests that at most 5 of the partitions could give rise to abelian
embeddings. We may start with the following partitions of a trivial 6-component
link into pairs of trivial 3-component links:
P1 = {{A,B,C}, {R,S, T}}, P2 = {{A,B,R}, {C, S, T}},
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P3 = {{A,B, S}, {C, S, T}}, P4 = {{A,C,R}, {B,S, T}} and
P5 = {{A,C, T}, {B,R, S}}.

We then modify each of the other ten 3-component sublinks as in Figure 3 to obtain
copies of Bo, and tie distinct hyperbolic Ap1 knots in each of 5 of the components.
Once again we may use the uniqueness of the JSJ decomposition to show that the 5
abelian embeddings corresponding to these partitions are inequivalent. We suspect
that dropping the hypothesis on components representing commutators would not
lead to more than 5 distinct embeddings, but have no proof for this.

Are there similar examples when H1(M) ∼= C2
n or Z2? Here arguments involving

automorphisms of H1(M) do not seem to be adequate.

2. some remarks on identifying the complementary regions when β = 0

In [5, §8.6] we made some brief observations about the application of surgery
to examples of abelian embeddings of 3-manifolds M with H1(M) ∼= C2

n in S4,
for the cases n 6 4. We shall remove the latter restriction here. Let W be a
complementary region of an embedding of a rational homology sphere M in S4, such
that πW = π1W ∼= Cn, for some n > 1. Then W ' Pn = S1 ∪n e2 [5, Lemma 8.4],
and homotopy equivalences between such pseudoprojective planes are simple [2].
Let STOP (W,M) be the simple-homotopy equivalence structure set. The normal
invariants are detected by the signature, since H2(W,M ;F2) = H2(W ;F2) = 0.
Hence exactness of the surgery sequence implies that Ls1(Z[πW ]) acts transitively
on STOP (W,M). If moreover πW has odd order then Ls1(Z[πW ]) = 0 [1], while if n
is even Ls1(Z[πW ]) is a finite 2-group. Thus if n is odd the complementary regions
of an abelian embedding of M are determined up to homeomorphism by M and
the homotopy types of the inclusions of M as their boundaries.

The main difficulty in determining the abelian embeddings of such 3-manifolds is
in computing the group [M,Pn]f of based homotopy classes of based maps inducing
a given epimorphism f : π1M → Cn = π1Pn.

Work of [7] implies that S3/Q(8) has an essentially unique abelian embedding.
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