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Abstract. We use the Maslov index to study the spectrum of a class of linear Hamiltonian
differential operators. We provide a lower bound on the number of positive real eigenvalues, which
includes a contribution to the Maslov index from a nonregular crossing. A close study of the eigen-
value curves, which represent the evolution of the eigenvalues as the domain is shrunk or expanded,
yields formulas for their concavity at the nonregular crossing in terms of the corresponding Jordan
chains. This enables the computation of the Maslov index at such a crossing via a homotopy ar-
gument. We apply our theory to study the spectral (in)stability of standing waves in the nonlinear
Schr\"odinger equation on a compact interval. We derive stability results in the spirit of the Jones--
Grillakis instability theorem and the Vakhitov--Kolokolov criterion, both originally formulated on the
real line. A fundamental difference on passing from the real line to the compact interval is the loss
of translational invariance, in which case the zero eigenvalue of the linearized operator is (typically)
geometrically simple. Consequently, the stability results differ depending on the boundary condi-
tions satisfied by the wave. We compare our lower bound to existing results involving constrained
eigenvalue counts, finding a direct relationship between the correction factors found therein and the
objects of our analysis, including the second-order Maslov crossing form.
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1. Introduction. We use the Maslov index to study the real spectrum of Hamil-
tonian differential operators of the form

N =

\biggl( 
0  - L - 
L+ 0

\biggr) 
,

where L\pm are scalar-valued Schr\"odinger operators with arbitrary C2 potentials on a
compact interval [0, \ell ]. In particular, we provide a lower bound on the number of
positive real eigenvalues of the operator N (Theorem 2.2).

Our approach is to restrict N to a subinterval [0, s\ell ], s\in (0,1] and, rescaling back
to [0, \ell ], study the s-dependent spectrum of the one-parameter family of operators
in the spatial parameter s. We are thus led to a characterization of the eigenvalues
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 4999

of the rescaled operators as a locus of points in the \lambda s-plane (with \lambda the spectral
parameter), which we refer to as eigenvalue curves. We interpret the eigenvalue
curves as loci of intersections, or crossings, of a path in the manifold of Lagrangian
planes with a certain codimension-one subvariety. This affords the use of the Maslov
index, a signed count of such crossings. Formulas for the concavity of the eigenvalue
curves are given (Theorems 2.9, 4.5, and 4.6), and are used to compute a correction
term appearing in the lower bound in Theorem 2.2.

Operators of the form of N arise in the linearization about a standing wave
solution \widehat \psi (x, t) = ei\beta t\phi (x) of the nonlinear Schr\"odinger (NLS) equation

i\psi t =\psi xx + f
\bigl( 
| \psi | 2

\bigr) 
\psi ,(1.1)

where \psi : [0, \ell ]\times [0,\infty ) - \rightarrow \BbbC , the nonlinearity f :\BbbR +  - \rightarrow \BbbR is a C3 function, and \beta \in \BbbR 
is the temporal frequency. The wave around which we linearize is said to be spectrally
unstable if there exists spectrum of N in the open right half plane and spectrally stable
otherwise. By applying Theorem 2.2, we establish stability criteria for standing waves
in the NLS equation on a compact interval subject to perturbations satisfying Dirichlet
boundary conditions. Namely, we derive analogues of the Jones--Grillakis instability
theorem (Corollary 2.7) and the Vakhitov--Kolokolov (VK) criterion (Theorem 2.11).
While Corollary 2.7 is also a consequence of the abstract result of [52, Theorem 3.2],
Theorem 2.11, which makes use of the concavity formulas of Theorem 2.9, appears
to be new for the case of the compact interval. These two stability results actually
remain valid for a spatially dependent nonlinearity f(x, | \psi | 2); see Remark 2.6.

Along the way, we find Hadamard-type formulas for the slope of the eigenvalue
curves as the ratio of certain quadratic forms, called crossing forms, whose signatures
locally determine the Maslov index (Proposition 4.2 and Corollary 4.4). Variational
formulas for the eigenvalues of boundary value problems with respect to perturbation
of the domain are classical and go back to the work of Hadamard [36], Rayleigh [67],
and Rellich [68]; see also [38, 35] and [54, section VII.6.5]. Recently, such formulas
have been given in terms of the (Maslov) crossing form for families of Schr\"odinger
[56, 59] and abstract self-adjoint operators [58]. Our formulas agree with and build
on those found therein.

We also encounter a nonregular crossing when \lambda = 0, corresponding to a degener-
acy of the associated crossing form and points of zero slope for the eigenvalue curves.
Geometrically, this corresponds to the Lagrangian path tangentially intersecting the
relevant codimension-one subvariety. Some care is then required in order to compute
the Maslov index, and it is a key feature of the current work that we are able to
do so (Theorem 4.14). In particular, it is sufficient to know the concavity of the ei-
genvalue curve through the nonregular crossing as well as whether the operators L+

and L - have a nontrivial kernel. To the best of our knowledge, no such computation
has previously been made in the literature. Analyzing the nonregular crossing in the
context of the NLS equation leads to stability criteria that resemble the VK criterion
in certain cases, furnishing an interesting connection between the concavity of the
eigenvalue curve at the nonregular crossing, the Maslov index there, and the classical
VK result; see section 5.

In the case when the spatial domain is the entire real line, if zero is a hyperbolic
fixed point of the standing wave equation

\phi xx + f(\phi 2)\phi + \beta \phi = 0(1.2)

and there exists an orbit that is homoclinic to it in the phase plane, a localized solution
to (1.1) exists and belongs to L2(\BbbR ) for all time. In this case, L+ and L - , which are
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5000 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

unbounded operators on L2(\BbbR ), both have a nontrivial kernel. Indeed, the stationary
state \phi and its derivative \phi x satisfy L - \phi = 0 (the stationary equation (1.2)) and
L+\phi x = 0 (the associated variational equation), respectively, and decay exponentially
as x \rightarrow \pm \infty . By the results of Jones [48] and Grillakis [32], one then has that if
P  - Q \not = 0,1, where P and Q are the numbers of negative eigenvalues (or Morse
indices) of L+ and L - , then N has at least one positive real eigenvalue, and hence
the standing wave solution to (1.1) is unstable. In the edge case when P = 1 and
Q= 0, the results of Vakhitov and Kolokolov [74] and Grillakis, Shatah, and Strauss
[33, 34] dictate that the wave is spectrally (and orbitally) stable if the \beta -derivative of
the mass of the wave

\partial 

\partial \beta 

\int \infty 

 - \infty 
\phi 2 dx(1.3)

is negative and spectrally unstable if (1.3) is positive (see [66, Theorem 4.4, page
215]).

One of the key differences on passing from the real line to the compact interval is
that, generically, the operators L+ and L - (equipped with Dirichlet boundary con-
ditions) do not simultaneously have a nontrivial kernel. Depending on the boundary
conditions satisfied by the wave profile \phi , typically zero will lie in the spectrum of
either L+ or L - (or neither). A physical reason for this is the loss of translational
invariance, which manifests in the failure of the relevant boundary conditions of ar-
bitrary translates of \phi . As a consequence, our stability results (Corollary 2.7 and
Theorem 2.11) will differ depending on which of the operators L\pm has a nontrivial
kernel. In the case that L - has a nontrivial kernel, we can recover the integral ex-
pression (1.3) appearing in the classical VK criterion. Such a recovery is not possible
when L+ has a nontrivial kernel; for details, see the discussion in subsection 5.3.2.

There is a large body of work relating the Morse index of a self-adjoint opera-
tor and its number of conjugate points (which was later interpreted as the Maslov
index of an associated Lagrangian path), going back to the middle of last century
[1, 2, 6, 24, 25, 73]. Most of these theorems can be viewed as generalizations of the
classical Sturmian theory, and indeed in [6, 25, 73], they are framed as such, where
the nodal count of an eigenfunction indicates where in the sequence of eigenvalues the
corresponding eigenvalue sits. Following on from Jones's seminal work [48], the idea
of using the Maslov index for spatially Hamiltonian systems to extrapolate temporal
spectral information has proven quite fruitful in the ensuing years (see, for example,
[49, 18, 19, 43, 42, 57] and the references therein for a partial list of results).

In more recent times, Deng and Jones in [23] (see also [18, 19]) used the Maslov
index to analyze second-order elliptic eigenvalue problems on bounded domains. An
important feature of this analysis, as well as that of [4, 43, 42, 44, 40], is monotonicity
of the Maslov index in the spectral parameter. Monotonicity also holds in the spatial
parameter under certain boundary conditions [18, 41, 49]. This property is convenient
since it enables an equality of the Morse index with the Maslov index of the Lagrangian
path corresponding to \lambda = 0. Importantly, as in [48], we do not have monotonicity in
either the spatial or the spectral parameter. However, the signature of crossings in
the s-direction when \lambda = 0 can always be accounted for, and, consequently, a nonzero
Maslov index can nonetheless be used to detect a real, unstable eigenvalue, just as in
[61, 62, 47, 71]. This lack of monotonicity thus leads to the inequality in Theorem 2.2.

Another feature in the aforementioned references, as well as in [5, 12, 13, 9, 10, 11,
15, 16, 17, 39], is a dynamical systems approach to eigenvalue problems. In these
works, the eigenvalue equations associated with the linearized operators are
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5001

Hamiltonian or can be made Hamiltonian under a suitable change of variables. The
critical feature of such systems is that they induce a symplectically invariant flow and
hence preserve the manifold of Lagrangian planes, which affords the application of
the Maslov index. For recent works where the Hamiltonian requirement is relaxed,
see [15, 16, 17]. In [16, 17], a change of variables is used to recover the Hamiltonian
structure, and in [15], the system, while not Hamiltonian, still preserves the space of
Lagrangian planes. For an example of where the Hamiltonian requirement is dropped
altogether, see [3].

Existing results on the stability of standing wave solutions of (1.1) on a compact
spatial interval have been given for periodic solutions of (1.2), with (quasi)periodic
perturbations and predominantly for cubic focusing (f(\phi 2) = \phi 2) or defocusing
(f(\phi 2) =  - \phi 2) NLS. Rowlands in [70] studied the spectral stability of spatially pe-
riodic elliptic solutions to the cubic NLS, subject to long wavelength disturbances.
Pava [65] showed that the Jacobi dnoidal solutions to cubic focusing NLS were or-
bitally stable with respect to coperiodic perturbations. In [26], Gallay and H\u ar\u agus
showed the orbital stability of spatially periodic and quasiperiodic traveling waves
with a complex-valued profile for small-amplitude solutions in both the focusing and
the defocusing case. They extended this result to waves of arbitrary amplitude in
[27]. For the real-valued (cnoidal) waves, their orbital stability result is restricted to
perturbations that are antiperiodic on a half period. This latter condition was done
away with in [46], wherein Ivey and Lafortune undertook a spectral stability analysis
of the cnoidal traveling wave solutions of the focusing NLS, showing stability with re-
spect to coperiodic perturbations. In [7, 28], the authors extend the orbital stability
results for both real- and complex-valued wave profiles to the class of subharmonic
perturbations (i.e., perturbations with period an integer multiple of the period of the
wave profile) in the defocusing case. In [21, 22], the authors examine the spectral
stability of the elliptic solutions with respect to subharmonic perturbations in the
focusing case. Unlike the above works, we are interested in the spectral stability of
real-valued solutions of (1.2), for an arbitrary C3 nonlinearity f , that are subject
to perturbations satisfying Dirichlet boundary conditions. Moreover, as previously
stated, many of our results hold for a spatially dependent f .

Our theory can be extended in several possible directions. In particular, our
theory should hold for the case of quasi-periodic boundary conditions on the pertur-
bations, which is natural to consider given that many of the solutions \phi to (1.2) that
satisfy Dirichlet boundary conditions are periodic. The Maslov index has already
been used to develop eigenvalue counts for self-adjoint matrix-valued Schr\"odinger op-
erators with such boundary conditions in [49, 50]. Our theory should also hold when
the Schr\"odinger operators L\pm are self-adjoint and matrix-valued, and indeed in sec-
tions 3 and 4, many of our results are stated for the operator N with an n-dimensional
kernel to accommodate this scenario. Finally, while the analysis is significantly more
involved, it should be possible to extend to the case where the spatial domain is
multidimensional, as in [19, 18, 20].

The paper is organized as follows. In section 2, we set up the eigenvalue prob-
lem and state the main results. In section 3, we provide background material on the
Maslov index, interpret the (real) eigenvalue problem symplectically, and prove The-
orem 2.2. In section 4, we analyze the eigenvalue curves. After computing formulas
for their derivatives and relating these to the Maslov crossing forms (Proposition 4.2
and Corollary 4.4), we compute their concavities at the zero eigenvalue (Theorems 4.5
and 4.6), facilitating the computation of the Maslov index at the nonregular crossing
(Theorem 4.14). We conclude the section by confirming that the signature of the
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5002 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

second -order Maslov crossing form provides the correct contribution to the Maslov
index at this crossing, which is consistent with [23]. In section 5, we provide some
applications of Theorems 2.2 and 2.9. In particular, we prove Corollaries 2.7 and 2.8
and Theorem 2.11. We also compute expressions for the concavity (at s = 1) of the
eigenvalue curve passing through (\lambda , s) = (0,1) for linearized NLS in each of the cases
when L+ and L - has a nontrivial kernel (Propositions 5.3 and 5.7). In the latter case,
we recover a compact-interval analogue of the classical VK criterion. We conclude
the paper with a comparison of the lower bound in Theorem 2.2 with existing re-
sults which make use of constrained eigenvalue counts. We find that the ``correction""
terms appearing in our lower bound and others in the literature are equivalent (Propo-
sition 5.11), applying our formulas to provide new versions of the Hamiltonian--Krein
index theorem in terms of the Maslov index (Proposition 5.12).

Notation: We let In and 0n denote the n\times n identity and zero matrices, respec-
tively. We denote the canonical 2n\times 2n symplectic matrix and the first Pauli matrix
by

J =

\biggl( 
0n  - In
In 0n

\biggr) 
, S =

\biggl( 
0 1
1 0

\biggr) 
,(1.4)

respectively. We let \langle \cdot , \cdot \rangle and \| \cdot \| denote the L2 inner product and norm, respectively.
Subscript s or \lambda will indicate dependence of a quantity on these parameters (not
derivatives). The spectrum of a linear operator T will be denoted by Spec(T ) and its
kernel by ker(T ).

2. Setup and statement of main results. The basic setup is an eigenvalue
problem of the form

N

\biggl( 
u
v

\biggr) 
= \lambda 

\biggl( 
u
v

\biggr) 
,

\biggl( 
u(0)
v(0)

\biggr) 
=

\biggl( 
u(\ell )
v(\ell )

\biggr) 
=

\biggl( 
0
0

\biggr) 
,(2.1)

where N is given by

N :=

\biggl( 
0  - L - 
L+ 0

\biggr) 
(2.2)

and L\pm are the Schr\"odinger operators

L+ = - \partial xx  - g(x), L - = - \partial xx  - h(x),(2.3)

with g and h arbitrary functions in C2([0, \ell ],\BbbR ). To be precise, we consider N as an
unbounded operator in L2(0, \ell )\times L2(0, \ell ) with dense domain

dom(N) =
\bigl( 
H2(0, \ell )\cap H1

0 (0, \ell )
\bigr) 
\times 
\bigl( 
H2(0, \ell )\cap H1

0 (0, \ell )
\bigr) 
\subset L2(0, \ell )\times L2(0, \ell ).(2.4)

Hereafter, we drop the product notation on the relevant spaces; it will be clear from
the context whether the functions are scalar- or vector-valued. An eigenvalue of N is
thus a value of \lambda \in \BbbC for which there exists a nontrivial solution u := (u, v)\top to the
boundary value problem (2.1). Eigenvalues for the unbounded operators L\pm , with
dense domains

dom(L\pm ) =H2(0, \ell )\cap H1
0 (0, \ell )\subset L2(0, \ell ),(2.5)

are similarly defined. Note that the unbounded operators L\pm =L\ast 
\pm with domain (2.5)

are self-adjoint, while N is not.

Remark 2.1. Notationally, we will not distinguish between the formal differential
expressions N and L\pm and the unbounded operators with domains (2.4) and (2.5)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5003

whose spectra we wish to study. It will be clear from the context in what sense we
refer to these objects.

While it is possible for N to have complex eigenvalues, we will restrict our analysis
of (2.1) to the case when \lambda is real and positive. The existence of such an eigenvalue
implies instability. On the other hand, there are cases where the spectrum of N lies
entirely on the real and imaginary axes, in which case the absence of a real positive
eigenvalue implies stability; see Theorem 2.11 for an example.

Our first result is a lower bound for the number of positive real eigenvalues
of N . It follows from an application of the Maslov index. The idea is to study
the spectral problem in (2.1) via a rescaling of the domain. We restrict (2.1) to a
family of subdomains [0, s\ell ] using a parameter s\in (0,1],

Nu= \lambda u, u(0) = u(s\ell ) = 0,(2.6)

and define a conjugate point to be a value of s for which there exists a nontrivial
solution to (2.6) with \lambda = 0. We then deduce the existence of unstable eigenvalues
of (2.1) by counting conjugate points (via the Maslov index) as s varies from 0 to 1.
Defining the quantities

P :=\#\{ negative eigenvalues of L+\} ,
Q :=\#\{ negative eigenvalues of L - \} ,

n+(N) :=\#\{ positive real eigenvalues of N\} ,

we have the following.

Theorem 2.2. Let N be an operator as in (2.2)--(2.3). The number of positive
real eigenvalues of N satisfies

n+(N)\geq | P  - Q - c| ,(2.7)

where c (given in Definition 3.14) is the total contribution to the Maslov index in the
s and \lambda directions from the conjugate point at s = 1. (If there is no such conjugate
point, c= 0.)

Remark 2.3. One of the main results of this paper is that we are able to give
explicit formulas for this so-called corner term c, which has the property that c \in 
\{  - 1,0,1\} . The name derives from the location of the associated crossing in terms of
the so-called Maslov box. For precise statements, see sections 3 and 4, in particular
Theorem 4.14.

Remark 2.4. In (2.6), the symbol N denotes a differential expression. For the
associated unbounded operator, we define

N | [0,s\ell ]u :=Nu, u\in dom(N | [0,s\ell ]) =H2(0, s\ell )\cap H1
0 (0, s\ell )\subset L2(0, s\ell ),(2.8)

so that \lambda \in Spec(N | [0,s\ell ]) if and only if (2.6) has a nontrivial solution.

Theorem 2.2 (the proof of which is given in subsection 3.4) is in the spirit of a
number of lower bounds in the literature. In contrast to [45, Assumption 2.1(b)],
we do not assume that the operators L\pm are invertible. If both L+ and L - are
invertible, it will follow that there is no conjugate point at s = 1, and therefore
c= 0. In this case, we recover the inequality in [45, Theorem 2.25]. The lower bound
for n+(N) in the case when one or both of L+ and L - has a nontrivial kernel has
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5004 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

been studied in [52, Theorem 3.2], [55, Theorem 5.6], [60, Theorem 2.3], and [32,
Theorem 1.2], to name a few; see also [53, section 7.1.3]. In these works, the authors
typically project off the kernels of L+ and L - and give the lower bound in terms of
the associated constrained eigenvalue counts for L+ and L - . By contrast, we require
no such projections. The constrained counts for L+ and L - (given in the current work
in (5.31)) involve the number of negative eigenvalues of certain matrices denoted D\pm .
In subsection 5.4, we will show that our ``correction"" factor---given by the corner
term c---is equivalent to the ``correction"" factor in [53, Theorem 7.1.16], given by the
difference n - (D+) - n - (D - ) of negative indices of D+ and D - (see Proposition 5.11).
Thus, Theorem 2.2 together with Proposition 5.11 recovers [53, Theorem 7.1.16]. The
Maslov index interpretation afforded by c is convenient because it provides a way of
computing the difference n - (D+) - n - (D - ). Namely, (5.38) shows that the signs of
D\pm (which in our setup are scalars) are given by the signs of the concavities of the
eigenvalue curves at (\lambda , s) = (0,1).

Our main application will be to the linearization of (1.1) about a standing wave
solution. This is a solution to (1.1) of the form \widehat \psi (x, t) = ei\beta t\phi (x) for some \beta \in \BbbR ,
where the real-valued wave profile or stationary state \phi : [0, \ell ] \rightarrow \BbbR solves the time-
independent equation

\phi xx + f(\phi 2)\phi + \beta \phi = 0.(2.9)

The results of this paper hold under fairly general boundary conditions on \phi . Two
examples that we will often focus on are Dirichlet conditions

\phi (0) = \phi (\ell ) = 0(2.10)

or Neumann conditions

\phi \prime (0) = \phi \prime (\ell ) = 0.(2.11)

In these cases, one possible choice for the interval length \ell is to fix a T -periodic
solution to (2.9) and to set \ell = kT/2 for some k \in \BbbN . Some example phase portraits
for (2.9) featuring periodic orbits are given in Figure 1. As an aside, note that the

-2 -1 0 1 2
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(a)
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1
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Fig. 1. Examples of phase portraits for (2.9). In (a), we have cubic focusing nonlinearity
f(\phi 2) = \phi 2 and \beta < 0. The homoclinic orbits in black, representing localized solutions on \BbbR , separate
those inside (nonzero Jacobi dnoidal functions) and those outside (Jacobi cnoidal functions that
oscillate evenly about \phi = 0). In (b), we have cubic defocusing nonlinearity f(\phi 2) = - \phi 2 and \beta > 0,
with periodic orbits existing only inside the heteroclinic cycle in black. In (c), we have f(\phi 2) = \phi 2

and \beta > 0.
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5005

homoclinic orbits in Figure 1(a) correspond to strictly positive or negative localized
solutions on \BbbR .

A natural question to ask is whether the standing wave \widehat \psi is stable in time with
respect to small perturbations in \phi . Substituting the perturbative solution

\psi (x, t) = ei\beta t
\bigl[ 
\phi (x) + \varepsilon e\lambda t(u(x) + iv(x))

\bigr] 
into (1.1) and collecting O(\varepsilon ) terms, we arrive at the differential equations in (2.1),
where

g(x) = 2f \prime (\phi 2(x))\phi 2(x) + f(\phi 2(x)) + \beta ,

h(x) = f(\phi 2(x)) + \beta .
(2.12)

Then, subject to the class of perturbations u= (u, v)\top that vanish at both endpoints,
the standing wave \widehat \psi is spectrally stable if the spectrum of the linearized operator
N is contained in the imaginary axis since the eigenvalues of N are symmetric with
respect to the real and imaginary axes.

When \lambda = 0, the differential equations in (2.1) decouple into two independent
equations: Nu = 0 if and only if L+u = 0 and L - v = 0. Thus, ker(N) = ker(L+)\oplus 
ker(L - ), and 0 \in Spec(N) if and only if 0 \in Spec(L+) \cup Spec(L - ). Furthermore,
because the eigenvalues of the Sturm--Liouville operators L\pm are simple,

dimker(N) = 1 \Leftarrow \Rightarrow 0\in Spec(L - )\bigtriangleup Spec(L+),

dimker(N) = 2 \Leftarrow \Rightarrow 0\in Spec(L - )\cap Spec(L+),
(2.13)

where A\bigtriangleup B :=A\cup B \setminus A\cap B denotes the symmetric difference. In our application to
the stability of standing waves of (1.1), note that (2.9) is equivalent to L - \phi = 0, while
autonomy of this equation yields L+\phi 

\prime = 0. The boundary conditions satisfied by \phi 
therefore influence whether 0 \in Spec(L\pm ). For instance, if \phi satisfies the Dirichlet
conditions (2.10), then 0 \in Spec(L - ) with eigenfunction \phi , whereas if \phi satisfies the
Neumann conditions (2.11), then 0 \in Spec(L+) with eigenfunction \phi \prime , provided \phi is
nonconstant. It is also possible that 0 /\in Spec(L+) \cup Spec(L - ) if, for example, more
general Robin boundary conditions are imposed on \phi .

In any of these cases, that L+ and L - have nontrivial kernel simultaneously is
nongeneric, and so we make this an assumption when studying the stability of NLS
standing waves. We stress that the general setup of the paper is given by (2.1)--
(2.3), and the following hypothesis is not assumed throughout; we will explicitly state
whenever we make use of it.

Hypothesis 2.5. N is of the form (2.2)--(2.3), where
(i) the potentials g and h come from the linearization of the NLS equation (1.1)

about a standing wave \widehat \psi (and hence are given by (2.12));
(ii) 0 /\in Spec(L - )\cap Spec(L+).

Remark 2.6. With g and h arbitrary functions of x in general, the results of
this paper concerning the stability of NLS standing waves are valid for a spatially
dependent nonlinearity f(x, | \psi | 2) as appearing in, for example, [48, 32]. In this case,
the loss of autonomy in the standing wave equation (2.9) means that L+\phi 

\prime \not = 0;
thus, only the results which rely on \phi \prime being an eigenfunction for L+ (Corollary 2.8,
Proposition 5.3 and Corollary 5.5) do not generalize to the nonautonomous case.

Under the assumptions of Hypothesis 2.5, our analogue of the Jones--Grillakis
instability theorem will follow from both Theorem 2.2 and a computation of the values
of c given in Theorem 4.14.
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5006 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Corollary 2.7. Let N be an operator as in (2.2)--(2.3). If 0 \in Spec(L+) \setminus 
Spec(L - ) and P  - Q \not =  - 1,0 or 0 \in Spec(L - ) \setminus Spec(L+) and P  - Q \not = 0,1, then
n+(N)\geq 1. Under Hypothesis 2.5, \widehat \psi is spectrally unstable in these cases.

(The proof is given in subsection 5.1.) This criterion leads to the following in-
stability result. The waves described correspond, for example, to the periodic orbits
represented by the phase curves that are contained inside either of the orbits homo-
clinic to (0,0) in Figure 1(a).

Corollary 2.8. Assume Hypothesis 2.5. Standing waves satisfying the Neu-
mann boundary conditions (2.11) that are nonconstant and nonvanishing over [0, \ell ]
and that have one or more critical points in (0, \ell ) are unstable.

(The proof is given in subsection 5.1.) To effectively use Theorem 2.2, we need
to understand the quantity c appearing in (2.7). Its definition involves the Maslov
index at a potentially degenerate crossing and hence requires some work to calculate.
We do this by analyzing the curves in the \lambda s-plane that describe the evolution of the
real eigenvalues \lambda of the restricted problem (2.6) as s is varied. As will be seen in
Theorem 4.14, c is determined by the concavity of these curves. Below, dot denotes
d/d\lambda . The proof of the following theorem is given in subsection 4.2.

Theorem 2.9. Let N be an operator as in (2.2)--(2.3). If dimker(N) = 1, then
there exists a smooth function s(\lambda ), defined for | \lambda | \ll 1, such that s(0) = 1 and \lambda is
an eigenvalue of (2.6) on [0, s(\lambda )\ell ]. Moreover, \.s(0) = 0, and the concavity of s(\lambda ) can
be determined as follows:

1. If 0\in Spec(L - ) \setminus Spec(L+) with eigenfunction v \in ker(L - ), then

\"s(0) =
2

\ell 

\langle \widehat u, v\rangle 
(v\prime (\ell ))

2 ,(2.14)

where \widehat u\in H2(0, \ell )\cap H1
0 (0, \ell ) is the unique solution to L+\widehat u= v.

2. If 0\in Spec(L+) \setminus Spec(L - ) with eigenfunction u\in ker(L+), then

\"s(0) = - 2

\ell 

\langle \widehat v, u\rangle 
(u\prime (\ell ))

2 ,(2.15)

where \widehat v \in H2(0, \ell )\cap H1
0 (0, \ell ) is the unique solution to  - L - \widehat v= u.

Remark 2.10. In applications, we will primarily be interested in the sign of \"s(0),
for which (2.14) and (2.15) give

sign \"s(0) = sign

\int \ell 

0

\widehat uv dx and sign \"s(0) = - sign

\int \ell 

0

\widehat v udx,(2.16)

respectively. The integrals in (2.16) can be rewritten as\int \ell 

0

\widehat uv dx= \int \ell 

0

\widehat u (L+\widehat u) dx and

\int \ell 

0

\widehat v udx= \int \ell 

0

\widehat v (L - \widehat v) dx.(2.17)

Consequently, \"s(0) > 0 if 0 \in Spec(L - ) and L+ is a strictly positive operator or if
0\in Spec(L+) and L - is strictly positive.

In section 4, we will prove a more general version of Theorem 2.9; see Theo-
rem 4.5. An analogous result for the case when dimker(N) = 2 is given in The-
orem 4.6. Using these results, we give a computation of the Maslov index at the
nonregular crossing in Theorem 4.14.
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5007

As an application of our theory, working under Hypothesis 2.5, we provide a new
formula for the sign of \"s(0) by evaluating the integral expression in (2.15) for stationary
states satisfying (2.11); see Proposition 5.3. In the edge cases when P  - Q = 1 and
0 \in Spec(L - ) \setminus Spec(L+) or P  - Q= - 1 and 0 \in Spec(L+) \setminus Spec(L - ), we show (see
Theorem 2.11) that spectral stability of the standing wave \widehat \psi is determined by the
sign of \"s(0). This suggests that on a bounded interval, the integrals \langle \cdot , \cdot \rangle in (2.14) and
(2.15) play the same role that (1.3) plays in the well-known VK criterion on the real
line. We thus refer to the two integral expressions in (2.16) as VK-type integrals. In
subsection 5.3.2, we show that it is possible to recover the classical VK criterion on a
compact interval using the numerator in (2.14) (but not (2.15)).

Theorem 2.11. Let N be an operator as in (2.2)--(2.3). Consider the case when
P = 1, Q = 0, and 0 \in Spec(L - ) \setminus Spec(L+). If the associated VK-type integral in
(2.14) is positive, then n+(N) = 1, while if the integral is negative, then Spec(N)\subset i\BbbR .
In particular, under Hypothesis 2.5, \widehat \psi is spectrally unstable if (2.14) is positive and
spectrally stable if (2.14) is negative.

Similarly, consider the case when Q = 1, P = 0, and 0 \in Spec(L+) \setminus Spec(L - ).
If the VK-type integral in (2.15) is negative, then n+(N) = 1, while if the integral
is positive, then Spec(N) \subset i\BbbR . In particular, under Hypothesis 2.5, \widehat \psi is spectrally
unstable if (2.15) is positive and spectrally stable if (2.15) is negative.

(The proof is given in subsection 5.2.) The proofs that n+(N) = 1 rely on an
argument that allows the replacement of the inequality in (2.7) with an equality as
well as a computation of c that yields 1 on the right-hand side of (2.7). The former
comes from the fact that the Maslov index is monotone in \lambda provided either P or Q
is zero (see Lemma 5.2). On the other hand, to prove Spec(N) \subset i\BbbR in the cases
described in Theorem 2.11, it will be shown (see Lemma 5.1) that the nonnegativity
of L+ or L - forces the spectrum of N to be confined to the real and imaginary axes.
It will then follow from monotonicity in \lambda (i.e., Lemma 5.2) that n+(N) = 0 (and
therefore that Spec(N)\subset i\BbbR ).

Remark 2.12. In Theorem 2.11, we recover the equality in [45, Theorem 2.25]
without the assumption that the operators L\pm are invertible (albeit in the case when
P = 0 or Q = 0). Recovering the equality (when L+ and L - are invertible) in cases
when both P and Q are nonzero via our Maslov index calculations remains an open
question.

3. A symplectic approach to the eigenvalue problem. In this section, we
review the definition of the Maslov index and give a symplectic formulation of the
eigenvalue problem (2.1), culminating in the proof of Theorem 2.2.

3.1. The Maslov index. We begin with some background material on the
Maslov index [63]. We follow the definition given by Robbin and Salamon [69], wherein
the Maslov index is first defined for regular paths and then extended to arbitrary con-
tinuous paths by a homotopy argument. For more on the topological properties of
the spaces discussed, see [1]. For a systematic and unified treatement of the Maslov
index, featuring an axiomatic description and four equivalent definitions, see [8].

The starting point is \BbbR 2n equipped with the nondegenerate, skew-symmetric bi-
linear form

\omega :\BbbR 2n \times \BbbR 2n  - \rightarrow \BbbR , \omega (x, y) = Jx \cdot y,(3.1)

called a symplectic form, where ``\cdot "" is the dot product in \BbbR 2n and J is given in (1.4).
A Lagrangian subspace or plane \Lambda of \BbbR 2n is an n-dimensional subspace on which the
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5008 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

symplectic form vanishes. The Lagrangian Grassmannian is the set of all Lagrangian
subspaces, \scrL (n) =

\bigl\{ 
\Lambda \subset \BbbR 2n : dim(\Lambda ) = n, \omega (x, y) = 0, \forall x, y \in \Lambda 

\bigr\} 
. This space has

an infinite cyclic fundamental group, i.e., \pi 1(\scrL (n)) =\BbbZ . A notion of winding therefore
exists for paths in \scrL (n); this is the Maslov index. Namely, the Maslov index of a
loop in \scrL (n) is its equivalence class in the fundamental group. Poincar\'e duality [37,
section 3.3] affords an interpretation of this winding number as the (signed) number
of intersections with a distinguished codimension-one submanifold, and this allows
one to extend the definition to any path in \scrL (n). This is the approach of Arnol'd,
which we briefly review.

Fix a reference plane \Lambda 0 \in \scrL (n). The distinguished codimension-one submanifold
of \scrL (n) is given by the top stratum \scrT 1(\Lambda 0) of the train of \Lambda 0,

\scrT (\Lambda 0) =
\bigl\{ 
\Lambda \in \scrL (n) : \Lambda \cap \Lambda 0 \not = \{ 0\} 

\bigr\} 
=

n\bigcup 
k=1

\scrT k(\Lambda 0),

where \scrT k(\Lambda 0) = \{ \Lambda \in \scrL (n) : dim(\Lambda \cap \Lambda 0) = k\} . As the fundamental lemma of [1] states,
\scrT 1(\Lambda 0) is two-sidedly embedded in \scrL (n). This means there exists a continuous vector
field transverse to \scrT 1(\Lambda 0) and tangent to \scrL (n). One can therefore assign a signature
to each transverse intersection of a path in \scrL (n) with \scrT 1(\Lambda 0). Any Lagrangian path
with endpoints not in \scrT (\Lambda 0) can be perturbed to one that only intersects \scrT 1(\Lambda 0) and
only does so transversally; the Maslov index is then defined to be the sum of the
signatures of all such intersections.

We next recall the approach of Robbin and Salamon [69], which requires additional
regularity but applies to paths whose endpoints are in the train and also allows for
intersections with \scrT k(\Lambda 0) when k \geq 2. This approach, while less geometric than the
above interpretation of the Maslov index as an intersection number, is more suited to
practical computations.

Given a smooth path \Lambda : [a, b]  - \rightarrow \scrL (n), a crossing is a point t = t0, where
\Lambda (t0) \in \scrT (\Lambda 0). Let \Lambda \bot 

0 \subset \BbbR 2n be a subspace transverse to \Lambda (t0). Then \Lambda \bot 
0 is

transverse to \Lambda (t) for all t \in [t0  - \varepsilon , t0 + \varepsilon ] for \varepsilon small enough. Thus, there exists a
smooth family of matrices Rt : \Lambda (t0)\rightarrow \Lambda \bot 

0 such that

\Lambda (t) = graph(Rt) = \{ q+Rtq : q \in \Lambda (t0)\} (3.2)

for | t - t0| \leq \varepsilon , where Rt0 | \Lambda (t0) \equiv 0. At a crossing t0, the crossing form is the quadratic
form

mt0(q) =
d

dt
\omega (q, q+Rtq)

\bigm| \bigm| \bigm| 
t=t0

= \omega (q, \.Rt0q), q \in \Lambda (t0)\cap \Lambda 0,(3.3)

on the intersection \Lambda (t0) \cap \Lambda 0. The full symmetric bilinear form associated with the
quadratic form (3.3) may be recovered using the polarisation identity; see, for example,
the proof of Corollary 3.10. A crossing is called regular if the form (3.3) is nondegen-
erate and simple if \Lambda (t0) \in \scrT 1(\Lambda 0). Since mt0 is quadratic, it may be diagonalised;
we let n+(mt0) and n - (mt0) be the number of positive and negative squares obtained
in so doing. The signature of mt0 is the integer sign (mt0) = n+(mt0) - n - (mt0). We
then define the Maslov index as follows.

Definition 3.1. The Maslov index for a path \Lambda : [a, b]  - \rightarrow \scrL (n) having only
regular crossings is given by

Mas(\Lambda (t),\Lambda 0; [a, b]) := - n - (ma) +
\sum 

a<t0<b

sign (mt0) + n+(mb),(3.4)

where the sum is taken over all crossings t0 \in (a, b).
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5009

One can show that regular crossings are isolated, and therefore the sum is well-
defined. Note the convention at the endpoints: At t = a, only the negative squares
contribute to the Maslov index, while at t = b, only the positive squares contribute.
Other conventions are possible (see, e.g., [69, section 2]), but we choose the above in
order to ensure the Maslov index is an integer.

The Maslov index of an arbitrary continuous path \Lambda 1 : [a, b]  - \rightarrow \scrL (n) is then
defined to be Mas(\Lambda 2(t),\Lambda 0; [a, b]), where \Lambda 2 is any path that is homotopic (with fixed
endpoints) to \Lambda 1 and has only regular crossings. It is guaranteed by [69, Lemmas 2.1
and 2.2] that such a path exists, and any two such paths have the same index, so the
Maslov index of \Lambda 1 is well-defined.

The essential properties of the Maslov index that we will use are given in the
following proposition; see [69, Theorem 2.3].

Proposition 3.2. The Maslov index enjoys the following:
1. Homotopy invariance: If two paths \Lambda 1,\Lambda 2 : [a, b] - \rightarrow \scrL (n) are homotopic with

fixed endpoints, then

Mas(\Lambda 1(t),\Lambda 0; [a, b]) =Mas(\Lambda 2(t),\Lambda 0; [a, b]).(3.5)

2. Additivity under concatenation: For \Lambda (t) : [a, c] - \rightarrow \scrL (n) and a< b< c,

Mas(\Lambda (t),\Lambda 0; [a, c]) =Mas(\Lambda (t),\Lambda 0; [a, b]) +Mas(\Lambda (t),\Lambda 0; [b, c]).(3.6)

To conclude our discussion of the Maslov index, we expound the notion of a
nonregular crossing, that is, a crossing with degenerate crossing form. Consider a
Lagrangian path \Lambda : [a, b] - \rightarrow \scrL (n) with a nonregular crossing t= t0. In the case that
mt0 is identically zero, in [23, Proposition 3.10], the authors state that the contribution
to the Maslov index is determined by the second-order crossing form

m
(2)
t0 (q) :=

d2

dt2
\omega (q, q+Rtq)

\bigm| \bigm| \bigm| \bigm| 
t=t0

= \omega (q, \"Rt0q), q \in \Lambda (t0)\cap \Lambda 0,(3.7)

provided it is nondegenerate. Such a crossing can only contribute to the Maslov index
if it occurs at one of the endpoints: If t0 = a, then it contributes  - n - (m(2)

a ), and if

t0 = b, then it contributes n+(m
(2)
b ).

As an example, consider the case of a simple crossing with mt0 = 0 but

m
(2)
t0 \not = 0. In the Lagrangian Grassmannian, this corresponds to our path \Lambda tan-

gentially intersecting the train \scrT (\Lambda 0) of the fixed reference plane to quadratic order;
i.e., \Lambda ``bounces off"" the train as t passes through t0. Provided t0 lies in the interior
of [a, b], the contribution to the Maslov index will be zero: Clearly, the path can
locally be homotoped to one with no crossings at all. If t0 = a, the contribution is
 - 1 provided the path leaves in the negative direction (and zero otherwise), while if
t0 = b, the contribution is +1 provided the path arrives in the positive direction (and

zero otherwise). If the second-order form is degenerate, i.e., m
(2)
t0 = 0, higher-order

derivatives are needed in order to determine the local behavior of the path \Lambda .
In the present setting, with the spectral parameter \lambda acting as the independent

variable, we will observe that a nonregular crossing occurs at \lambda = 0. To determine
the contribution to the Maslov index of this nonregular crossing, we use a homotopy
argument, made possible by our analysis of the local behavior of the eigenvalue curves
in subsection 4.4. We confirm that our computation agrees with the number of neg-
ative squares of the second-order form (3.7) used in [23]. For a further discussion
of nonregular crossings and an alternate way to compute the Maslov index at such
points, see [29, 30].
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5010 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

3.2. Spatial rescaling and construction of the Lagrangian path. We now
view the problem through the lens of the Lagrangian formalism by interpreting ei-
genvalues as nontrivial intersections of Lagrangian planes. Following the approach of
[23], we restrict the eigenvalue problem to a family of subintervals [0, s\ell ] for s\in (0,1].
Rescaling the equations to the full domain [0, \ell ], we construct a two-parameter family
of Lagrangian subspaces in s and \lambda via rescaled boundary traces of solutions to the sys-
tem of differential equations without any boundary conditions at all. An eigenvalue is
produced when this family of subspaces nontrivially intersects a fixed reference plane
that encodes Dirichlet boundary conditions. Identifying a Lagrangian structure boils
down to a judicious choice of both the symplectic form and the definition of the trace
map: if we employ the standard symplectic form \omega in (3.1), then we need to carefully
define the trace map (3.10) such that the space of boundary traces is Lagrangian with
respect to \omega . We begin by introducing some notation.

We let

N =D+B(x), D :=

\biggl( 
0 \partial xx

 - \partial xx 0

\biggr) 
, B(x) :=

\biggl( 
0 h(x)

 - g(x) 0

\biggr) 
(3.8)

and introduce the s-dependent operators acting on functions on [0, \ell ],

Bs(x) := s2B(sx), Ns :=

\biggl( 
0  - Ls

 - 
Ls
+ 0

\biggr) 
,

\Biggl\{ 
Ls
+ := - \partial xx  - s2g(sx)

Ls
 - := - \partial xx  - s2h(sx)

(3.9)

so that Ns =D+Bs(x). We define the rescaled trace of u= (u, v)\top \in H2(0, \ell ) as the
vector

Trsu :=

\biggl( 
u(0), v(0), u(\ell ), v(\ell ), - 1

s
u\prime (0),

1

s
v\prime (0),

1

s
u\prime (\ell ), - 1

s
v\prime (\ell ))

\biggr) \top 

\in \BbbR 8(3.10)

and denote the vertical subspace of \BbbR 8 by \scrD := \{ 0\} \times \BbbR 4. Using the above notation,
we may rewrite the restricted problem (2.6) as a boundary value problem on [0, \ell ].
Indeed, if u(x) \in H2(0, s\ell ) \cap H1

0 (0, s\ell ), then us(x) := u(sx) \in H2(0, \ell ) \cap H1
0 (0, \ell ). It

follows from (3.10) that u(0) = u(s\ell ) = 0 if and only if Trsus \in \scrD . Thus, rescaled to
[0, \ell ], (2.6) reads

Nsus = s2\lambda us, Trsus \in \scrD .(3.11)

Note that the solution spaces of the boundary value problems (2.6) and (3.11) are
isomorphic: u = (u, v)\top \in dom(N | [0,s\ell ]) solves (2.6) if and only if us = (us, vs)

\top \in 
dom(Ns) solves (3.11). Consequently, \lambda is an eigenvalue of N | [0,s\ell ] if and only if s2\lambda 
is an eigenvalue of Ns.

Remark 3.3. The rescaled problem (3.11) is well-defined for s > 1 provided the
potentials g and h are defined for x > \ell . In this case, the ``restricted"" eigenvalue
problem (2.6) corresponds to a stretching of the domain.

Remark 3.4. As per Remark 2.1, notationally we will not distinguish between
Ns and Ls

\pm as differential expressions and as unbounded operators with dense do-
mains given by (2.4) and (2.5), respectively. Thus, when we write s2\lambda \in Spec(Ns) or
us \in ker(Ns  - s2\lambda ), we mean that (3.11) is solved for some eigenfunction us; similar
statements hold when \lambda \in Spec(Ls

\pm ).

That the formulation (3.11) lends itself to a symplectic interpretation can be seen
via the following modified version of Green's second identity. Using our definition of
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5011

the rescaled trace map (3.10) and the symplectic form (3.1), one can verify that for
each s\in (0,1] and all u,v \in H2(0, \ell ),

\langle S(Ns  - s2\lambda )u,v\rangle  - \langle u, S(Ns  - s2\lambda )v\rangle = s\omega (Trsu,Trsv),(3.12)

where S is defined in (1.4). Now define the space

\scrK \lambda ,s :=
\bigl\{ 
u\in H2(0, \ell ) : (Ns  - s2\lambda )u= 0 in L2(0, \ell )

\bigr\} 
(3.13)

of all solutions to the homogeneous differential equation Nsu = s2\lambda u without any
reference to the boundary conditions, so that ker(Ns  - s2\lambda ) =\scrK \lambda ,s \cap H1

0 (0, \ell ).

Remark 3.5. The trace map is an injective linear operator on the space \scrK \lambda ,s. If
us \in \scrK \lambda 0,s, then Trsus = 0 implies us = 0 since us solves a system of second-order
equations.

Taking the (rescaled) boundary trace leads to the desired family of Lagrangian
subspaces with respect to the form \omega in (3.1).

Lemma 3.6. The space

\Lambda (\lambda , s) := Trs(\scrK \lambda ,s) = \{ Trs(u) : u\in \scrK \lambda ,s\} (3.14)

is a Lagrangian subspace of \BbbR 8 for all s\in (0,1] and all \lambda \in \BbbR .

Proof. Fix \lambda \in \BbbR and s\in (0,1]. From (3.12), for u,v \in \scrK \lambda ,s, we have \omega (Trsu,Trsv)
= 0. Since \scrK \lambda ,s is the space of solutions to a system of two second-order differen-
tial equations, dim\scrK \lambda ,s = 4. Hence, dimTrs(\scrK \lambda ,s) = 4, and Trs(\scrK \lambda ,s) \in \scrL (4) is
Lagrangian.

We now have the desired interpretation of eigenvalues as nontrivial intersections
of Lagrangian subspaces.

Proposition 3.7. s2\lambda \in Spec(Ns) if and only if \Lambda (\lambda , s)\cap \scrD \not = \{ 0\} . Moreover, the
geometric multiplicity of the eigenvalue is equal to the dimension of the Lagrangian
intersection:

dimker(Ns  - s2\lambda ) = dim\Lambda (\lambda , s)\cap \scrD .(3.15)

Proof. The first statement follows from the definition of \Lambda . Equality (3.15) follows
from the injectivity (and thus bijectivity) of the trace map acting between the finite-
dimensional spaces ker(Ns0  - s20\lambda 0) =\scrK \lambda 0,s0 \cap H1

0 (0, \ell ) and Trs0(\scrK \lambda 0,s0 \cap H1
0 (0, \ell )) =

\Lambda (\lambda 0, s0)\cap \scrD .

Hereafter, a crossing refers to a pair (\lambda , s) = (\lambda 0, s0) such that \Lambda (\lambda 0, s0) \cap \scrD \not =
\{ 0\} , while a conjugate point refers to a crossing for which \lambda 0 = 0. It follows from
Proposition 3.7 that crossings where s0 = 1 correspond to eigenvalues of the operator
N on [0, \ell ].

To prove Theorem 2.2, our goal then is to bound from below the number of
crossings for which s0 = 1, \lambda 0 > 0. To do so, we use a homotopy argument that
involves appropriately counting conjugate points. In order to set this argument up,
we introduce in Figure 2 the so-called Maslov box, given by the boundary \Gamma of the
rectangle [0, \lambda \infty ]\times [\tau ,1] in the \lambda s-plane, where \tau > 0 is small and \lambda \infty > 0 is large.

Since \Lambda : [0, \lambda \infty ] \times [\tau ,1]  - \rightarrow \scrL (4) is a continuous map, the image \Lambda (\Gamma ) of the
Maslov box is null homotopic, and so

Mas(\Lambda ,\scrD ; \Gamma ) = 0.(3.16)
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Fig. 2. Maslov box in the \lambda s-plane.

We partition \Gamma into its constituent sides such that \Gamma = \Gamma 1 \cup \Gamma 2 \cup \Gamma 3 \cup \Gamma 4, where

\Gamma 1 : s= \tau , 0\leq \lambda \leq \lambda \infty , \Gamma 3 : s= 1, 0\leq \lambda \leq \lambda \infty ,

\Gamma 2 : \lambda = 0, \tau \leq s\leq 1, \Gamma 4 : \lambda = \lambda \infty , \tau \leq s\leq 1,
(3.17)

(see Figure 2) and assign a direction to each of these intervals such that the entirety of
the Maslov box is oriented in a clockwise fashion. We then appeal to the concatenation
property in Proposition 3.2 to rewrite (3.16) as

Mas(\Lambda ,\scrD ; \Gamma 1) +Mas(\Lambda ,\scrD ; \Gamma 2) +Mas(\Lambda ,\scrD ; \Gamma 3) +Mas(\Lambda ,\scrD ; \Gamma 4) = 0.(3.18)

Taking \lambda = \lambda \infty large enough and s= \tau small enough, it will follow (see Lemma 3.23)
that there are no crossings along \Gamma 1 and \Gamma 4 and therefore that the Maslov indices
of these pieces are zero. The crossing forms needed to analyze Mas(\Lambda ,\scrD ; \Gamma 2) and
Mas(\Lambda ,\scrD ; \Gamma 3) are given in the next section.

3.3. Crossing forms. Our next task is the calculation of the crossing forms
(3.3) associated with the trajectories through the crossing (\lambda 0, s0), where \lambda = \lambda 0 is
held constant and s increases and vice versa. The key ingredient will be the Green's-
type identity (3.12). The approach is inspired by Lemma 4.18 and the proof of
Theorem 4.19 in [58] as well as the crossing form calculation in [18, Lemma 5.2]. Before
proceeding, we set some notation that will be useful in this section and throughout
the rest of the paper.

Remark 3.8. We denote by us0 any eigenfunction us0 \in ker(Ns0  - s20\lambda 0), and
when s0 = 1, we drop the subscript. If dimker(Ns0  - s20\lambda 0) = n, we denote a basis for

this space by
\bigl\{ 
u
(1)
s0 , . . . ,u

(n)
s0

\bigr\} 
, where u

(i)
s0 =

\bigl( 
u
(i)
s0 , v

(i)
s0

\bigr) \top 
. The set

\bigl\{ 
Su

(1)
s0 , . . . , Su

(n)
s0

\bigr\} 
is then a basis for the kernel of the adjoint operator, ker(N\ast 

s0  - s
2
0\lambda 0), since \lambda 0 is real.

Note that S (given in (1.4)) merely swaps the entries of the vector it acts on. When
s0 = 1, we denote

ui := u
(i)
1 , ui := u

(i)
1 , vi := v

(i)
1 .(3.19)

Because ker(Ns0) = ker(Ls0
+ )\oplus ker(Ls0

 - ), when \lambda 0 = 0 and dimker(Ns0) = 1, we have

us0 =

\Biggl\{ 
(us0 ,0)

\top , 0\in Spec(Ls0
+ ) \setminus Spec(Ls0

 - ), ker(Ls0
+ ) = Span\{ us0\} ,

(0, vs0)
\top , 0\in Spec(Ls0

 - ) \setminus Spec(Ls0
+ ), ker(Ls0

 - ) = Span\{ vs0\} .
(3.20)

When \lambda 0 = 0 and dimker(Ns0) = 2, we denote

u(1)
s0 =

\biggl( 
u
(1)
s0

0

\biggr) 
, u(2)

s0 =

\biggl( 
0

v
(2)
s0

\biggr) 
,(3.21)

where ker(Ls0
+ ) = Span\{ u(1)s0 \} and ker(Ls0

 - ) = Span\{ v(2)s0 \} .
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5013

In the current paper, where the potentials g and h from (2.3) are scalar-valued,
we will always have n\leq 2. However, if g and h are matrix-valued (and symmetric), so
that L\pm are systems of self-adjoint Schr\"odinger operators, or if the operator N acts
on functions on a multidimensional domain, then we may have n > 2. The results in
this section and section 4 have been stated for a general n to indicate how the theory
extends to these cases.

Returning to our computation of crossing forms, we first compute the crossing
form (3.3) for the path of Lagrangian planes s \mapsto \rightarrow \Lambda (\lambda 0, s), holding \lambda = \lambda 0 fixed. Recall
that Ns =D+Bs, as in (3.9), and that S = ST .

Lemma 3.9. Let (\lambda 0, s0) be a crossing, and fix any nonzero q \in \Lambda (\lambda 0, s0) \cap \scrD .
Then there exists a unique us0 \in \scrK \lambda 0,s0 such that q =Trs0us0 , and the crossing form
for the Lagrangian path s \mapsto \rightarrow \Lambda (\lambda 0, s) at s= s0 is given by

ms0(q) =
1

s0

\bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) 
us0 , Sus0

\bigr\rangle 
,(3.22)

where \partial sBs = 2sB(sx) + s2B\prime (sx)x. In particular, along \Gamma 2, where \lambda 0 = 0, we have

ms0(q) =
\ell 

s20

\Bigl[ 
 - 
\bigl( 
u\prime s0(\ell )

\bigr) 2
+
\bigl( 
v\prime s0(\ell )

\bigr) 2\Bigr] 
.(3.23)

In this case, if the crossing (0, s0) is simple, then the form (3.23) is nondegenerate.

Proof. Consider a C1 family of vectors s \mapsto \rightarrow ws \in \scrK \lambda 0,s satisfying

Nsws = s2\lambda 0ws, x\in [0, \ell ], s\in (s0  - \varepsilon , s0 + \varepsilon ),(3.24a)

Trsws =Trs0us0 +RsTrs0us0 , ws0 = us0 ,(3.24b)

where Rs : \Lambda (\lambda 0, s0) \rightarrow \scrD \bot is the smooth family of matrices such that \Lambda (\lambda 0, s) =
graph(Rs); cf.(3.2). To prove the existence of such a family s \mapsto \rightarrow ws, consider the
smooth family of vectors hs := q+Rsq \in \Lambda (\lambda 0, s), where hs0 = q since Rs0q= 0 for all
q \in \Lambda (\lambda 0, s0). The injectivity (and thus bijectivity) of the linear map

Trs :\scrK \lambda 0,s  - \rightarrow Trs(\scrK \lambda 0,s) = \Lambda (\lambda 0, s)

(see Remark 3.5) then implies that for each hs \in \Lambda (\lambda 0, s), there exists a unique ws \in 
\scrK \lambda 0,s such that Trsws = hs and in particular Trs0ws0 = hs0 = q.

We now turn to the computation of (3.3). We have

ms0(q) =
d

ds
\omega (q,Rsq)

\bigm| \bigm| \bigm| \bigm| 
s=s0

=
d

ds
\omega (Trs0us0 ,Trsws)

\bigm| \bigm| \bigm| \bigm| 
s=s0

= \omega 

\biggl( 
Trs0us0 ,

d

ds
Trs
\bigm| \bigm| 
s=s0

us0

\biggr) 
+ \omega 

\biggl( 
Trs0us0 ,Trs0

d

ds
ws

\bigm| \bigm| 
s=s0

\biggr) 
.

The first term is zero since Trs0us0 \in \scrD implies Trs0us0 =
\bigl( 
0, s - 1

0 \gamma Nus0

\bigr) 
and d

dsTrs
\bigm| \bigm| 
s=s0

us0 =
\bigl( 
0, - s - 2

0 \gamma Nus0

\bigr) 
, where \gamma Nu := ( - u\prime (0), v\prime (0), u\prime (\ell ), - v\prime (\ell )))\top . For the second

term, we differentiate the equation in (3.24a) with respect to s and apply \langle \cdot , Sws\rangle :

\langle (\partial sBs  - 2s\lambda 0)ws, Sws\rangle + \langle (Ns  - s2\lambda 0)\partial sws, Sws\rangle = 0.(3.25)
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5014 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

From the Green's-type identity (3.12) with u=ws and v= \partial sws, we have

s\omega (Trsws,Trs\partial sws) = \langle (Ns  - s2\lambda 0)ws, S \partial sws\rangle  - \langle Sws, (Ns  - s2\lambda 0)\partial sws\rangle ,

and using (3.24a) and (3.25), this reduces to

s\omega (Trsws,Trs\partial sws) = \langle (\partial sBs  - 2s\lambda 0)ws, Sws\rangle .(3.26)

Evaluating (3.26) at s = s0 and dividing by s0, (3.22) follows. When \lambda 0 = 0, substi-
tuting the stated expression for \partial sBs0 in (3.22) gives

ms0(q) = \langle (2B(s0x) + s0B
\prime (s0x)x)us0 , Sus0\rangle 

=

\int \ell 

0

\Bigl\{ 
[2h(s0x) + s0xh

\prime (s0x)]v
2
s0(x) - [2g(s0x) + s0xg

\prime (s0x)]u
2
s0(x)

\Bigr\} 
dx.

A direct calculation using the equation Ls0
 - vs0 = 0, i.e., v\prime \prime s0(x) + s20h(s0x)vs0(x) = 0,

gives

d

dx

\biggl[ 
1

s20
x
\bigl( 
v\prime s0(x)

\bigr) 2
+ xv2s0(x)h(s0x) - 

1

s20
vs0(x)v

\prime 
s0(x)

\biggr] 
= [2h(s0x) + s0xh

\prime (s0x)]v
2
s0(x).

Integrating and using the fact that vs0(0) = vs0(\ell ) = 0, we get\int \ell 

0

[2h(s0x) + s0xh
\prime (s0x)]v

2
s0(x)dx=

\ell 

s20

\bigl( 
v\prime s0(\ell )

\bigr) 2
.

Computing similarly for the second term, we arrive at (3.23). That the form is
nondegenerate in the simple case follows from (3.20): If dimker(Ns0) = 1, then exactly
one of the entries of us = (us, vs)

\top \in ker(Ns0) is nontrivial. Since this function satisfies
a second-order differential equation with Dirichlet boundary conditions, its derivative
is nonzero at x= \ell , and therefore (3.23) is nonzero.

Corollary 3.10. Assume dimker(Ns0  - s20\lambda 0) = n, and let \{ u(1)
s0 ,u

(2)
s0 , . . . ,u

(n)
s0 \} 

be a basis for ker(Ns0  - s20\lambda 0). The n \times n symmetric matrix \frakM s0 induced from the
quadratic form (3.22) is given by

[\frakM s0 ]ij =
1

s0

\Bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
, i, j = 1, . . . , n.(3.27)

Consequently, when \lambda 0 = 0 and n= 2, the form ms0 is nondegenerate.

Proof. Letting qi := Trs0u
(i)
s0 , it follows from the linearity and injectivity of the

trace map that \{ qi\} ni=1 is a basis for \Lambda (\lambda 0, s0)\cap \scrD . To construct the symmetric bilinear
form associated with the quadratic form (3.22), we compute the off-diagonal terms
ms0(qi, qj) via the real polarisation identity

ms0(qi, qj) =
1

4

\bigl[ 
ms0(qi + qj) - ms0(qi  - qj)

\bigr] 
.(3.28)

Since both S and S (\partial sBs0) are symmetric, we obtain

ms0(qi, qj) =
1

4

\Bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) \bigl( 
u(i)
s0 + u(j)

s0

\bigr) 
, S
\bigl( 
u(i)
s0 + u(j)

s0

\bigr) \Bigr\rangle 
 - 1

4

\Bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) \bigl( 
u(i)
s0  - u(j)

s0

\bigr) 
, S
\bigl( 
u(i)
s0  - u(j)

s0

\bigr) \Bigr\rangle 
=
\Bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
.
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5015

The corresponding matrix elements with respect to the basis \{ qi\} are [\frakM s0 ]ij =
ms0(qi, qj), and the first statement of the corollary follows. In the case \lambda 0 = 0 and
n= 2, using (3.23) and recalling (3.21), the matrix (3.27) reduces to

\frakM s0 =
\ell 

s20

\Biggl( 
 - 
\bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2
0

0
\bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\Biggr) 
,(3.29)

which clearly has full rank. Nondegeneracy of the quadratic form ms0 follows.

We now move to the \lambda -direction. Holding s= s0 fixed, we compute the crossing
form (3.3) with respect to \lambda . We denote d/d\lambda with a dot.

Lemma 3.11. Let (\lambda 0, s0) be a crossing, and fix any nonzero q \in \Lambda (\lambda 0, s0) \cap \scrD .
Then there exists a unique us0 \in \scrK \lambda 0,s0 such that q =Trs0us0 , and the crossing form
for the Lagrangian path \lambda \mapsto \rightarrow \Lambda (\lambda , s0) at \lambda = \lambda 0 is given by

m\lambda 0
(q) = - s0 \langle us0 , Sus0\rangle = - 2s0 \langle us0 , vs0\rangle .(3.30)

Proof. The argument is virtually identical to that in the s direction. Fixing s= s0,
we consider a C1 family of vectors \lambda \mapsto \rightarrow w\lambda \in \scrK \lambda ,s0 satisfying

Ns0w\lambda = s20\lambda w\lambda , x\in [0, \ell ], \lambda \in (\lambda 0  - \varepsilon ,\lambda 0 + \varepsilon ),(3.31a)

Trs0w\lambda =Trs0us0 +R\lambda Trs0us0 , w\lambda 0
= us0 ,(3.31b)

where now R\lambda : \Lambda (\lambda 0, s0) - \rightarrow \scrD \bot is such that \Lambda (\lambda , s0) = graph(R\lambda ). Similar to (3.25),
we have

\langle  - s20w\lambda , Sw\lambda \rangle + \langle (Ns0  - s20\lambda ) \.w\lambda , Sw\lambda \rangle = 0,

and using the identity (3.12) with u=w\lambda and v= \.w\lambda yields

s0 \omega (Trs0w\lambda ,Trs0 \.w\lambda ) = \langle (Ns0  - s20\lambda )w\lambda , S \.w\lambda \rangle  - \langle Sw\lambda , (Ns0  - s20\lambda ) \.w\lambda \rangle .

The previous two equations along with (3.31a) give

s0 \omega (Trs0w\lambda ,Trs0 \.w\lambda ) = - \langle s20w\lambda , Sw\lambda \rangle .(3.32)

Therefore, the crossing form (3.3) is

m\lambda 0
(q) = \omega 

\Bigl( 
Trs0us0 ,Trs0 \.w\lambda 

\bigm| \bigm| 
\lambda =\lambda 0

\Bigr) 
= - s0\langle us0 , Sus0\rangle = - 2s0 \langle us0 , vs0\rangle ,

where we used (3.32) evaluated at \lambda = \lambda 0.

Recalling (3.20), at a simple crossing (0, s0), one of us0 or vs0 is always trivial.
Degeneracy of the \lambda -crossing form immediately follows.

Corollary 3.12. All conjugate points (0, s0) for which dimker(Ns0) = 1 are
nonregular in the \lambda direction; i.e., at all such points, m\lambda 0

= 0.

For the case of higher-dimensional crossings, we have the following corollary to
Lemma 3.11.

Corollary 3.13. Assume dimker(Ns0  - s20\lambda 0) = n, and let \{ u(1)
s0 ,u

(2)
s0 , . . . ,u

(n)
s0 \} 

be a basis for ker(Ns0  - s20\lambda 0). The n\times n symmetric matrix \frakM \lambda 0
induced from the

n-dimensional quadratic form (3.30) is given by

[\frakM \lambda 0
]ij = - s0

\Bigl\langle 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
, i, j = 1, . . . n.(3.33)

Consequently, when \lambda 0 = 0 and n= 2, m\lambda 0 is nondegenerate if and only if
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
\not = 0.
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5016 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Proof. The first statement is proved as in Corollary 3.10. When \lambda 0 = 0 and n= 2,
due to (3.21), (3.33) reduces to

\frakM \lambda 0
= - s0

\left(  \bigl\langle u(1)
s0 , Su

(1)
s0

\bigr\rangle \bigl\langle 
u
(1)
s0 , Su

(2)
s0

\bigr\rangle 
\bigl\langle 
u
(2)
s0 , Su

(1)
s0

\bigr\rangle \bigl\langle 
u
(2)
s0 , Su

(2)
s0

\bigr\rangle 
\right)  = - s0

\left(  0
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
0

\right)  ,

(3.34)

from which nondegeneracy of m\lambda 0 occurs if and only if the condition stated holds.

It follows from Corollaries 3.12 and 3.13 that a calculation of the Maslov index
at \lambda = 0 in the \lambda -direction is not possible using the first-order crossing form (3.3) if

dimker(Ns0) = 1 or if dimker(Ns0) = 2 and
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
= 0. In light of this, we define

the following.

Definition 3.14. The correction term c is

c :=Mas
\bigl( 
\Lambda (s,\lambda ),\scrD ;s\in [1 - \varepsilon ,1]

\bigr) 
+Mas

\bigl( 
\Lambda (\lambda ,1),\scrD ;\lambda \in [0, \varepsilon ]

\bigr) 
(3.35)

for 0< \varepsilon \ll 1.

That is, c denotes the contribution to the Maslov index from the top left corner
of the Maslov box (consisting of the arrival along \Gamma 2 and the departure along \Gamma 3).

Remark 3.15. To see that this does not depend on the choice of 0 < \varepsilon \ll 1, we
observe that (0,1) is an isolated crossing for both \Gamma 2 and \Gamma 3. For \Gamma 2, this follows from
the nondegeneracy of ms0 in Lemma 3.9 and Corollary 3.10. For \Gamma 3, we use the fact
that the set \{ \lambda : \Lambda (\lambda ,1)\cap \scrD \not = \{ 0\} \} =Spec(N)\cap \BbbR is discrete (because N has compact
resolvent), so there exists \^\lambda > 0 such that \Lambda (\lambda ,1)\cap \scrD = \{ 0\} for 0<\lambda < \^\lambda .

We circumvent the issue of the nonregular crossing in subsection 4.4 via a ho-
motopy argument. This will be possible after having analyzed the local behavior of
the eigenvalue curves in section 4. In the meantime, we compute the second-order
crossing form (3.7) from [23, Proposition 3.10].

Lemma 3.16. Assume the conditions of Lemma 3.11. If the first-order quadratic
form in (3.30) is identically zero, then the second-order quadratic form (3.7) is given
by

m
(2)
\lambda 0

(q) = - 2s30\langle vs0 , Sus0\rangle , q=Trs0us0 ,(3.36)

where us0 \in ker(Ns0  - s20\lambda 0) and vs0 \in dom(Ns0) solves (Ns0  - s20\lambda 0)vs0 = us0 . The

n\times n matrix \frakM 
(2)
\lambda 0

of the symmetric bilinear form associated with m
(2)
\lambda 0

has entries\Bigl[ 
\frakM 

(2)
\lambda 0

\Bigr] 
ij
= - 2s30

\Bigl\langle 
v(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,(3.37)

where v
(i)
s0 \in dom(Ns0) solves (Ns0  - s20\lambda 0)v

(i)
s0 = u

(i)
s0 . In the case \lambda 0 = 0 and n = 1,

we have

m
(2)
\lambda 0

(q) =

\Biggl\{ 
 - 2s30 \langle \widehat vs0 , us0\rangle 0\in Spec(Ls0

+ ) \setminus Spec(Ls0
 - ),

 - 2s30 \langle \widehat us0 , vs0\rangle 0\in Spec(Ls0
 - ) \setminus Spec(Ls0

+ ),
(3.38)

where \widehat vs0 \in dom(Ls0
 - ) and \widehat us0 \in dom(Ls0

+ ) solve  - Ls0
 - \widehat vs0 = us0 and Ls0

+ \widehat us0 = vs0 ,
respectively. In the case \lambda 0 = 0 and n= 2, we have

\frakM 
(2)
\lambda 0

= - 2s30

\Biggl( \bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle 
0

0
\bigl\langle \widehat u(2)s0 , v

(2)
s0

\bigr\rangle \Biggr) ,(3.39)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5017

where \widehat v(1)s0 \in dom(Ls0
 - ) and \widehat u(2)s0 \in dom(Ls0

+ ) solve  - Ls0
 - \widehat v(1)s0 = u

(1)
s0 and Ls0

+ \widehat u(2)s0 = v
(2)
s0 ,

respectively.

Remark 3.17. The equation (Ns0  - s20\lambda 0)v
(i)
s0 = u

(i)
s0 is always solvable by virtue

of the Fredholm alternative since ms0 = 0 means \langle u(i)
s0 , Su

(j)
s0 \rangle = 0 for all i, j and

hence implies u
(i)
s0 is orthogonal to ker(N\ast 

s0  - s20\lambda 0). Such a solution is not unique;
however, only the component of the solution in ker(Ns0  - s20\lambda 0)

\bot (which is unique)

contributes to (3.36). It therefore suffices to consider those v
(i)
s0 satisfying v

(i)
s0 \bot u

(j)
s0

for all j = 1, . . . , n. Notice that the v
(i)
s0 are generalized eigenfunctions: If m\lambda 0 = 0, the

eigenvalue s20\lambda 0 \in Spec(Ns0) has n Jordan chains of length (at least) two. We thus see
that loss of regularity of the crossing coincides precisely with loss of semisimplicity of
the eigenvalue, which agrees with the result of [15, Theorem 6.1].

Proof. Consider a C2 family of vectors \lambda \mapsto \rightarrow w\lambda satisfying (3.31). Then

m
(2)
\lambda 0

(q) = \omega (Trs0us0 ,Trs0 \"w\lambda )
\bigm| \bigm| 
\lambda =\lambda 0

.

Differentiating (3.31a) twice with respect to \lambda , applying \langle \cdot , Sw\lambda \rangle , and rearranging
yields \bigl\langle 

(Ns0  - s20\lambda ) \"w\lambda , Sw\lambda 

\bigr\rangle 
= 2s20\langle \.w\lambda , Sw\lambda \rangle .

Now using (3.12) with u=w\lambda and v= \"w\lambda , we have

s0 \omega (Trs0w\lambda ,Trs0 \"w\lambda ) = \langle (Ns0  - s20\lambda )w\lambda , S \"w\lambda \rangle  - \langle Sw\lambda , (Ns0  - s20\lambda ) \"w\lambda \rangle .

Combining (3.31a) with the previous two equations, we get

s0 \omega (Trs0w\lambda ,Trs0 \"w\lambda ) = - 2s20\langle \.w\lambda , Sw\lambda \rangle .

Evaluating this last equation at \lambda = \lambda 0 and dividing through by s0, we see that

m
(2)
\lambda 0

(q) = \omega (Trs0us0 ,Trs0 \"w\lambda )
\bigm| \bigm| 
\lambda =\lambda 0

= - 2s0\langle \.w\lambda 0
, Sus0\rangle .

To compute \.w\lambda 0 , we see that differentiating (3.31a) with resepct to \lambda , evaluating at
\lambda = \lambda 0, and rearranging yields\bigl( 

Ns0  - s20\lambda 0
\bigr) 
\.w\lambda 0

= s20us0 .(3.40)

Setting s20 vs0 = \.w\lambda 0
, (3.36) follows.

The same arguments as in the proof of Corollary 3.10 are used to prove (3.37).
Equations (3.38) and (3.39) follow from the structure of the eigenvectors and gener-
alized eigenvectors when \lambda 0 = 0. If 0 \in Spec(Ls0

 - ) \setminus Spec(Ls0
+ ) and \widehat us0 is as stated in

the lemma, we have \biggl( 
0  - Ls0

 - 
Ls0
+ 0

\biggr) \biggl( \widehat us0
0

\biggr) 
=

\biggl( 
0
vs0

\biggr) 
= us0 ,

so vs0 = (\widehat us0 ,0)\top , and hence
\bigl\langle 
vs0 , Sus0

\bigr\rangle 
= \langle \widehat us0 , vs0\rangle . If 0 \in Spec(Ls0

+ ) \setminus Spec(Ls0
 - ),

we similarly find that vs0 = (0,\widehat vs0)\top , and hence
\bigl\langle 
vs0 , Sus0

\bigr\rangle 
= \langle \widehat vs0 , us0\rangle . Finally, if

dimker(Ns0) = 2, we have

v(1)
s0 =

\biggl( 
0\widehat v(1)s0

\biggr) 
, v(2)

s0 =

\biggl( \widehat u(2)s0

0

\biggr) 
,(3.41)
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5018 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

with u
(i)
s0 given by (3.21). It follows that

\bigl\langle 
v
(1)
s0 , Su

(2)
s0

\bigr\rangle 
=
\bigl\langle 
v
(2)
s0 , Su

(1)
s0

\bigr\rangle 
= 0 and\bigl\langle 

v(1)
s0 , Su

(1)
s0

\bigr\rangle 
= \langle \widehat v(1)s0 , u

(1)
s0 \rangle ,

\bigl\langle 
v(2)
s0 , Su

(2)
s0

\bigr\rangle 
= \langle \widehat u(2)s0 , v

(2)
s0 \rangle ,(3.42)

which completes the proof.

Remark 3.18. The Maslov index is in general not monotone in \lambda in the sense that
the form (3.30) is indefinite. Consequently, it does not necessarily give an exact count
of the crossings along \Gamma 3 for \lambda > 0, which by Proposition 3.7 equals the number of
real positive eigenvalues of N . Nonetheless, the Maslov index always provides a lower
bound for this count, and this will be used in the proof of Theorem 2.2. In special
cases it is possible to have monotonicity in \lambda ; this will be used to obtain stability
results in Theorem 2.11 (cf. Lemma 5.2).

3.4. Bounding the real eigenvalue count. Before proving Theorem 2.2, we
list some preliminary results. The first is a version of the Morse index theorem (see
[64, section 15], [73]) for scalar-valued Schr\"odinger operators on bounded domains
with Dirichlet boundary conditions. Recall that the Morse indices P and Q are the
numbers of negative eigenvalues of the operators L+ and L - , respectively.

Lemma 3.19. The Morse index of L+ equals the number of conjugate points for
L+ in (0,1),

P =\#\{ s0 \in (0,1) : 0\in Spec(Ls0
+ )\} ,(3.43)

and likewise for L - and Q.

The following lemma will not be needed until the proof of Lemma 5.1, but we list
it here since its proof uses the same ideas that are used to prove the previous lemma.

Lemma 3.20. If Q = 0 (resp., P = 0), then Ls
 - (resp., Ls

+) is a strictly positive
operator for all s\in (0,1) and is nonnegative for s= 1.

Proof. This follows from monotonicity of the eigenvalues of the Schr\"odinger opera-
tors Ls

\pm in the spatial parameter s; see [73]. Indeed, the eigenvalues \lambda \pm j (s)\in Spec(Ls
\pm )

are strictly decreasing functions of s, so \lambda \pm j (1)\geq 0 implies \lambda \pm j (s)> 0 for s\in (0,1).

The following self-adjoint formulation of the eigenvalue problem will be needed in
Lemma 3.23. Some of the ideas used here, especially the use of the square root of a
strictly positive operator to convert the eigenvalue problem to a self-adjoint one, can
be found in [66, section 4].

Lemma 3.21. Fix s \in (0,1], and suppose \lambda \in \BbbC \setminus \{ 0\} . If Ls
 - is a nonnegative

operator, the eigenvalue problem\Biggl\{ 
There exists vs \in dom(Ls

 - ), us \in dom(Ls
+) such that :

 - Ls
 - vs = s2\lambda us, Ls

+us = s2\lambda vs
(3.44)

is equivalent to\left\{       
There exists ws \in dom

\bigl( 
Ls
 - | Xc

\bigr) 1/2
with \Pi 

\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws \in dom(Ls

+)

and Ls
+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws \in dom(Ls

 - ), such that :\bigl( 
Ls
 - | Xc

\bigr) 1/2
\Pi Ls

+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws = - s4\lambda 2ws,

(3.45)

where the domains dom(Ls
\pm ) are given by (2.5), Xc := ker(Ls

 - )
\bot \subseteq L2(0, \ell ), and \Pi 

is the orthogonal projection \Pi : L2(0, \ell ) \rightarrow Xc. If Ls
+ is nonnegative, then (3.44) is

equivalent to
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5019\left\{       
There exists ws \in dom

\bigl( 
Ls
+| Xc

\bigr) 1/2
with \Pi 

\bigl( 
Ls
+| Xc

\bigr) 1/2
ws \in dom(Ls

 - )

and Ls
 - \Pi 
\bigl( 
Ls
+| Xc

\bigr) 1/2
ws \in dom(Ls

+), such that :\bigl( 
Ls
+| Xc

\bigr) 1/2
\Pi Ls

 - \Pi 
\bigl( 
Ls
+| Xc

\bigr) 1/2
ws = - s4\lambda 2ws,

(3.46)

where now Xc := ker(Ls
+)

\bot \subseteq L2(0, \ell ).

Proof. We begin with the case Ls
 - \geq 0. We prove the equivalence of (3.44) and

(3.45) via their equivalence with\Biggl\{ 
There exists us \in dom(Ls

+)\cap Xc with Ls
+us \in dom(Ls

 - ), such that:

Ls
 - L

s
+us = - s4\lambda 2us.

(3.47)

Defining the restricted operator Ls
 - | Xc

acting in Xc by

Ls
 - | Xc

v :=Ls
 - v, v \in dom(Ls

 - | Xc
) := dom(Ls

 - )\cap Xc,

note that Ls
 - | Xc

> 0 and
\bigl( 
Ls
 - | Xc

\bigr) 1/2
is a well-defined and invertible operator acting

in Xc.
(3.44) =\Rightarrow (3.47): Clearly, Ls

+us = s2\lambda vs \in dom(Ls
 - ), and us =  - 1

s2\lambda L
s
 - vs \in 

ranLs
 - = Xc because Ls

 - is self-adjoint and Fredholm. Applying Ls
 - to the second

equation in (3.44) yields the equation in (3.47).

(3.47) =\Rightarrow (3.45): Set ws :=
\bigl( 
Ls
 - | Xc

\bigr)  - 1/2
us. Then ws \in dom

\bigl( 
Ls
 - | Xc

\bigr) 1/2
, and

since us \in Xc, we have \Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws = \Pi us = us \in dom(Ls

+), and Ls
+\Pi us =

Ls
+us \in dom(Ls

 - ). Now Ls
+us = \Pi Ls

+us + (I  - \Pi )Ls
+us, where the projection (I  - 

\Pi ) : L2(0, \ell ) \rightarrow ker(Ls
 - ) \subset dom(Ls

 - ). Then \Pi Ls
+us \in dom(Ls

 - ) \cap Xc = dom(Ls
 - | Xc

).

Thus, Ls
 - L

s
+us = Ls

 - \Pi L
s
+\Pi us = Ls

 - | Xc
\Pi Ls

+\Pi us =
\bigl( 
Ls
 - | Xc

\bigr) 1/2 \bigl( 
Ls
 - | Xc

\bigr) 1/2
\Pi Ls

+\Pi us.

Substituting this into the equation in (3.47) and multiplying by
\bigl( 
Ls
 - | Xc

\bigr)  - 1/2
gives

the equation in (3.45).

(3.45) =\Rightarrow (3.44): Set us := \Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws \in dom(Ls

+) and vs := 1
s2\lambda L

s
+\Pi \bigl( 

Ls
 - | Xc

\bigr) 1/2
ws \in dom(Ls

 - ). Then Ls
+us = Ls

+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws = s2\lambda vs, and since \Pi 

projects onto ran(Ls
 - ),  - Ls

 - vs = - \Pi Ls
 - vs =

 - 1
s2\lambda \Pi L

s
 - L

s
+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws =

 - 1
s2\lambda \Pi L

s
 - (\Pi 

+(I - \Pi )Ls
+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws =

 - 1
s2\lambda \Pi L

s
 - \Pi L

s
+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws = s2\lambda \Pi 

\bigl( 
Ls
 - | Xc

\bigr) 1/2
ws =

s2\lambda us.
The case Ls

+ \geq 0 uses similar arguments, except now (3.44) and (3.46) are equiv-
alent via\Biggl\{ 

There exists vs \in dom(Ls
 - )\cap Xc with Ls

 - vs \in dom(Ls
+), such that:

Ls
+L

s
 - vs = - s4\lambda 2vs.

We omit the details.

We are now ready to compute the Maslov index of \Gamma \varepsilon 
2, the restriction of \Gamma 2 to

[\tau ,1 - \varepsilon ].

Lemma 3.22. The Maslov index of the Lagrangian path s \mapsto \rightarrow \Lambda (0, s) \subset \BbbR 8, s \in 
[\tau ,1 - \varepsilon ], is

Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
2) =Q - P.(3.48)
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5020 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Proof. Consider the crossing form

ms0(q) =
\ell 

s20

\Bigl[ 
 - 
\bigl( 
u\prime s0(\ell )

\bigr) 2
+
\bigl( 
v\prime s0(\ell )

\bigr) 2\Bigr] 
from (3.23) and recall (3.20). If (0, s0) is a simple crossing, we obtain ms0 < 0 if
0 \in Spec(Ls0

+ ) and ms0 > 0 if 0 \in Spec(Ls0
 - ). On the other hand, if 0 \in Spec(Ls0

+ ) \cap 
Spec(Ls0

 - ), the 2 \times 2 matrix \frakM s0 in (3.29) has eigenvalues of opposite sign, so we
conclude that

sign (ms0) =

\left\{     
 - 1 0\in Spec(Ls0

+ ) \setminus Spec(Ls0
 - ),

+1 0\in Spec(Ls0
 - ) \setminus Spec(Ls0

+ ),

0 0\in Spec(Ls0
+ )\cap Spec(Ls0

 - ).

(3.49)

From the definition (3.4), we then have

Mas(\Lambda (0, s),\scrD ;s\in [\tau ,1 - \varepsilon ]) = - \#\{ s0 \in [\tau ,1 - \varepsilon ] : 0\in Spec(Ls0
+ ) \setminus Spec(Ls0

 - )\} 
+\#\{ s0 \in [\tau ,1 - \varepsilon ] : 0\in Spec(Ls0

 - ) \setminus Spec(Ls0
+ )\} 

= - \#\{ s0 \in [\tau ,1 - \varepsilon ] : 0\in Spec(Ls0
+ )\} 

+\#\{ s0 \in [\tau ,1 - \varepsilon ] : 0\in Spec(Ls0
 - )\} ,

and the result follows using Lemma 3.19.

Next, we prove that there are no crossings along \Gamma 1 and \Gamma 4; we refer the reader
to Figure 2.

Lemma 3.23. Mas(\Lambda ,\scrD ; \Gamma 1) = Mas(\Lambda ,\scrD ; \Gamma 4) = 0 provided \tau > 0 is sufficiently
small and \lambda \infty > 0 is sufficiently large.

Proof. For the case of no crossings along \Gamma 1, we prove that Ns has no real
eigenvalues for s = \tau small enough. Seeking a contradiction, assume there exists
\tau 2\lambda \in Spec(N\tau )\cap \BbbR with eigenfunction u\tau = (u\tau , v\tau )

\top .
First, note that the operators L\tau 

\pm with domains given by (2.5) are strictly positive:
By the Poincar\'e and Cauchy--Schwarz inequalities,

\langle L\tau 
+v, v\rangle = \| v\prime \| 2  - \langle \tau 2g(\tau x)v, v\rangle \geq C\| v\| 2  - \tau 2\| g\| \infty \| v\| 2

for some C > 0 and all v \in dom(L\tau 
+), so we choose \tau small enough that C > \tau 2\| g\| \infty .

Due to the decoupling of the eigenvalue equations for N\tau when \lambda = 0, it follows that
0 /\in Spec(N\tau ).

Next, for \lambda \in \BbbR \setminus \{ 0\} , we note that by Lemma 3.21, the eigenvalue equations for
N\tau are equivalent to \bigl( 

L\tau 
 - 
\bigr) 1/2

L\tau 
+

\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau = - \tau 4\lambda 2w\tau (3.50)

since the positivity of L\tau 
 - implies that Xc =ker(L\tau 

 - )
\bot is all of L2(0, \ell ), and hence the

resulting projection \Pi is the identity. Applying \langle \cdot ,w\tau \rangle to (3.50), we immediately see
that the right-hand side is negative, while for the left-hand side, we obtain

\langle 
\bigl( 
L\tau 
 - 
\bigr) 1/2

L\tau 
+

\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau ,w\tau \rangle = \langle L\tau 
+

\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau ,
\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau \rangle 

\geq C+\langle 
\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau ,
\bigl( 
L\tau 
 - 
\bigr) 1/2

w\tau \rangle 
=C+\langle L\tau 

 - w\tau ,w\tau \rangle 
\geq C+C - \| w\tau \| 2 > 0
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5021

for some positive constants C\pm (using the positivity of L\tau 
\pm and self-adjointness of\bigl( 

L\tau 
 - 
\bigr) 1/2

), a contradiction. We conclude that no such real \tau 2\lambda \in Spec(N\tau ) exists, and
there are no crossings along \Gamma 1.

Moving to \Gamma 4, we show that the spectrum of Ns lies in a vertical strip around the
imaginary axis in the complex plane for all s\in (0,1]). For this, it suffices to show that
Spec(iNs) lies in a horizontal strip around the real axis since Spec(Ns) = - iSpec(iNs)
by the spectral mapping theorem. Fixing s\in (0,1], we have

iNs = iD+ iBs(x),(3.51)

where iD is self-adjoint and iBs(x) is bounded. It then follows from [54, Remark 3.2,
page 208] and [54, equation (3.16), page 272] that

\zeta \in Spec(iD+ iBs(x)) =\Rightarrow | Im \zeta | \leq \| iBs(x)\| ,(3.52)

as required. Choosing \lambda \infty > sups\in (0,1] \| Bs(x)\| ensures there are no crossings along
\Gamma 4.

We are our ready to prove our first main result.

Proof of Theorem 2.2. As already observed in (3.18), the homotopy invariance
and additivity of the Maslov index yield

Mas(\Lambda ,\scrD ; \Gamma 1) +Mas(\Lambda ,\scrD ; \Gamma 2) +Mas(\Lambda ,\scrD ; \Gamma 3) +Mas(\Lambda ,\scrD ; \Gamma 4) = 0;(3.53)

hence,

Mas(\Lambda ,\scrD ; \Gamma 2) +Mas(\Lambda ,\scrD ; \Gamma 3) = 0(3.54)

by Lemma 3.23. Again using additivity and recalling the definition of c in Defini-
tion 3.14, we rewrite this as

Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
2) + c+Mas(\Lambda ,\scrD ; \Gamma \varepsilon 

3) = 0,(3.55)

where \Gamma \varepsilon 
2 was defined in Lemma 3.22 and \Gamma \varepsilon 

3 is the restriction of \Gamma 3 to [\varepsilon ,\lambda \infty ]. Using
Lemma 3.22, we thus obtain

Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3) = P  - Q - c.(3.56)

As discussed in Remark 3.18, the lack of monotonicity in \lambda means that Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3)

does not necessarily count the number of real, positive eigenvalues of N . Nonetheless,
we still have that

n+(N)\geq | Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3)| ,(3.57)

and (2.7) follows.

4. The eigenvalue curves. In this section, we analyze the real eigenvalue
curves of Ns in the \lambda s-plane. We consider the general case of a crossing (\lambda 0, s0)
corresponding to an eigenvalue s20\lambda 0 \in Spec(Ns0) with dimker(Ns0  - s20\lambda 0) = n, pay-
ing special attention to the cases \lambda 0 = 0 and n= 1,2. We use the results obtained to
compute the correction term c from Theorem 2.2, and relate a component of it to the
signature of the second-order crossing form (3.36) in Proposition 4.15.
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5022 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

4.1. Numerical description. We begin with a brief description of a tool that
is useful for numerically computing the eigenvalue curves. The idea is to globally
characterize the set of points (\lambda , s) such that s2\lambda \in Spec(Ns)\cap \BbbR as the zero set of a
function called the characteristic determinant.

Converting the restricted problem (2.6) with y \in [0, s\ell ] to a first-order system
yields

d

dy

\left(    
u
v
r
z

\right)    =

\left(    
0 0 1 0
0 0 0  - 1

 - g(y)  - \lambda 0 0
 - \lambda h(y) 0 0

\right)    
\left(    

u
v
r
z

\right)    .(4.1)

Notice that we use the substitution \partial yv= - z in order to preserve the Hamiltonian
structure. Rescaling as in subsection 3.2, we define us(x) := u(sx) for x \in [0, \ell ] and
similarly for vs, rs, and zs. Then the equivalent system on [0, \ell ] is

d

dx

\left(    
us
vs
rs
zs

\right)    =

\left(    
0 0 s 0
0 0 0  - s

 - sg(sx)  - s\lambda 0 0
 - s\lambda sh(sx) 0 0

\right)    
\left(    

us
vs
rs
zs

\right)    .(4.2)

Consider a fundamental matrix solution \Phi (x;\lambda , s)\in \BbbR 4\times 4 to (4.2) with \Phi (0;\lambda , s) = I4.
For convenience, we write \Phi as the block matrix

\Phi (x;\lambda , s) =

\biggl( 
U(x;\lambda , s) X(x;\lambda , s)
V (x;\lambda , s) Y (x;\lambda , s)

\biggr) 
, U,V,X,Y \in \BbbR 2\times 2,

where

U(0;\lambda , s) = Y (0;\lambda , s) = I2, V (0;\lambda , s) =X(0;\lambda , s) = 02.(4.3)

Because \Phi is a matrix solution for (4.2), we have

d

dx

\biggl( 
U X
V Y

\biggr) 
=

\biggl( 
0 s\sigma 3

s (SB(sx) - \lambda S) 0

\biggr) \biggl( 
U X
V Y

\biggr) 
, \sigma 3 =

\biggl( 
1 0
0  - 1

\biggr) 
.(4.4)

Proposition 4.1. For all (\lambda , s)\in \BbbR \times (0,1], the following are equivalent:
1. \lambda \in Spec(N | [0,s\ell ])\cap \BbbR ;
2. s2\lambda \in Spec(Ns)\cap \BbbR ;
3. \Lambda (\lambda , s)\cap \scrD \not = \{ 0\} ;
4. detX(\ell ;\lambda , s) = 0.

We thus call detX(\ell ;\lambda , s) the characteristic determinant : The real eigenvalue
curves in the \lambda s-plane are given by the zero set \{ (\lambda , s) : detX(\ell ;\lambda , s) = 0\} . Figure 3
illustrates some examples of these curves under Hypothesis 2.5.

Proof. The discussion following (3.11) gives the equivalence of (1) and (2), while
the equivalence of (2) and (3) was given in Proposition 3.7. We show the equivalence
of (3) and (4). Fix s\in (0,1] and \lambda \in \BbbR , and consider the 8\times 4 matrix

\scrZ (\lambda , s) :=

\left(    
U(0;\lambda , s) X(0;\lambda , s)
U(\ell ;\lambda , s) X(\ell ;\lambda , s)
 - V (0;\lambda , s)  - Y (0;\lambda , s)
V (\ell ;\lambda , s) Y (\ell ;\lambda , s)

\right)    =

\left(    
I2 02

U(\ell ;\lambda , s) X(\ell ;\lambda , s)
02  - I2

V (\ell ;\lambda , s) Y (\ell ;\lambda , s)

\right)    .
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Fig. 3. Real eigenvalue curves s2\lambda \in Spec(Ns) \cap \BbbR under Hypothesis 2.5(i) associated with a
T -periodic stationary state \phi 0 with nonlinearity f(\phi 2) = \phi 2 and \beta =  - 2. In (a), \phi 0 is a positive
Jacobi dnoidal function (i.e., an orbit located inside the homoclinic orbit in the right half plane in
Figure 1(a)) satisfying \phi \prime 

0(0) = \phi \prime 
0(\ell ) = 0 with \ell = 3T = 9.9398. In (b), \phi 0 is a Jacobi cnoidal function

(i.e., an orbit located outside the homoclinic orbit in Figure 1(a)) satisfying \phi 0(0) = \phi 0(\ell ) = 0 with
\ell = 3T/2 = 10.0391.

Notice that the columns of \scrZ (\lambda , s) are precisely the rescaled trace (cf. (3.10)) of
four linearly independent functions in \scrK \lambda ,s (recall that the entries of Y (\cdot ;\lambda , s) and
V (\cdot ;\lambda , s) satisfy rs = s - 1\partial xus and zs =  - s - 1\partial xvs) and thus are a basis for our
Lagrangian subspace \Lambda (\lambda , s).

A nontrivial intersection of the four-dimensional linear subspaces \Lambda (\lambda , s) and \scrD of
\BbbR 8 occurs if and only if the 8\times 8 matrix formed by their bases has zero determinant.
Therefore,

\Lambda (\lambda , s)\cap \scrD \not = \{ 0\} \Leftarrow \Rightarrow det

\left(    
I 0 0 0

U(\ell ;\lambda , s) X(\ell ;\lambda , s) 0 0
 - 0  - I I 0

V (\ell ;\lambda , s) Y (\ell ;\lambda , s) 0 I

\right)    = 0 \Leftarrow \Rightarrow detX(\ell ;\lambda , s) = 0,

as required.

4.2. Analytic description. We will generalize Theorem 2.9 to Theorem 4.5,
which is a consequence of the following general result. We remind the reader that
n\leq 2 in the current paper; see Remark 3.8. Below, dot denotes d/d\lambda .

Proposition 4.2. Assume dimker(Ns0  - s20\lambda 0) = n with basis \{ u(1)
s0 , . . . ,u

(n)
s0 \} .

There exists an n\times n matrix M(\lambda , s), defined near (\lambda 0, s0), such that s2\lambda \in Spec(Ns)
if and only if detM(\lambda , s) = 0. This matrix satisfies M(\lambda 0, s0) = 0 and

\partial Mij

\partial \lambda 
(\lambda 0, s0) = - s20

\Bigl\langle 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,

\partial Mij

\partial s
(\lambda 0, s0) =

\Bigl\langle \bigl( 
\partial sBs0  - 2s0\lambda 0

\bigr) 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
.

(4.5)

Moreover, if
\bigl\langle 
u
(i)
s0 , Su

(j)
s0

\bigr\rangle 
= 0 for all i, j = 1, . . . , n, then

\partial 2Mij

\partial \lambda 2
(\lambda 0, s0) = - 2s40

\Bigl\langle 
v(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,(4.6)

where v
(i)
s0 \in dom(Ns0) solves the inhomogeneous equation (Ns0  - s20\lambda 0)v

(i)
s0 = u

(i)
s0 .
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5024 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Remark 4.3. Just as in Remark 3.17, for (4.6), it suffices to consider those solu-

tions to the inhomogeneous equation that satisfy v
(i)
s0 \bot u

(j)
s0 for i, j = 1, . . . , n.

The definition of M , which requires some preparation, is given in (4.14).

Proof. We constructM(\lambda , s) using Lyapunov--Schmidt reduction. The first step is
to split the eigenvalue equation (Ns - s2\lambda )u= 0 into two parts, one of which can always
be solved uniquely. Let P denote the L2-orthogonal projection onto ker(N\ast 

s0  - s20\lambda 0),
so that I  - P is the projection onto ker(N\ast 

s0  - s20\lambda 0)
\bot = ran(Ns0  - s20\lambda 0). It follows

that s2\lambda is an eigenvalue of Ns if and only if there exists a nonzero u\in dom(Ns) such
that both

P (Ns  - s2\lambda )u= 0(4.7)

and

(I  - P )(Ns  - s2\lambda )u= 0(4.8)

hold.
We first consider (4.8). Defining X0 =ker(Ns0  - s20\lambda 0)

\bot \cap H2(0, \ell )\cap H1
0 (0, \ell ), we

have that any u\in H2(0, \ell )\cap H1
0 (0, \ell ) can be written uniquely as

u=

n\sum 
i=1

tiu
(i)
s0 + \~u,

where ti \in \BbbR and \~u \in X0. This means (4.8) holds if and only if there exists a vector
t= (t1, . . . , tn)\in \BbbR n and a function \~u\in X0 such that

(I  - P )(Ns  - s2\lambda )

\Biggl( 
n\sum 

i=1

tiu
(i)
s0 + \~u

\Biggr) 
= 0.(4.9)

We claim that for each (t, \lambda , s), there exists a unique \~u = \~u(t, \lambda , s) \in X0 satisfying
(4.9). Writing this equation out explicitly, it is

(I  - P )(Ns  - s2\lambda )\~u(t, \lambda , s) = - (I  - P )(Ns  - s2\lambda )

n\sum 
i=1

tiu
(i)
s0 .

We define

T (\lambda , s) :X0 \rightarrow ran(Ns0  - s20\lambda 0), T (\lambda , s) = (I  - P )
\bigl( 
Ns  - s2\lambda 

\bigr) \bigm| \bigm| \bigm| 
X0

and observe that T (\lambda 0, s0) is invertible; hence, T (\lambda , s) is also invertible for nearby
(\lambda , s). Defining

A(\lambda , s) :X\bot 
0 \rightarrow X0, A(\lambda , s) = - T - 1(\lambda , s)(I  - P )

\bigl( 
Ns  - s2\lambda 

\bigr) \bigm| \bigm| \bigm| 
X\bot 

0

,

where X\bot 
0 =ker(Ns0  - s20\lambda 0), the unique solution to (4.9) is thus

\~u(t, \lambda , s) =A(\lambda , s)

n\sum 
i=1

tiu
(i)
s0 .(4.10)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5025

So far, we have shown that the equation (I  - P )(Ns  - s2\lambda )u = 0 is satisfied if and
only if u has the form

u=

n\sum 
i=1

tiu
(i)
s0 +A(\lambda , s)

n\sum 
i=1

tiu
(i)
s0 =

\bigl( 
I +A(\lambda , s)

\bigr) n\sum 
i=1

tiu
(i)
s0(4.11)

for some t \in \BbbR n. We conclude that there exists u for which (Ns  - s2\lambda )u= 0 holds if
and only if

P (Ns  - s2\lambda )
\bigl( 
I +A(\lambda , s)

\bigr) \Biggl( n\sum 
i=1

tiu
(i)
s0

\Biggr) 
= 0(4.12)

for some t \in \BbbR n. Moreover, u is nonzero if and only if t is nonzero. Finally, we
observe that ker(N\ast 

s0  - s
2
0\lambda 0) is spanned by \{ Su(1)

s0 , Su
(2)
s0 , . . . , Su

(n)
s0 \} , and so (4.12) is

equivalent to\Biggl\langle 
(Ns  - s2\lambda )

\bigl( 
I +A(\lambda , s)

\bigr) \Biggl( n\sum 
i=1

tiu
(i)
s0

\Biggr) 
, Su(j)

s0

\Biggr\rangle 
= 0, j = 1, . . . , n.(4.13)

Defining the n\times n matrix M(\lambda , s) by

Mij(\lambda , s) =
\Bigl\langle 
(Ns  - s2\lambda )

\bigl( 
I +A(\lambda , s)

\bigr) 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
, i, j = 1, . . . , n,(4.14)

the system of n equations (4.13) may be written as M(\lambda , s)t = 0, which is satisfied
for a nonzero vector t if and only if detM(\lambda , s) = 0. This completes the first part of
the proof.

It follows that M(\lambda 0, s0) = 0. We then compute

\partial Mij

\partial \lambda 
(\lambda 0, s0) =

\Bigl\langle 
 - s20

\bigl( 
I +A(\lambda 0, s0)

\bigr) 
u(i)
s0 + (Ns0  - s20\lambda 0)\partial \lambda A(\lambda 0, s0)u

(i)
s0 , Su

(j)
s0

\Bigr\rangle (4.15)

= - s20
\Bigl\langle 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,(4.16)

where in the second line, we have used the fact that A(\lambda 0, s0)u
(i)
s0 = 0 and\Bigl\langle 

(Ns0  - s20\lambda 0)\partial \lambda A(\lambda 0, s0)u
(i)
s0 , Su

(j)
s0

\Bigr\rangle 
=
\Bigl\langle 
\partial \lambda A(\lambda 0, s0)u

(i)
s0 , (N

\ast 
s0  - s20\lambda 0)Su

(j)
s0

\Bigr\rangle 
= 0

because Su
(j)
s0 \in ker(N\ast 

s0  - s20\lambda 0). The s derivative is computed similarly.
Finally, if \partial \lambda M(\lambda 0, s0) = 0, we have

\partial 2Mij

\partial \lambda 2
(\lambda 0, s0) = - 2s20

\Bigl\langle 
\partial \lambda A(\lambda 0, s0)u

(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,(4.17)

where
\bigl\langle 
(Ns0  - s20\lambda 0)\partial \lambda \lambda A(\lambda 0, s0)u

(i)
s0 , Su

(j)
s0

\bigr\rangle 
= 0 again using Su

(j)
s0 \in ker(N\ast 

s0  - s20\lambda 0).

To compute \partial \lambda A(\lambda 0, s0)u
(i)
s0 , we use the definition of A(\lambda , s) to write

T (\lambda , s)A(\lambda , s)u(i)
s0 = - (I  - P )

\bigl( 
Ns  - s2\lambda 

\bigr) 
u(i)
s0 .

Differentiating in \lambda and again using the fact that A(\lambda 0, s0)u
(i)
s0 = 0, we get

T (\lambda 0, s0)\partial \lambda A(\lambda 0, s0)u
(i)
s0 = s20(I  - P )u(i)

s0 .
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5026 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

The fact that
\bigl\langle 
u
(i)
s0 , Su

(j)
s0

\bigr\rangle 
= 0 for all i, j implies (I  - P )u

(i)
s0 = u

(i)
s0 . Setting s20v

(i)
s0 =

\partial \lambda A(\lambda 0, s0)u
(i)
s0 , we see from the definition of T that

T (\lambda 0, s0)(s
2
0v

(i)
s0 ) = s20(I  - P )(Ns0  - s20\lambda 0)v

(i)
s0 = s20(Ns0  - s20\lambda 0)v

(i)
s0 ,

and the result follows.

Comparison with the symmetric matrices (3.27), (3.33), and (3.37) associated
with the first- and second-order crossing forms reveals that the partial derivatives of
the matrix M satisfy

\partial M

\partial s
(\lambda 0, s0) = s0\frakM s0 ,

\partial M

\partial \lambda 
(\lambda 0, s0) = s0\frakM \lambda 0

,
\partial 2M

\partial \lambda 2
(\lambda 0, s0) = s0\frakM 

(2)
\lambda 0
,(4.18)

where the last formula holds when \partial \lambda M(\lambda 0, s0) = 0. In particular, in the case
dimker(Ns0  - s20\lambda 0) = 1 (so that M is a scalar), we have

\partial M

\partial s
(\lambda 0, s0) = s0ms0(q),

\partial M

\partial \lambda 
(\lambda 0, s0) = s0m\lambda 0

(q),
\partial 2M

\partial \lambda 2
(\lambda 0, s0) = s0m

(2)
\lambda 0

(q),

(4.19)

where again the last formula holds when \partial \lambda M(\lambda 0, s0) = 0. Combining (4.19) with the
implicit function theorem immediately yields the following Hadamard-type formulas
for the derivatives of the real eigenvalue curves in terms of the crossing forms.

Corollary 4.4. Under the assumption that dimker(Ns0  - s20\lambda 0) = 1, the follow-
ing hold:

1. If m\lambda 0
\not = 0, then there exists a C2 curve \lambda (s) near s0 such that

\lambda \prime (s0) = - ms0(q)

m\lambda 0
(q)

.(4.20)

2. If ms0 \not = 0, then there exists a C2 curve s(\lambda ) near \lambda 0 such that

\.s(\lambda 0) = - m\lambda 0
(q)

ms0(q)
.(4.21)

Moreover, \.s(\lambda 0) = 0 if and only if m\lambda 0
(q) = 0, and in this case,

\"s(\lambda 0) = - 
m

(2)
\lambda 0

(q)

ms0(q)
.(4.22)

Using this, we can construct a curve s(\lambda ) through any simple conjugate point and
determine its concavity by an explicit formula.

Theorem 4.5. If dimkerNs0 = 1, then for | \lambda | \ll 1, there exists a C2 curve s(\lambda )
such that s(\lambda )2\lambda \in Spec(Ns(\lambda )) and a continuous curve us(\lambda ) of eigenfunctions such
that us(\lambda ) \rightarrow us0 as \lambda \rightarrow 0. Moreover, s(0) = s0, \.s(0) = 0, and the concavity of s(\lambda )
can be determined as follows:

1. If 0\in Spec(Ls0
 - ) \setminus Spec(Ls0

+ ) with eigenfunction vs0 \in kerLs0
 - , then

\"s(0) =
2s50
\ell 

\langle \widehat us0 , vs0\rangle \bigl( 
v\prime s0(\ell )

\bigr) 2 ,(4.23)

where \widehat us0 \in H2(0, \ell )\cap H1
0 (0, \ell ) is the unique solution to Ls0

+ \widehat us0 = vs0 .
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5027

2. If 0\in Spec(Ls0
+ ) \setminus Spec(Ls0

 - ) with eigenfunction us0 \in kerLs0
+ , then

\"s(0) = - 2s50
\ell 

\langle \widehat vs0 , us0\rangle \bigl( 
u\prime s0(\ell )

\bigr) 2 ,(4.24)

where \widehat vs0 \in H2(0, \ell )\cap H1
0 (0, \ell ) is the unique solution to  - Ls0

 - \widehat vs0 = us0 .

Proof. Lemma 3.9 implies ms0 \not = 0, so the existence of s(\lambda ) follows from Corol-
lary 4.4. Corollary 3.12 then gives \.s(0) = 0. From (4.11), we see that us(\lambda ) =\bigl( 
I + A(\lambda , s(\lambda ))

\bigr) 
us0 is an eigenfunction of Ns(\lambda ) for the eigenvalue s2(\lambda )\lambda . Since

A(\lambda , s(\lambda )) is continuous in \lambda and A(0, s0)us0 = 0, the convergence of us(\lambda ) to us0

follows.
It thus remains to prove (4.23) and (4.24). If 0\in Spec(Ls0

 - ) \setminus Spec(Ls0
+ ), then us0

is trivial, so (3.23) and (3.38) give

ms0(q) =
\ell 

s20

\bigl( 
v\prime s0(\ell )

\bigr) 2
, m

(2)
\lambda 0

(q) = - 2s30\langle \widehat us0 , vs0\rangle .(4.25)

Substituting these into (4.22) immediately gives (4.23). The case 0 \in Spec(Ls0
+ ) \setminus 

Spec(Ls0
 - ) is almost identical. Here we have

ms0(q) = - \ell 

s20

\bigl( 
u\prime s0(\ell )

\bigr) 2
, m

(2)
\lambda 0

(q) = - 2s30\langle \widehat vs0 , us0\rangle ,
and (4.24) follows.

4.3. When \bfitlambda 0 = 0 has geometric multiplicity two. In this section. we
focus on the case of a geometrically double eigenvalue at zero. Since 0 \in Spec(Ls0

+ )\cap 
Spec(Ls0

 - ), we have ker(Ns0) = Span\{ u(1)
s0 ,u

(2)
s0 \} , where the u

(i)
s0 are given in (3.21).

Applying Proposition 4.2 with \lambda 0 = 0 and n = 2, we will show the following. Again,
dot denotes d/d\lambda .

Theorem 4.6. Suppose dimkerNs0 = 2, and denote the corresponding eigenfunc-

tions of Ls0
+ and Ls0

 - by u
(1)
s0 and v

(2)
s0 , respectively.

1. If
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
\not = 0, then s2\lambda /\in Spec(Ns) for (\lambda , s) in a punctured neighborhood

of (0, s0).

2. If
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
= 0 and\bigl\langle \widehat v(1)s0 , u

(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 +

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2 \not = 0,(4.26)

where \widehat u(2)s0 \in dom(Ls0
+ ) and \widehat v(1)s0 \in dom(Ls0

 - ) denote solutions to

Ls0
+ \widehat u(2)s0 = v(2)s0 ,  - Ls0

 - \widehat v(1)s0 = u(1)s0 ,(4.27)

then for | \lambda | \ll 1, there exist C2 curves s1(\lambda ) and s2(\lambda ) such that
(i) s21,2(\lambda )\lambda \in Spec

\bigl( 
Ns1,2(\lambda )

\bigr) 
,

(ii) s1,2(0) = s0,
(iii) \.s1,2(0) = 0,

and the concavities satisfy

\"s1(0) = - 2s50
\ell 

\bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 , \"s2(0) =
2s50
\ell 

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2 .(4.28)
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5028 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Moreover, there exist continuous curves us1(\lambda ) and us2(\lambda ) of eigenfunctions
such that

us1(\lambda ) \rightarrow u(1)
s0 =

\biggl( 
u
(1)
s0

0

\biggr) 
, us2(\lambda ) \rightarrow u(2)

s0 =

\biggl( 
0

v
(2)
s0

\biggr) 
(4.29)

as \lambda \rightarrow 0.

The condition (4.26) will be discussed in Remark 4.10 below.

Remark 4.7. As in Remark 3.17, the solutions \widehat u(2)s0 and \widehat v(1)s0 in (4.27) are not
unique, but the expressions in (4.26) and (4.28) do not depend on the choice of
solution.

We prove the theorem by studying the zero set of m(\lambda , s) := detM(\lambda , s), where
M is given in (4.14). We thus start with some elementary calculations for the higher-
order derivatives of m. These will be used to prove the existence of the eigenvalue
curves s1,2(\lambda ) and also to evaluate their first and second derivatives.

Lemma 4.8. Under the assumptions of Theorem 4.6, we have

m(0, s0) =
\partial m

\partial s
(0, s0) =

\partial m

\partial \lambda 
(0, s0) =

\partial 2m

\partial s\partial \lambda 
(0, s0) = 0(4.30)

and

\partial 2m

\partial s2
(0, s0) = - 2\ell 2

s20

\Bigl( 
\partial xu

(1)
s0 (\ell )

\Bigr) 2 \Bigl( 
\partial xv

(2)
s0 (\ell )

\Bigr) 2
,

\partial 2m

\partial \lambda 2
(0, s0) = - 2s40

\Bigl\langle 
u(1)s0 , v

(2)
s0

\Bigr\rangle 2
.

(4.31)

Moreover, if
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
= 0, then

\partial 3m

\partial s\partial \lambda 2
(0, s0) = 2\ell s30

\Bigl( 
\partial xu

(1)
s0 (\ell )

\Bigr) 2 \Bigl\langle \widehat u(2)s0 , v
(2)
s0

\Bigr\rangle 
 - 2\ell s30

\Bigl( 
\partial xv

(2)
s0 (\ell )

\Bigr) 2 \Bigl\langle \widehat v(1)s0 , u
(1)
s0

\Bigr\rangle 
,(4.32)

\partial 3m

\partial \lambda 3
(0, s0) = 0,

\partial 4m

\partial \lambda 4
(0, s0) = 24s80

\Bigl\langle \widehat u(2)s0 , v
(2)
s0

\Bigr\rangle \Bigl\langle \widehat v(1)s0 , u
(1)
s0

\Bigr\rangle 
,(4.33)

with \widehat u(2)s0 and \widehat v(1)s0 as in (4.27).

Proof. Writing M =

\biggl( 
a b
c d

\biggr) 
, so that m= ad - bc, we compute

\partial sm= (\partial sa)d+ a (\partial sd) - (\partial sb) c - b (\partial sc),

\partial 2sm= (\partial 2sa)d+ 2(\partial sa) (\partial sd) + a (\partial 2sd) - (\partial 2sb) c - 2 (\partial sb) (\partial sc) - b (\partial 2sc),

and so at (0, s0), we have

\partial sm= 0, \partial 2sm= 2(\partial sa) (\partial sd) - 2 (\partial sb) (\partial sc)(4.34a)

because a= b= c= d= 0 there (recall that M(\lambda 0, s0) = 0). Similarly, we find that

\partial \lambda m= 0,(4.34b)

\partial 2\lambda m= 2(\partial \lambda a)(\partial \lambda d) - 2(\partial \lambda b)(\partial \lambda c),(4.34c)

\partial s\lambda m= (\partial sa)(\partial \lambda d) + (\partial \lambda a)(\partial sd) - (\partial sb)(\partial \lambda c) - (\partial \lambda b)(\partial sc)(4.34d)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5029

at (0, s0). To evaluate the second derivatives, it remains to differentiate the compo-
nents of M . By Proposition 4.2, for i, j = 1,2, we have

\partial Mij

\partial \lambda 
(0, s0) = - s20

\Bigl\langle 
u(i)
s0 , Su

(j)
s0

\Bigr\rangle 
,

\partial Mij

\partial s
(0, s0) =

\Bigl\langle 
\partial sBs0u

(i)
s0 , Su

(j)
s0

\Bigr\rangle 
.(4.35)

It follows from (4.18) and (3.34) that

\partial M

\partial \lambda 
(0, s0) = - s20

\Biggl( 
0

\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle \bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
0

\Biggr) 
,

so that at (0, s0), we have \partial \lambda a = \partial \lambda d = 0 and \partial \lambda b = \partial \lambda c =  - s20
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
. Similarly,

it follows from (4.18) and (3.29) that

\partial M

\partial s
(0, s0) =

\ell 

s0

\Biggl( 
 - 
\bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2
0

0
\bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\Biggr) 
;(4.36)

hence, at (0, s0), we have \partial sa= - s - 1
0 \ell 
\bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2
, \partial sd= s - 1

0 \ell 
\bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
, and \partial sb=

\partial sc= 0. The claimed formulas for \partial 2sm, \partial s\lambda m, and \partial 2\lambda m now follow from (4.34).

If
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
= 0, then \partial \lambda b= \partial \lambda c= 0 at (0, s0). This implies that \partial 3\lambda m= 0 and

\partial 4\lambda m= 6
\bigl( 
(\partial 2\lambda a) (\partial 

2
\lambda d) - (\partial 2\lambda b) (\partial 

2
\lambda c)
\bigr) 
, \partial s\lambda \lambda m= (\partial sa) (\partial 

2
\lambda d) + (\partial 2\lambda a) (\partial sd)(4.37)

at (0, s0). Using (4.18) and (3.39), we obtain

\partial 2M

\partial \lambda 2
(0, s0) = - 2s40

\Biggl( \bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle 
0

0
\bigl\langle \widehat u(2)s0 , v

(2)
s0

\bigr\rangle \Biggr) ;(4.38)

hence, \partial 2\lambda b= \partial 2\lambda c= 0, and it follows that

\partial 4\lambda m= 6(\partial 2\lambda a)(\partial 
2
\lambda d) = 24s80

\bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle 
.

The claimed formula for \partial s\lambda \lambda m follows directly from (4.37).

The next elementary lemma will be used to prove differentiability of the eigenvalue
curves in the second part of Theorem 4.6. In what follows, dot denotes d/d\lambda .

Lemma 4.9. If \Delta is a smooth function with \Delta (\lambda ) = \alpha \lambda 4 +O(\lambda 5) as | \lambda | \rightarrow 0 for
some \alpha > 0, then \delta (\lambda ) :=

\sqrt{} 
\Delta (\lambda ) is C2 near \lambda = 0, with \.\delta (0) = 0 and \"\delta (0) = 2

\surd 
\alpha .

Proof. It is clear that \delta is smooth except possibly at \lambda = 0. For the first derivative,
we note that \delta (\lambda )/\lambda \rightarrow 0 as \lambda \rightarrow 0, so \.\delta (0) = 0. For \lambda \not = 0, we compute

\.\delta (\lambda ) =
1

2
\Delta (\lambda ) - 1/2 \.\Delta (\lambda ).

Using \Delta (\lambda ) = \alpha \lambda 4 +O(\lambda 5) and \.\Delta (\lambda ) = 4\alpha \lambda 3 +O(\lambda 4), we see that \.\delta (\lambda )\rightarrow 0 as \lambda \rightarrow 0
and conclude that \delta is C1. Next, we observe that

\.\delta (\lambda ) - \.\delta (0)

\lambda 
=

1

2

\lambda 2\sqrt{} 
\Delta (\lambda )

\.\Delta (\lambda )

\lambda 3
\rightarrow 2

\surd 
\alpha ,

and hence \"\delta (0) exists. A similar argument gives

\"\delta (\lambda ) = - 1

4

\.\Delta (\lambda )2

\Delta (\lambda )3/2
+

1

2

\"\Delta (\lambda )\sqrt{} 
\Delta (\lambda )

\rightarrow 2
\surd 
\alpha 

as \lambda \rightarrow 0, so \delta is C2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.D
ow

nl
oa

de
d 

10
/0

2/
23

 to
 1

49
.1

67
.1

78
.1

2 
by

 M
itc

he
ll 

C
ur

ra
n 

(m
cu

r3
92

5@
un

i.s
yd

ne
y.

ed
u.

au
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



5030 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Proof of Theorem 4.6. By assumption, we have m(0, s0) = 0. If
\bigl\langle 
u
(1)
s0 , v

(2)
s0

\bigr\rangle 
\not = 0,

Lemma 4.8 implies m has a strict local maximum at (0, s0), so m is negative (and in
particular nonzero) in a punctured neighborhood of (0, s0). This proves the first case.

For the second case, we use the Malgrange preparation theorem (see [31, section
IV.2]). We know from Lemma 4.8 that m(0, s0) = \partial sm(0, s0) = 0 and \partial 2sm(0, s0)< 0,
so we can write

m(\lambda , s) =Q(\lambda , s)P (\lambda , s)(4.39)

in a neighborhood of (0, s0), where

P (\lambda , s) = (s - s0)
2 +B(\lambda )(s - s0) +C(\lambda );(4.40)

Q, B, and C are smooth, real-valued functions; and Q does not vanish in a neighbor-
hood of (0, s0). This means m locally has the same zero set as P .

We claim that the discriminant \Delta (\lambda ) =B2(\lambda ) - 4C(\lambda ) satisfies

\Delta (\lambda ) = \alpha \lambda 4 +O(\lambda 5) as | \lambda | \rightarrow 0, \alpha =
\"B(0)2

4
 - C(4)(0)

6
> 0.(4.41)

To see this, we compute the Taylor expansion of \Delta (\lambda ) =B(\lambda )2  - 4C(\lambda ) about \lambda = 0
and show that \Delta (0) = \.\Delta (0) = \"\Delta (0) =

...
\Delta (0) = 0. For this, it suffices to show that

B(0) = \.B(0) = C(0) = \.C(0) = \"C(0) =
...
C(0) = 0. That \Delta (4)(0) = 4!\alpha follows from the

definition of \Delta (\lambda ).
Using Lemma 4.8, we obtain

m(0, s0) =Q(0, s0)C(0) = 0.

Since Q(0, s0) \not = 0, this implies C(0) = 0. Similarly, we find that

\partial \lambda m(0, s0) =Q(0, s0) \.C(0) = 0,

\partial 2\lambda m(0, s0) =Q(0, s0) \"C(0) = 0,

\partial 3\lambda m(0, s0) =Q(0, s0)
...
C(0) = 0,

\partial 4\lambda m(0, s0) =Q(0, s0)C
(4)(0)

and

\partial sm(0, s0) =Q(0, s0)B(0) = 0,

\partial s\lambda m(0, s0) =Q(0, s0) \.B(0) = 0,

\partial s\lambda \lambda m(0, s0) =Q(0, s0) \"B(0),

which gives

B(0) = \.B(0) =C(0) = \.C(0) = \"C(0) =
...
C(0) = 0.

We now observe that

\partial 2sm(0, s0) =Q(0, s0)\partial 
2
sP (0, s0) = 2Q(0, s0).

Using the first formula from (4.31), this implies that

Q(0, s0) = - \ell 
2

s20

\Bigl( 
\partial xu

(1)
s0 (\ell )

\Bigr) 2 \Bigl( 
\partial xv

(2)
s0 (\ell )

\Bigr) 2
.(4.42)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5031

Therefore, using (4.33),

C(4)(0) =
\partial 4\lambda m(0, s0)

Q(0, s0)
= - 24

s100
\ell 2

\bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2\bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2 .(4.43)

We similarly use (4.32) to compute

\"B(0) =
\partial s\lambda \lambda m(0, s0)

Q(0, s0)
=

2s50
\ell 

\Biggl\{ \bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2  - 
\bigl\langle \widehat u(2)s0 , v

(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\Biggr\} 
.(4.44)

Therefore,

\alpha =
\"B(0)2

4
 - C(4)(0)

6
=
s100
\ell 2

\Biggl( \bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 +

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\Biggr) 2

> 0(4.45)

because of (4.26), thus proving the claim.
Given (4.41), we have \Delta (\lambda ) > 0 for small nonzero \lambda , and so the equation

P (\lambda , s) = 0 has two solutions in s:

s\pm (\lambda ) :=
 - B(\lambda )\pm 

\sqrt{} 
\Delta (\lambda )

2
+ s0.(4.46)

It then follows from Lemma 4.9 that both s\pm (\lambda ) are C
2 in a neighborhood of \lambda = 0,

with \.s\pm (0) = - \.B(0)/2 = 0 and

\"s\pm (0) =
 - \"B(0)\pm 2

\surd 
\alpha 

2
,(4.47)

so the curves s\pm (\lambda ) satisfy properties (i)--(iii) in the theorem. Substituting (4.44) and
(4.45) into (4.47), we obtain

\"s\pm (0) =
s50
\ell 

\Biggl\{ \bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2  - 
\bigl\langle \widehat v(1)s0 , u

(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 \pm 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigl\langle \widehat v(1)s0 , u

(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 +

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr\} 
.(4.48)

If the quantity inside the absolute value (which is nonzero by (4.26)) is positive, we
get

\"s+(0) =
2s50
\ell 

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2 , \"s - (0) = - 2s50
\ell 

\bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 ,(4.49)

in which case we define s1 := s - and s2 := s+. If it is negative, we get

\"s - (0) =
2s50
\ell 

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2 , \"s+(0) = - 2s50
\ell 

\bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 ,(4.50)

and we define s1 := s+ and s2 := s - .
To prove the existence of a continuous family of eigenfunctions, we defineM1(\lambda ) =

M(\lambda , s1(\lambda )). If
\bigl( 
t1(\lambda ), t2(\lambda )

\bigr) \top \in kerM1(\lambda ) is nonzero, we know from (4.11) that

us1(\lambda ) =
\bigl( 
I +A(\lambda , s1(\lambda ))

\bigr) \Bigl( 
t1(\lambda )u

(1)
s0 + t2(\lambda )u

(2)
s0

\Bigr) 
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5032 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

is an eigenfunction of Ns1(\lambda ) for the eigenvalue s21(\lambda )\lambda . We therefore need to under-
stand the kernel of M1(\lambda ).

By construction, we have M1(0) = 0. Since (\partial \lambda M)(0, s0) = 0 and \.s1(0) = 0, we
find that \.M1(0) = 0 and \"M1(0) = (\partial 2\lambda M)(0, s0) + (\partial sM)(0, s0)\"s1(0). Using (4.28),
(4.36), and (4.38), we get

\"M1(0) = - 2s40
\bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2\Biggl( \bigl\langle \widehat v(1)s0 , u
(1)
s0

\bigr\rangle \bigl( 
\partial xu

(1)
s0 (\ell )

\bigr) 2 +

\bigl\langle \widehat u(2)s0 , v
(2)
s0

\bigr\rangle \bigl( 
\partial xv

(2)
s0 (\ell )

\bigr) 2
\Biggr) \biggl( 

0 0
0 1

\biggr) 
,(4.51)

which is nonzero by (4.26). Writing M1(\lambda ) =
\Bigl( 

a(\lambda ) b(\lambda )
c(\lambda ) d(\lambda )

\Bigr) 
, it follows that d(\lambda ) \not = 0 for

small, nonzero values of \lambda , and so we can choose\biggl( 
t1(\lambda )
t2(\lambda )

\biggr) 
=

\biggl( 
1

 - c(\lambda )/d(\lambda )

\biggr) 
\in kerM1(\lambda )

for \lambda \not = 0. Since c(0) = \.c(0) = \"c(0) = d(0) = \.d(0) = 0 but \"d(0) \not = 0, we get c(\lambda )/d(\lambda )\rightarrow 0
as \lambda \rightarrow 0, and so

lim
\lambda \rightarrow 0

\bigl( 
I +A(\lambda , s1(\lambda ))

\bigr) \Bigl( 
t1(\lambda )u

(1)
s0 + t2(\lambda )u

(2)
s0

\Bigr) 
= u(1)

s0

as claimed. The result for us2(\lambda ) is proved in the same way.

Remark 4.10. The condition (4.26) implies \Delta (\lambda ) > 0 for small nonzero \lambda and
hence guarantees the existence of s\pm (\lambda ). It also guarantees that \"s+(0) \not = \"s - (0), as
can be seen from (4.48). If (4.26) fails, then \alpha = 0, and we cannot use the result of
Lemma 4.9. In this (nongeneric) case, one may compute higher derivatives of m in
order to determine higher-order coefficients in the Taylor expansion of \Delta (\lambda ), but we
do not pursue this here.

The following examples illustrate the two scenarios detailed in Theorem 4.6.

Example 4.11. The conditions in case (1) of Theorem 4.6 are satisfied if we take

Ls
+ = Ls

 - , in which case u
(1)
s0 = v

(2)
s0 at any crossing (0, s0), so that \langle u(1)s0 , v

(2)
s0 \rangle \not = 0.

Each isolated crossing (\lambda , s) = (0, s0) is a consequence of a pair of purely imaginary
eigenvalues passing through the origin as s increases. For clarity, in Figure 4, we

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Im(λ)

s

Fig. 4. Imaginary eigenvalue curves s2\lambda \in Spec(Ns) \cap i\BbbR , where Ls
 - = Ls

+ =  - \partial xx  - 4s2 and
\ell = 12. Viewed from the \eta s-plane, where \eta =Re(\lambda ), a series of isolated crossings appear at \eta = 0 as
s increases from 0 to 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.D
ow

nl
oa

de
d 

10
/0

2/
23

 to
 1

49
.1

67
.1

78
.1

2 
by

 M
itc

he
ll 

C
ur

ra
n 

(m
cu

r3
92

5@
un

i.s
yd

ne
y.

ed
u.

au
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5033

-20 -10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

λ

s

(a)

-4 -2 0 2 4

0.990

0.995

1.000

1.005

1.010

λ

s

(b)

Fig. 5. (a) Real eigenvalue curves s2\lambda \in Spec(Ns) \cap \BbbR , where Ls
 - =  - \partial xx  - 4\pi 2s2, Ls

+ =

 - \partial xx  - 9\pi 2s2, and \ell = 1 and (b) a blowup of the conjugate point (\lambda , s) = (0,1).

have plotted the imaginary eigenvalue curves s2\lambda \in Spec(Ns) \cap i\BbbR for the case when
Ls
 - =Ls

+ = - \partial xx  - 4s2 and \ell = 12 (here \lambda \in \BbbC ).

Example 4.12. Let L= - \partial xx +V (x) with domain (2.5), and define L\pm =L - \lambda \pm ,
where \lambda \pm \in Spec(L) are distinct eigenvalues with eigenfunctions u1 and v2, so that
L+u1 = L - v2 = 0. Since L\pm is self-adjoint and \lambda + \not = \lambda  - , we have \langle u1, v2\rangle = 0, and
the conditions of case (2) in Theorem 4.6 are satisfied. (Recall the notation of (3.19)
when s0 = 1.)

The equations L+\widehat u2 = v2 and  - L - \widehat v1 = u1 are solved by \widehat u2 = 1
\lambda  -  - \lambda +

v2 and\widehat v1 = 1
\lambda  -  - \lambda +

u1, and it follows that

\int \ell 

0

\widehat u2 v2 dx= 1

\lambda  -  - \lambda +

\int \ell 

0

v22 dx and

\int \ell 

0

\widehat v1 u1dx= 1

\lambda  -  - \lambda +

\int \ell 

0

u21 dx

are nonzero and have the same sign. According to (4.28), this means the curves
s1,2(\lambda ) passing through (0,1) will have opposite concavity. This is illustrated in
Figure 5, where we have plotted the real eigenvalue curves for a domain of length
\ell = 1, choosing L= - \partial xx, \lambda + = 9\pi 2, and \lambda  - = 4\pi 2.

4.4. The Maslov index at the nonregular corner. We are now in a posi-
tion to calculate the corner term c appearing in Theorem 2.2 (and defined in Defini-
tion 3.14) using the tools developed in subsections 4.2 and 4.3.

Since a nonregular crossing occurs at the initial point of \Gamma 3, we cannot use (3.4)
to compute the Maslov index. We therefore take advantage of homotopy invariance,
deforming the corner of the Maslov box to a path that only has simple regular cross-
ings.

The index can then be deduced from the local behavior of the eigenvalue curves
through (0,1) (see Theorems 2.9 and 4.6), which we quantify as follows. Given the
curve s(\lambda ) from Theorem 2.9, there is an interval (0, \^\lambda ) on which either s(\lambda ) > 1 or
s(\lambda ) < 1 since the set \{ \lambda : s(\lambda ) = 1\} is discrete; cf. Remark 3.15. Therefore, the
quantity

s\sharp (0) := lim
\lambda \rightarrow 0+

sign
\bigl( 
s(\lambda ) - 1

\bigr) 
\in \{ \pm 1\} (4.52)
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5034 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

is well-defined. In the case that s = s(\lambda ) is analytic, s\sharp (0) is the sign of the first
nonzero Taylor coefficient at \lambda = 0.

Remark 4.13. Recall from Theorem 2.9 that \.s(0) = 0. Therefore, in the generic
case where \"s(0) \not = 0, we simply have

s\sharp (0) = sign \"s(0).(4.53)

That is, the VK-type integrals in Theorem 2.9 determine s\sharp (0) (and hence the index
c) provided the integrals are nonzero. However, it is important to note that the
dichotomy s\sharp (0) =\pm 1 holds even if \"s(0) = 0.

The same considerations apply to the curves s1,2(\lambda ) from Theorem 4.6 (for which

\.s1,2(0) = 0), so we define s\sharp 1,2(0) analogously and emphasize that in the generic case
\"s1,2(0) \not = 0, we have

s\sharp 1,2(0) = sign \"s1,2(0).(4.54)

With this notation in place, we are ready to calculate c.

Theorem 4.14. The corner term c from Definition 3.14 is calculated as follows:
(1) Suppose dimker(N) = 1, and let s = s(\lambda ) be the eigenvalue curve through

(0,1).
(i) If 0\in Spec(L+)\setminus Spec(L - ), then

c=
1

2
(s\sharp (0) - 1).

That is, c= 0 if s\sharp (0) =+1 and c= - 1 if s\sharp (0) = - 1.
(ii) If 0\in Spec(L - )\setminus Spec(L+), then

c=
1

2
(1 - s\sharp (0)).

That is, c= 0 if s\sharp (0) =+1 and c=+1 if s\sharp (0) = - 1.
(2) Suppose dimker(N) = 2, with ker(L+) = Span\{ u1\} and ker(L - ) = Span\{ v2\} .

If \langle u1, v2\rangle \not = 0, then c = 0. If \langle u1, v2\rangle = 0 and the condition (4.26) holds,
we denote by s1,2(\lambda ) the eigenvalue curves passing through (0,1), as in The-
orem 4.6. Then

c=
1

2
(s\sharp 1(0) - s\sharp 2(0)).(4.55)

We remark that formula (4.55) is simply the sum of the formulas for c in cases
(i) and (ii) of the simple case, identifying s with s1 if 0 \in Spec(L+)\setminus Spec(L - ) and s
with s2 if 0\in Spec(L - )\setminus Spec(L+). It is perhaps interesting to note that in (4.55), we
have c\in \{  - 1,0,1\} , so that c can never be +2 or  - 2 despite its being the contribution
to the Maslov index from a two-dimensional crossing in this case.

Proof. We use a homotopy argument, deforming the top left corner of the Maslov
box as shown in Figure 6.

We first consider the case dimker(N) = 1. If s\sharp (0) > 0, then the deformed path
does not intersect \scrD , so we have c= 0. On the other hand, if s\sharp (0)< 0, there will be
a crossing at some point (\lambda \ast , s\ast ) = (\lambda \ast , s(\lambda \ast )), with 0< \lambda \ast \ll 1. This segment of the
deformed path is parameterized by increasing s, so the relevant crossing form is

ms\ast (q) =
1

s\ast 

\bigl\langle \bigl( 
\partial sBs\ast  - 2s\ast \lambda \ast 

\bigr) 
us\ast , Sus\ast 

\bigr\rangle 
,(4.56)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5035

(a) (b) (c)

(d) (e) (f)

Fig. 6. Neighborhood of the crossing (\lambda 0, s0) = (0,1) featuring the eigenvalue curves (parabolas
in blue) and the portion of the Maslov box passing through the corner (0,1) (in black) when (a)
dimker(N) = 1 and s\sharp (0) > 0, (b) dimker(N) = 1 and s\sharp (0) < 0, and (c) dimker(N) = 2 and

s\sharp 1(0)s
\sharp 
2(0) < 0. The path (dashed) to which we homotope the top left corner of the Maslov box in

(a), (b), and (c) is given in (d), (e), and (f), respectively.

where q = Trs\ast us\ast . From Theorem 4.5, we obtain a continuous family of eigenfunc-
tions with us(\lambda ) \rightarrow u as \lambda \rightarrow 0, so we can use Lemma 3.9 to compute

lim
\lambda \rightarrow 0

1

s(\lambda )

\bigl\langle \bigl( 
\partial sBs(\lambda )  - 2s(\lambda )\lambda 

\bigr) 
us(\lambda ), Sus(\lambda )

\bigr\rangle 
=
\bigl\langle 
\partial sB1u1, Su1

\bigr\rangle 
= \ell 
\Bigl[ 
 - (u\prime 1(\ell ))

2
+ (v\prime 1(\ell ))

2
\Bigr] 
.

By continuity, this has the same sign as the crossing form (4.56) at (\lambda \ast , s\ast ), so we
conclude that c= - 1 if 0\in Spec(L+) and c= 1 if 0\in Spec(L - ).

The argument for the case dimker(N) = 2 is similar. Depending on the values
of s\sharp 1(0) and s\sharp 2(0), there will be zero, one, or two crossings that contribute to the
index c. These are necessarily simple crossings since s1(\lambda ) \not = s2(\lambda ) for \lambda \not = 0 (see
Remark 4.10). Moreover, if either s\sharp 1(0) or s

\sharp 
2(0) is positive, it does not contribute to

the index.
Suppose s\sharp 1(0)< 0, so that there is a crossing at some point (\lambda \ast , s\ast ) = (\lambda \ast , s1(\lambda \ast )).

As in the first case, we need to compute the crossing form

ms\ast (q) =
1

s\ast 

\bigl\langle \bigl( 
\partial sBs\ast  - 2s\ast \lambda \ast 

\bigr) 
us\ast , Sus\ast 

\bigr\rangle 
.

We use Theorem 4.6 to get

lim
\lambda \rightarrow 0

1

s1(\lambda )

\bigl\langle \bigl( 
\partial sBs1(\lambda )  - 2s1(\lambda )\lambda 

\bigr) 
us1(\lambda ), Sus1(\lambda )

\bigr\rangle 
=
\bigl\langle 
\partial sB1u

(1)
1 , Su

(1)
1

\bigr\rangle 
= - \ell 

\Bigl( 
\partial xu

(1)
1 (\ell )

\Bigr) 2
< 0
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5036 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

and hence conclude that the crossing form at (\lambda \ast , s\ast ) is negative. Similarly, if
s\sharp 2(0)< 0, there is a crossing at some point (\lambda \ast , s2(\lambda \ast )) whose crossing form is positive
because

lim
\lambda \rightarrow 0

1

s2(\lambda )

\bigl\langle \bigl( 
\partial sBs2(\lambda ) - 2s2(\lambda )\lambda 

\bigr) 
us2(\lambda ), Sus2(\lambda )

\bigr\rangle 
=
\bigl\langle 
\partial sB1u

(2)
1 , Su

(2)
1

\bigr\rangle 
=\ell 
\Bigl( 
\partial xv

(2)
1 (\ell )

\Bigr) 2
>0.

In summary, the curve s1 contributes 0 to c if s\sharp 1(0)> 0 and  - 1 if s\sharp 1(0)< 0, whereas
s2 contributes 0 if s\sharp 2(0)> 0 and 1 if s\sharp 2(0)< 0. Adding these contributions completes
the proof.

We conclude this section by relating the concavity of the eigenvalue curves to the
second-order Maslov crossing form.

Proposition 4.15. Assume the first-order crossing form m\lambda 0
is identically zero

at the crossing (\lambda 0, s0) = (0,1). If the second-order crossing form m
(2)
\lambda 0

given in
Lemma 3.16 is nondegenerate, then

Mas(\Lambda (\lambda ,1),\scrD ;\lambda \in [0, \varepsilon ]) = - n - (m(2)
\lambda 0

).(4.57)

Proof. We will prove this statement in the cases relevant to the current paper,
that is, when dimker(N) = 1,2. Recall that nondegeneracy of m

(2)
\lambda 0

implies that
\"s(0) \not = 0 if dimker(N) = 1 and \"s1,2(0) \not = 0 if dimker(N) = 2. Therefore, (4.53) and
(4.54) hold.

For the right-hand side of (4.57), if dimker(N) = 1, Theorem 2.9 shows that the
sign of \"s(0) determines the sign of the VK-type integrals in (2.14) and (2.15) and

therefore the sign of m
(2)
\lambda 0

given in (3.38). In particular, we observe the following:

(i) If 0\in Spec(L+)\setminus Spec(L - ), then n - (m
(2)
\lambda 0

) =

\Biggl\{ 
0 \"s(0)> 0,

1 \"s(0)< 0.

(ii) If 0\in Spec(L - )\setminus Spec(L+), then n - (m
(2)
\lambda 0

) =

\Biggl\{ 
1 \"s(0)> 0,

0 \"s(0)< 0.

If dimker(N) = 2, consider the matrix \frakM 
(2)
\lambda 0

of the second-order form m
(2)
\lambda 0

, which
is given in (3.39). Using (4.28), we see the following:

(iii) If 0\in Spec(L+)\cap Spec(L - ), then n - (m
(2)
\lambda 0

) =

\left\{     
0 \"s1(0)> 0, \"s2(0)< 0,

1 \"s1(0)\"s2(0)> 0,

2 \"s1(0)< 0, \"s2(0)> 0.
For the left-hand side of (4.57), let us define a :=Mas(\Lambda (s,0),\scrD ;s\in [1 - \varepsilon ,1]) and

b := Mas(\Lambda (\lambda ,1),\scrD ;\lambda \in [0, \varepsilon ]) and notice from (3.35) that c = a+ b. From the proof
of Lemma 3.22, we know that the crossing form at (0,1) has n+(ms0) = dimker(L - ),
so Definition 3.1 gives a=dimker(L - ). Therefore,

b= c - dimker(L - ).(4.58)

Using the values of c computed in in Theorem 4.14, we confirm that b =  - n - (m(2)
\lambda 0

)
in cases (i), (ii), and (iii) described above, as claimed.

5. Applications. In this section, we give some applications of the theory of sec-
tions 3 and 4. We begin with the proof of Corollaries 2.7 and 2.8 and Theorem 2.11,
which are consequences of Theorem 2.2 and Theorem 4.14. We then give formulas for
the concavity of the NLS spectral curves and recover the classical VK criterion for a
particular one-parameter family of stationary states. Finally, we relate our results to
the Krein index theory.
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5037

5.1. The Jones--Grillakis instability theorem. We first prove the compact
interval analogue of the Jones--Grillakis instability theorem, Corollary 2.7, and its
consequence Corollary 2.8.

Proof of Corollary 2.7. From Theorem 2.2, we have n+(N) \geq 1 provided
P  - Q \not = c. The result now follows from Theorem 4.14, which guarantees c \in \{  - 1,0\} 
when 0\in Spec(L+) \setminus Spec(L - ) and c\in \{ 0,1\} when 0\in Spec(L - ) \setminus Spec(L+).

Proof of Corollary 2.8. We claim that Q= 0, P \geq 1 and 0\in Spec(L+) \setminus Spec(L - )
under the assumptions of the corollary. Once this has been shown, the result follows
immediately from Corollary 2.7.

Since \phi is nonconstant and satisfies Neumann boundary conditions, we have 0 \in 
Spec(L+), with eigenfunction \phi \prime . Moreover, each stationary point of \phi in the interior of
its domain corresponds to a conjugate point for L+: If \phi 

\prime (x0) = 0 for some x0 \in (0, \ell ),
then 0 \in Spec(Ls0

+ ) for s0 = x0/\ell , with eigenfunction \phi (s0x). It then follows from
Lemma 3.19 that P \geq 1.

We next consider Ls
 - for s \in (0,1]. Under Hypothesis 2.5, the general solution to

the differential equation Ls
 - w= 0 is

w(x) = c1\phi (sx) + c2\phi (sx)

\int x

0

1

\phi (st)2
dt,(5.1)

where the second fundamental solution was obtained via the method of reduction of
order and is well-defined since \phi (x) \not = 0 for all x \in [0, \ell ] implies 1/\phi 2 is integrable. It
follows that

\phi (sx)

\int x

0

1

\phi (st)2
dt\geq 0(5.2)

for all x \in [0, \ell ], with equality when x = 0. Dirichlet boundary conditions on w then
dictate that c1 = c2 = 0, and we conclude that 0 /\in Spec(Ls

 - ) for all s \in (0,1]. In
particular, 0 /\in Spec(L - ), and Lemma 3.19 implies Q= 0.

5.2. VK-type (in)stability criteria. For the proof Theorem 2.11, we will need
two preliminary results. The first of these mimics [32, Corollary 1.1] and follows
from the equivalent self-adjoint formulation of the eigenvalue problem (3.44); see
Lemma 3.21.

Lemma 5.1. If Q= 0 or P = 0, then Spec(Ns)\subset \BbbR \cup i\BbbR for all s\in (0,1].

Proof. Fix s \in (0,1]. If Q = 0, then Ls
 - is nonnegative by Lemma 3.20. By

Lemma 3.21, the eigenvalue problem (3.44) is equivalent to (3.45). The operator\bigl( 
Ls
 - | Xc

\bigr) 1/2
\Pi Ls

+\Pi 
\bigl( 
Ls
 - | Xc

\bigr) 1/2
acting in Xc is self-adjoint, and therefore s4\lambda 2 \in \BbbR .

Then s\in \BbbR implies \lambda \in \BbbR \cup i\BbbR . The case P = 0 follows similarly.

We next prove that the Maslov index is monotone in \lambda if either Q= 0 or P = 0.

Lemma 5.2. If Q = 0, then the crossing form m\lambda 0 is strictly positive for any
crossing with \lambda 0 > 0 and s0 = 1, while if P = 0, then m\lambda 0

is strictly negative at all
such crossings. Consequently,

n+(N) =

\Biggl\{ 
Mas(\Lambda ,\scrD ; \Gamma \varepsilon 

3) if Q= 0,

 - Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3) if P = 0.

(5.3)

(Recall that Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3) =Mas(\Lambda (\lambda ,1),\scrD ;\lambda \in [\varepsilon ,\lambda \infty ]).)
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5038 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Proof. Assume \lambda 0 > 0 with eigenfunction u1 = (u1, v1)
\top , so that (3.44) holds

with \lambda = \lambda 0 and s= 1. Note that both u1 and v1 are necessarily nontrivial due to the
coupling of the eigenvalue equations for \lambda \not = 0. If Q = 0, we apply \langle \cdot , v1\rangle to the first
equation of (3.44) to obtain

\langle L - v1, v1\rangle = - \lambda 0\langle u1, v1\rangle =
\lambda 0
2
m\lambda 0

(q), q=Tru1,(5.4)

using formula (3.30). Now 0 \not = u1 \in ran(L - ) implies v1 has a component lying in
ker(L - )

\bot . Since Q = 0, it follows that \langle L - v1, v1\rangle > 0. Thus, m\lambda 0
(q) > 0 at all

crossings along \Gamma \varepsilon 
3 if Q = 0. If P = 0, one applies \langle \cdot , u1\rangle to the second equation of

(3.44) at (\lambda 0,1), and a similar argument yields that \langle L+u1, u1\rangle =  - \lambda 0

2 m\lambda 0(q) > 0.
Thus, m\lambda 0

(q)< 0 at all crossings on \Gamma \varepsilon 
3 if P = 0.

Proof of Theorem 2.11. Consider the eigenvalue curve s= s(\lambda ) through the point
(\lambda , s) = (0,1), for which \.s(0) = 0 as stated in Theorem 2.9.

We start with the case P = 1,Q = 0 and 0 \in Spec(L - )\setminus Spec(L+). If \"s(0) > 0,
then by Theorem 4.14, we have c= 0. Since Q= 0, by Lemma 5.2 and (3.56), we have
n+(N) = P  - c = 1. On the other hand, if \"s(0) < 0, then by Theorem 4.14, we have
c= 1, and by the same argument, n+(N) = P  - c= 0. It then follows from Lemma 5.1
that Spec(N)\subset i\BbbR .

The case where Q= 1, P = 0 and 0 \in Spec(L+)\setminus Spec(L - ) is similar. If \"s(0)> 0,
then c= 0 by Theorem 4.14, and Lemma 5.2 and (3.56) imply n+(N) =Q+ c= 1. If
\"s(0)< 0, then c= - 1 by Theorem 4.14; hence, n+(N) = 0. By Lemma 5.1, we deduce
that Spec(N)\subset i\BbbR .

5.3. Concavity computations for NLS. Working under Hypothesis 2.5, in
this subsection, we compute the sign of \"s(0) via the VK-type integrals given in The-
orem 2.9. In what follows, s(\lambda ) is the eigenvalue curve through (\lambda 0, s0) = (0,1).

5.3.1. The \bfitL + integral. We first consider the case when L+ has a nontrivial
kernel. The following result allows us to compute \"s(0) when \phi satisfies Neumann
boundary conditions.

Proposition 5.3. Assume Hypothesis 2.5 and that 0\in Spec(L+)\setminus Spec(L - ) with
eigenfunction \phi \prime . If \{ p, q\} is a fundamental set of solutions to the differential equation
L - v= 0 initialized at the identity, then q(\ell ) \not = 0 and

sign \"s(0) = sign

\Biggl[ \Biggl( \int \ell 

0

p2dx

\Biggr) 
 - p(\ell )

q(\ell )
\ell 2

\Biggr] 
.(5.5)

Proof. First, note that ker(N) = Span\{ (\phi \prime ,0)\top \} . Now by case (2) of Theorem 2.9,
we have

sign \"s(0) = sign

\int \ell 

0

\widehat v \phi \prime dx,
where \widehat v is the unique solution to the inhomogeneous boundary value problem

L - \widehat v= \phi \prime , \widehat v(0) = \widehat v(\ell ) = 0.(5.6)

Let \{ p, q\} be a fundamental set of solutions to the homogeneous equation L - \widehat v = 0
such that \biggl( 

p(0) q(0)
p\prime (0) q\prime (0)

\biggr) 
=

\biggl( 
1 0
0 1

\biggr) 
.(5.7)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5039

Since \phi (0) \not = 0, the first solution is given by p(x) = \phi (x)/\phi (0). We have
p\prime (\ell ) = 0, p(\ell ) \not = 0, while q(\ell ) \not = 0 since q(0) = 0 and 0 /\in Spec(L - ). By Abel's
identity,

p(x)q\prime (x) - q(x)p\prime (x) = 1 \forall x\in [0, \ell ].(5.8)

The general solution to the differential equation L - \widehat v= \phi \prime is thus

\widehat v(x) =Ap(x) +Bq(x) - x\phi (x)

2
,(5.9)

where it is easily verified that  - x\phi (x)/2 is a particular solution. Imposing the bound-
ary conditions on \widehat v to determine the constants A and B, we find that the unique
solution to (5.6) is

\widehat v(x) = 1

2

\biggl( 
\ell \phi (\ell )

q(\ell )
q(x) - x\phi (x)

\biggr) 
.

It remains to compute sign
\int \ell 

0
\widehat v\phi \prime dx. Since \phi (x) = p(x)\phi (0), we have\int \ell 

0

\widehat v(x)\phi \prime (x)dx= \int \ell 

0

1

2

\biggl( 
\ell \phi (\ell )

q(\ell )
q(x) - x\phi (x)

\biggr) 
p\prime (x)\phi (0)dx

=
\phi (0)2\ell p(\ell )

2q(\ell )

\int \ell 

0

q(x)p\prime (x)dx - \phi (0)2

2

\int \ell 

0

xp(x)p\prime (x)dx.

For the second integral, we obtain\int \ell 

0

xp(x)p\prime (x)dx=
1

2

\Biggl( 
\ell p(\ell )2  - 

\int \ell 

0

p(x)2dx

\Biggr) 
,

while for the first, we integrate by parts and appeal to (5.8) to arrive at\int \ell 

0

q(x)p\prime (x)dx=
1

2
(q(\ell )p(\ell ) - \ell ) .

Therefore,\int \ell 

0

\widehat v(x)\phi \prime (x)dx= \phi (0)2\ell p(\ell )

4q(\ell )
(q(\ell )p(\ell ) - \ell ) - \phi (0)2

4

\Biggl( 
\ell p(\ell )2  - 

\int \ell 

0

p(x)2dx

\Biggr) 

=
\phi (0)2

4

\Biggl( \int \ell 

0

p(x)2dx - p(\ell )

q(\ell )
\ell 2

\Biggr) 
,

and (5.5) follows.

Remark 5.4. If \phi is nonvanishing, the second solution q can be determined using
reduction of order; see (5.10) and also the proof of Corollary 2.8. When \phi has zeros,
the second solution is given by the Rofe--Beketov formula [72, Lemma 2]; however,
the resulting expression is significantly more complicated and does not appear to be
useful for our analysis.

The following result serves as an application of Proposition 5.3 in the case when
the stationary state is either strictly positive or strictly negative over its domain.

Corollary 5.5. Under the assumptions of Proposition 5.3, for nonconstant so-
lutions to (2.9) satisfying \phi (x) \not = 0 for all x\in [0, \ell ], we have \"s(0)> 0.
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5040 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Proof. In the case when \phi has no zeros on the interval [0, \ell ], the method of
reduction of order allows us to write

q(x) = p(x)

\int x

0

1

p(t)2
dt,(5.10)

where the nonvanishing of p ensures 1/p2 is integrable. This gives

\int \ell 

0

p(x)2dx - p(\ell )

q(\ell )
\ell 2 =

\Bigl( \int \ell 

0
1
p2 dx

\Bigr) \Bigl( \int \ell 

0
p2dx

\Bigr) 
 - \ell 2\Bigl( \int \ell 

0
1
p2 dx

\Bigr) ,

and so

sign \"s(0) = sign

\Biggl[ \Biggl( \int \ell 

0

1

p2
dx

\Biggr) \Biggl( \int \ell 

0

p2dx

\Biggr) 
 - \ell 2

\Biggr] 
.(5.11)

By virtue of the Cauchy--Schwarz inequality,

\ell =

\int \ell 

0

p(x)
1

p(x)
dx\leq 

\sqrt{} \int \ell 

0

p2(x)dx

\sqrt{} \int \ell 

0

1

p(x)2
dx,

where we have equality only when p and 1/p are linearly dependent, that is, when \phi 
is constant. Since we have assumed a nonconstant solution, the inequality is strict,
and we conclude that (5.11) is positive.

Remark 5.6. The statement of Corollary 5.5 may also be proven using Re-
mark 2.10 since L - > 0 for stationary states that are nonvanishing over [0, \ell ] (as
was shown in the proof of Corollary 2.8). However, the proof given above is a nice
illustration of Proposition 5.3, a more general result that holds for any nonconstant \phi .

5.3.2. The \bfitL  - integral: Recovering classical VK. We now consider the
case when L - has a nontrivial kernel (spanned by \phi ). We show that the associated
VK-type integral in (2.14) of Theorem 2.9 recovers a compact interval analogue of the
classical VK integral expression

\partial 

\partial \beta 

\int \infty 

 - \infty 
\phi 2 dx(5.12)

associated with a stationary state \phi \in L2(\BbbR ) solving (2.9) (see [66, Theorem 4.4, page
215]). The key observation is that \partial \beta \phi (\cdot ;\beta ) solves the differential equation L+\widehat u= \phi 
associated with case (1) of Theorem 2.9, and this naturally leads to the expressions
(5.14) and (5.15), which clearly resemble (5.12). This is not true for the equation
L - \widehat v= \phi \prime associated with case (2) of Theorem 2.9, for which a recovery of a compact
interval analogue of (5.12) is thus not possible. In what follows, \phi \prime (x;\beta ) refers to
d\phi 
dx (x;\beta ), while the \beta derivative will be denoted by \partial \beta .

Proposition 5.7. Assume Hypothesis 2.5, and let \phi 0 be a solution to (2.9) with
parameter \beta 0 that satisfies \phi 0(0) = \phi 0(\ell ) = 0. There exists a unique one-parameter
family of solutions \beta \mapsto \rightarrow \^\phi (\cdot ;\beta ) to (2.9), defined in a neighborhood of \beta 0, such that

\^\phi (0;\beta ) = \^\phi (\ell ;\beta ) = 0(5.13)
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HAMILTONIAN SPECTRAL FLOWS AND THE MASLOV INDEX 5041

for all \beta near \beta 0 and \^\phi (\cdot ;\beta 0) = \phi 0. In terms of this family, the VK-type integral in
(2.14) is \int \ell 

0

\widehat uv dx= 1

2

\partial 

\partial \beta 

\bigm| \bigm| \bigm| \bigm| 
\beta =\beta 0

\int \ell 

0

\^\phi (x;\beta )2 dx.(5.14)

More generally, if \beta \mapsto \rightarrow \phi (\cdot ;\beta ) is any C1 family of solutions to (2.9) satisfying \phi (\cdot ;\beta 0) =
\phi 0, then the integral in (2.14) can be written as

\int \ell 

0

\widehat uv dx= 1

2

\partial 

\partial \beta 

\bigm| \bigm| \bigm| \bigm| 
\beta =\beta 0

\int \ell 

0

\phi (x;\beta )2 dx

+
\bigl( 
( - 1)Q\partial \beta \phi (0;\beta 0) + \partial \beta \phi (\ell ;\beta 0)

\bigr) \biggl( \partial \beta \phi (0;\beta 0) + ( - 1)Q\partial \beta \phi (\ell ;\beta 0)

q(\ell )
+ \partial \beta \phi 

\prime (\ell ;\beta 0)

\biggr) 
.

(5.15)

Furthermore, if P = 1, Q = 0, and (5.14) or (5.15) is positive (resp., negative), then
the standing wave \widehat \psi (x, t) = ei\beta 0t\phi 0(x) is spectrally unstable (resp., spectrally stable).

Proof. The existence of \phi 0 implies that the associated operators

L - = - \partial xx  - f(\phi 20) - \beta 0,

L+ = - \partial xx  - 2f \prime (\phi 20)\phi 
2
0  - f(\phi 20) - \beta 0

have \phi 0 \in ker(L - ) and hence 0\in Spec(L - )\setminus Spec(L+). Consider the function

F :
\bigl( 
H2(0, \ell )\cap H1

0 (0, \ell )
\bigr) 
\times \BbbR  - \rightarrow L2(0, \ell ), F (\phi ,\beta ) = \phi \prime \prime + f(\phi 2)\phi + \beta \phi ,(5.16)

in terms of which (2.9) and (5.13) become F (\phi ,\beta ) = 0. It can be shown that F is
continuously Fr\'echet differentiable (see [14, section 2.2]), with

DF (\phi 0, \beta 0)(u,\gamma ) = \gamma \phi 0  - L+u.(5.17)

Since 0 /\in Spec(L+), this implies DF (\phi 0, \beta 0)(\cdot ,0) = - L+ is invertible, so the implicit
function theorem guarantees the existence of a C1 function

(\beta 0  - \epsilon , \beta 0 + \epsilon )\rightarrow H2(0, \ell )\cap H1
0 (0, \ell ), \beta \mapsto \rightarrow \^\phi (\cdot ;\beta ),(5.18)

such that F (\^\phi (\cdot ;\beta ), \beta ) = 0 for all | \beta  - \beta 0| < \epsilon .
Turning to the integral in (2.14), where now v= \phi 0, we need to solve

L+\widehat u= \phi 0, \widehat u(0) = \widehat u(\ell ) = 0.(5.19)

Using the family constructed above, which is C1 in \beta , we differentiate (2.9) with
respect to \beta and evaluate at \beta 0 to obtain

L+\partial \beta \^\phi (x;\beta 0) = \phi 0(x).(5.20)

Now differentiating (5.13) (which holds for all \beta near \beta 0) with respect to \beta and
evaluating at \beta 0 yields

\partial \beta \^\phi (0;\beta 0) = \partial \beta \^\phi (\ell ;\beta 0) = 0.(5.21)

Therefore, \widehat u(x) = \partial \beta \^\phi (x;\beta 0) is the unique solution to (5.19), and substituting this
into the VK-type integral in (2.14) with v= \phi 0 yields (5.14).
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5042 G. COX, M. CURRAN, Y. LATUSHKIN, AND R. MARANGELL

Now let \beta \mapsto \rightarrow \phi (\cdot ;\beta ) be an arbitrary family of solutions to (2.9) (again for \beta close
to \beta 0) such that \phi (x;\beta 0) = \phi 0(x). To solve (5.19), note that (5.20) still holds for the
family \phi (\cdot ;\beta 0), and thus the general solution to L+\widehat u= \phi 0 is

\widehat u(x) =Ap(x) +Bq(x) + \partial \beta \phi (x;\beta 0),(5.22)

where \{ p, q\} is now a fundamental set of solutions to the homogeneous equation
L+\widehat u = 0 satisfying (5.7). Since \phi \prime (0;\beta 0) \not = 0, we may set p(x) = \phi \prime (x;\beta 0)/\phi 

\prime (0;\beta 0).
A brief look at the Hamiltonian for (2.9) indicates that intersections of any fixed
orbit with \phi = 0 are symmetric about \phi \prime = 0; from this, along with the Sturm--
Liouville theory applied to \phi (\cdot ;\beta 0) = \phi 0 \in ker(L - ), we deduce that we necessarily
have \phi \prime (\ell ;\beta 0) = ( - 1)Q+1\phi \prime (0;\beta 0) and therefore that p(\ell ) = ( - 1)Q+1. Evaluating (2.9)
at x= \ell , we also find that \phi \prime \prime (\ell ;\beta 0) = 0; hence, p\prime (\ell ) = 0. Thus,\biggl( 

p(\ell ) q(\ell )
p\prime (\ell ) q\prime (\ell )

\biggr) 
=

\biggl( 
( - 1)Q+1 \ast 

0 ( - 1)Q+1

\biggr) 
,(5.23)

where q\prime (\ell ) = ( - 1)Q+1 because (5.23) must have unit determinant by virtue of Abel's
identity (see (5.8)). In addition, q(\ell ) \not = 0 since 0 /\in Spec(L+) and q(0) = 0.

Imposing the boundary conditions \widehat u(0) = \widehat u(\ell ) = 0 and using (5.23) allows us to
determine the constants A and B. We find that the unique solution to (5.19) is

\widehat u(x) = - \partial \beta \phi (0;\beta 0)p(x) +
( - 1)Q+1\partial \beta \phi (0;\beta 0) - \partial \beta \phi (\ell ;\beta 0)

q(\ell )
q(x) + \partial \beta \phi (x;\beta 0).(5.24)

Multiplying (5.24) by \phi 0 and integrating the first two terms by parts yields (5.15).
The statement regarding spectral stability follows immediately from Theorem 2.11.

Remark 5.8. The one-parameter family constructed abstractly in (5.18) via the
implicit function theorem leads to the simplest expression for the VK-type integral
on a compact interval. However, this is only useful in practice if one can determine
this family explicitly, which may not be possible. For this reason, we have included
formula (5.15), which holds for any one-parameter family of solutions to the standing
wave equation that starts at \phi 0.

Remark 5.9. When the spatial domain is the entire real line, it is known that
for power-law nonlinearities of the form f(\phi 2) = \phi 2p, p > 0, strictly positive localized
stationary states (for which \beta < 0, P = 1, and Q= 0) are spectrally stable1 for p\leq 2
and spectrally unstable for p > 2 (see [66, Corollary 4.3, page 216]). The result follows
from a change in sign of the VK integral (5.12) (see [66, Theorem 4.4, page 215]).
Moving to the compact interval, we investigated whether an analogous phenomenon
holds for stationary states \phi 0 that likewise satisfy \beta < 0, P = 1, and Q= 0. We found
that our numerical experiments were in line with the result on the real line when
p= 1,2, for which we found no spectrally unstable waves. Interestingly, however, for
p \in (2, p0), p0 \approx 5, we observed the existence of a \beta -dependent threshold value of the
interval length \ell = \ell \ast separating spectral stability (\ell < \ell \ast ) and spectral instability
(\ell > \ell \ast ). This agrees with the instability result on the real line (for these values of
p) in the sense that we recover it (numerically) on taking \ell \rightarrow +\infty . Theorem 2.11
indicates that this change in stability at \ell = \ell \ast should be reflected in a change in
concavity of the eigenvalue curve passing through (\lambda , s) = (0,1), and indeed we observe

1The critical case p= 2 is spectrally stable but nonlinearly unstable due to algebraically growing
solutions of the linearized system; see [66, Remark 4.3, page 217].
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Fig. 7. Eigenvalue curves s2\lambda \in Spec(Ns)\cap \BbbR under Hypothesis 2.5(i) for T -periodic stationary
states \phi 0 satisfying \phi 0(0) = \phi 0(\ell ) = 0, with nonlinearity f(\phi 2) = \phi 6, \beta =  - 2, and domain length
\ell = T/2 indicated. These \phi 0 correspond to orbits located outside the homoclinic orbit and in the right
half plane of Figure 1(a). (Note the phase plane for (2.9) with f(\phi 2) = \phi 6 is qualitatively similar to
Figure 1(a).) Eigenvalues of N are given by intersections with the dashed line at s= 1. At \ell = \ell \ast ,
we computed \"s(0)\approx 0 to four decimal places.

this numerically. Figure 7 displays the real eigenvalue curves for three T -periodic
stationary states \phi 0 satisfying the Dirichlet boundary conditions \phi 0(0) = \phi 0(\ell ) = 0,
\ell = T/2, for differing \ell . The sign of \"s(0) at (\lambda , s) = (0,1) switches from negative to
positive as \ell increases through \ell = \ell \ast . By Theorem 2.11, the underlying standing wave
becomes unstable, which is confirmed by the emergence of a positive real eigenvalue
in Figure 7(c).

Remark 5.10. In the previous example, note that at the critical value \ell = \ell \ast ,
we have dimker(N) = 1 and \"s(0) = 0. This corresponds to the nongeneric case

in Remark 4.13, where s\sharp (0) \not = sign \"s(0), and the second-order crossing form m
(2)
\lambda 0

in Lemma 3.16 is degenerate. A brief calculation using the Fredholm alternative
indicates that the algebraic multiplicity of \lambda = 0\in Spec(N) is at least four.

5.4. Connections with existing eigenvalue counts. We now give a compar-
ison of our lower bound (2.7) with the one given in [51, equation (3.9)] (see (5.33)
below); see also [53, Theorem 7.1.16]. We will show that the contribution to the
Maslov index from the nonregular crossing (see Definition 3.14) is equal to the differ-
ence in negative indices of matrices arising in constrained eigenvalue counts for L\pm .
We refer the reader to [20] for an alternate approach to the constrained eigenvalue
problem using the Maslov index. Throughout this section, \{ u1, . . .un\} is a basis for
ker(N) with n\leq 2. We assume that the crossing (\lambda 0, s0) = (0,1) is nonregular in the
\lambda direction, with first-order crossing form m\lambda 0

in (3.30) that is identically zero. We

further assume that the second-order crossing form m
(2)
\lambda 0

in (3.36) is nondegenerate.
The notation n - (A) refers to the number of negative eigenvalues of the self-adjoint
operator or symmetric matrix A. Recall then that P = n - (L+) and Q= n - (L - ).

Define the diagonal, self-adjoint operator

L :=

\biggl( 
L+ 0
0 L - 

\biggr) 
, dom(L) := dom(N),(5.25)

so that N = JL. The eigenvalue problem (2.1) may then be written as

JLu= \lambda u, u(0) = u(\ell ) = 0.(5.26)
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We denote the generalized eigenvectors of N = JL by \widehat vi, i.e.,

JL\widehat vi = ui, JLui = 0, i= 1, . . . , n.(5.27)

As in Remark 3.17, the Fredholm alternative and the fact that m\lambda 0 = 0 guarantee the
existence of solutions to the first n equations in (5.27), so the algebraic multiplicity

of \lambda = 0 is at least 2n. Nondegeneracy of \frakM 
(2)
\lambda 0

then implies the algebraic multiplicity
is exactly 2n.

The matrix D in [51, equation (3.1)] is the n\times n matrix with entries

Dij = \langle \widehat vi,L\widehat vj\rangle = - \langle \widehat vi, Juj\rangle ,(5.28)

where the second equality follows since JL\widehat vi = ui implies L\widehat vi = J - 1ui =  - Jui. It
is used to determine the number of negative eigenvalues of L restricted to ranJL =
[ker(JL)\ast ]

\bot 
(see [51, Theorem 3.1]). Denoting dimkerL\pm = z\pm \in \{ 0,1\} so that

z++ z - = n, notice that the off-diagonal structure of JL implies that its eigenvectors
and generalized eigenvectors may be written as

ui =

\Biggl\{ 
(ui,0)

\top ,

(0, vi)
\top ,

\widehat vi =

\Biggl\{ 
(0,\widehat vi)\top , i= 1, . . . , z+,

(\widehat ui,0)\top , i= z+ + 1, . . . , n,
(5.29)

where, by (5.27), the functions ui, vi, \widehat ui,\widehat vi satisfy
 - L - \widehat vi = ui, L+ui = 0, i= 1, . . . , z+,

L+\widehat ui = vi, L - vi = 0, i= z+ + 1, . . . , n.

The matrix D thus has the block form (as in [51, section 3.3])

D=

\biggl( 
D - 0
0 D+

\biggr) 
,

where

[D - ]ij = \langle \widehat vi,L - \widehat vj\rangle = - \langle \widehat vi, uj\rangle , i, j = 1, . . . , z+,

[D+]ij = \langle \widehat uz++i,L+\widehat uz++j\rangle = \langle \widehat uz++i, vz++j\rangle , i, j = 1, . . . , z - .
(5.30)

The matrices D+ and D - are themselves used in constrained eigenvalue counts.
Namely, if D+ and D - are nondegenerate, then

n - (\Pi L+\Pi )= P  - n - (D+), n - (\Pi L - \Pi )=Q - n - (D - ),(5.31)

where \Pi is the orthogonal projection onto [ker(L - )\oplus ker(L+)]
\bot (see [51, Lemma 3.1]).

Now noticing that the entries of \frakM 
(2)
\lambda 0

are given by

\Bigl[ 
\frakM 

(2)
\lambda 0

\Bigr] 
ij
= - 2\langle \widehat vi, Suj\rangle =

\left\{     
 - 2\langle \widehat vi, uj\rangle , i, j = 1, . . . , z+,

 - 2\langle \widehat ui, vj\rangle , i, j = z+ + 1, . . . , n,

0 elsewhere,

because of (3.37) and (5.29), we are led to the observation that

\frakM 
(2)
\lambda 0

= 2

\biggl( 
D - 0
0  - D+

\biggr) 
.(5.32)

Clearly, \frakM 
(2)
\lambda 0

is nonsingular if and only if D+ and D - are nonsingular. Under this
condition, in the notation of the current paper, equation (3.9) from [51] reads

n+(N)\geq | n - (\Pi L+\Pi ) - n - (\Pi L - \Pi )| = | P  - Q - n - (D+) + n - (D - )| .(5.33)

Comparing (5.33) with (2.7), we might naively expect that c = n - (D+)  - n - (D - ).
We confirm this in the following proposition.
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Proposition 5.11. If n\leq 2 and \frakM 
(2)
\lambda 0

is nondegenerate, then

c= n - (D+) - n - (D - ).(5.34)

That is, the contribution to the Maslov index from the crossing (\lambda , s) = (0,1) is
precisely the difference of the ``correction factors"" counting the mismatch in negative
dimensions between L\pm and their constrained counterparts (see (5.31)).

Proof. Recall the definition of b given in the proof of Proposition 4.15. By the
same proposition, if n\leq 2, we have

b= - n - (\frakM (2)
\lambda 0

) = - 
\bigl( 
n - (D - ) + n - ( - D+)

\bigr) 
,(5.35)

where the last equality follows from (5.32). Notice that D+ is a z - \times z - matrix. Since
D+ is nondegenerate, it follows that

n - ( - D+) = z -  - n - (D+).(5.36)

Thus, by (5.35),

b= - n - (D - ) - (dimkerL -  - n - (D+)),(5.37)

and using (4.58) and rearranging gives (5.34).

A direct relationship between the matrices D\pm and the concavities of the eigen-
value curves follows from Theorem 2.9, Lemma 3.16, Theorem 4.6, and (5.32). In
particular, it is straightforward to show that the following:

(i) If 0\in Spec(L - )\setminus Spec(L+), then z+ = 0 and

sign m
(2)
\lambda 0

(q) = - sign D+ = - sign \"s(0).(5.38a)

(ii) If 0\in Spec(L+)\setminus Spec(L - ), then z - = 0 and

sign m
(2)
\lambda 0

(q) = sign D - = sign \"s(0).(5.38b)

(iii) If 0\in Spec(L - )\cap Spec(L+), then z - = z+ = 1 and

sign \"s1(0) = sign D - , sign \"s2(0) = sign D+(5.38c)

(provided (4.26) holds so that sign \"s1(0) =  - sign \langle \widehat v1, u1\rangle and sign \"s2(0) =
sign \langle \widehat u2, v2\rangle ).

We finish the present work with an application of our results to a formula relating
the number of eigenvalues of JL that are either unstable or susceptible to instability-
inducing bifurcations, to the negative index of the constrained operator L| Xc

, Xc :=
ran(JL), known as the Hamiltonian--Krein index theorem (see [53, Theorem 7.1.5] or
[60, Theorem 2.3]). For the eigenvalue problem (2.1)--(2.3), because L is diagonal and
the symplectic matrix J is invertible, this formula reduces to that in [51, Theorem
3.3], which in the notation of the current paper reads

kr + 2kc + 2k - i = P +Q - n - (D - ) - n - (D+).(5.39)

Here, kr := n+(N), kc is the number eigenvalues lying in the open first quadrant, and
k - i is the number of eigenvalues on the positive imaginary axis with negative Krein
signature (see [51]). Note that (5.39) holds provided D+ and D - are nonsingular (and
since P,Q, and n are finite, where dimker(JL) = 1

2 dimgker(JL) = n; see [53, section
7.1.3] or [51] for details). In light of our earlier results, this leads to the following.
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Proposition 5.12. Equation (5.39) may be written in one of the following equiv-
alent forms:

kr + 2kc + 2k - i = - Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3) + 2P  - 2n - (D+),(5.40)

=Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3) + 2Q - 2n - (D - ).(5.41)

Proof. Using Proposition 5.11 and Lemma 3.22, we can rearrange (5.39) to read

kr + 2kc + 2k - i =Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
2) + c+ 2P  - 2n - (D+).(5.42)

Then (5.40) follows from (5.42) using (3.55). A similar manipulation yields

kr + 2kc + 2k - i = - Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
2) - c+ 2Q - 2n - (D - ),(5.43)

in which case (5.41) follows from (5.43) via (3.55).

Corollary 5.13. If P = 0 or Q= 0, then kc = k - i = 0.

Proof. If P = 0, then by Lemma 5.2, we have kr = n+(N) =  - Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3).

Furthermore, if P = 0, then L+ is a nonnegative operator in L2(0, \ell ), and in particular,
n - (D+) = 0. Canceling terms on both sides of (5.40), we get

2kc + 2k - i = 0,(5.44)

as required. Note we could have argued that kc = 0 using Lemma 5.1. The case
Q= 0 is similar: kr = n+(N) =Mas(\Lambda ,\scrD ; \Gamma \varepsilon 

3) by Lemma 5.2, and we have L - \geq 0 in
L2(0, \ell ). Thus, n - (D - ) = 0, and (5.41) yields the result.

In the case that L\pm are invertible, the previous result agrees with that given in
[45, Corollary 2.26], where the dimension of intersecting cones is zero because P = 0
or Q = 0. The result for Q = 0 is a special case of the formula in [51, Remark 3.1,
equation (3.10)].

Corollary 5.14. If either kr = 0 or the Maslov index of the path \lambda \rightarrow \Lambda (\lambda ,1), \lambda \in 
[\varepsilon ,\lambda \infty ], 0< \varepsilon \ll 1 is monotone in \lambda , then kc + k - i =Q - n - (D - ) = P  - n - (D+).

Proof. If kr = 0, the statement follows from (5.40) and (5.41) on noticing that
kr = n+(N) = 0 implies Mas(\Lambda ,\scrD ; \Gamma \varepsilon 

3) = 0 by (3.57).
Monotonicity of the Lagrangian path stated means that the crossing form (3.30)

has the same sign at all crossings along \Gamma 3. In this case, kr = n+(N) =\pm Mas(\Lambda ,\scrD ; \Gamma \varepsilon 
3),

and the statement follows from (5.40) or (5.41).

Remark 5.15. Monotonicity in \lambda is guaranteed if P = 0 or Q = 0. However, the
Maslov index is in general not monotone when P,Q \geq 1, and attempts to compute
the terms kc and k

 - 
i in these cases using the formulas above have so far been limited.

We finish with a numerical example to illustrate the scenario in Corollary 5.14. In
Figure 8, we have plotted the complex eigenvalue curves for s \in (0,1] under Hypoth-
esis 2.5(i), associated with a Jacobi cnoidal function \phi 0 (see Figure 1(a)) satisfying
\phi \prime 0(0) = \phi \prime 0(\ell ) = 0. Precisely, the blue curves represent real eigenvalues, the red curves
represent imaginary eigenvalues, and the purple curves represent eigenvalues lying off
the real and imaginary axes. It was computed that the minimum point of each blue
connected component (for which \lambda = 0) corresponds to a point of nontrivial kernel
for Ls

+, while the maximum point of each such component corresponds to a point of
nontrivial kernel for Ls

 - . Note that by a simple rescaling, we can apply the formulas
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(a) (b)

Fig. 8. Real (blue), imaginary (red), and complex (purple) eigenvalue curves s2\lambda \in Spec(Ns)\cap 
\BbbC , \lambda \in [ - 3,3]\times [ - 3i,3i]\subset \BbbC , s \in (0,1], under Hypothesis 2.5(i) for a T -periodic stationary state \phi 0

with f(\phi 2) = \phi 2 satisfying \phi \prime 
0(0) = \phi \prime 

0(\ell ) = 0, where \ell = 2T = 13.3854. Here, \phi 0 is a Jacobi cnoidal
function corresponding to an orbit located outside the homoclinic orbit in Figure 1(a). Figures (a)
and (b) give two different viewpoints of the same curves. The eigenvalues were computed using
Mathematica's NDEigenvalues command.

of the current section to the rescaled operators Ns,L
s
\pm for any s \in (0,1]. Consider

then a horizontal plane at s = s\ast \approx 0.85 in Figure 8, which coincides with the max-
imum point of the top blue connected component. By the above considerations and
Lemma 3.19 applied to the interval (0, s\ast ) instead of (0,1), we have P = n - (L

s\ast 
+ ) = 3

and Q = n - (L
s\ast 
 - ) = 2. Since 0 \in Spec(Ls\ast 

 - )\setminus Spec(Ls\ast 

+ ), D - is null (see (5.30)), and
hence n - (D - ) = 0. Figure 8 clearly shows kr = 0 for s = s\ast , and by Corollary 5.14,
we deduce that n - (D+) = 1 and kc + k - i = 2. (It was confirmed numerically that
kc = 2.) A similar analysis can be done for any of the minima or maxima of the blue
connected components in Figure 8 or indeed for any horizontal plane which does not
intersect the blue curves (for which kr = 0).
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Mathematical Sciences at New York University and especially Prof. Lai-Sang Young
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