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ABSTRACT

We study the modulational stability of periodic travelling wave solutions to equations of nonlinear
Schrödinger type. In particular, we prove that the characteristics of the quasi-linear system of
equations resulting from a slow modulation approximation satisfy the same equation, up to a change
in variables, as the normal form of the linearized spectrum crossing the origin. This normal form is
taken from [LBJM2019], where Leisman et al. compute the spectrum of the linearized operator near
the origin via an analysis of Jordan chains. We derive the modulation equations using Whitham’s
formal modulation theory, in particular the variational principle applied to an averaged Lagrangian.
We use the genericity conditions assumed in the rigorous theory of [LBJM2019] to direct the
homogenization of the modulation equations. As a result of the agreement between the equation for
the characteristics and the normal form from the linear theory, we show that the hyperbolicity of the
Whitham system is a necessary condition for modulational stability of the underlying wave.

1 Introduction

In this paper, we consider the modulational stability of periodic solutions to equations of nonlinear Schrödinger type

iψt = ψxx + ζf(|ψ|2)ψ (1)

under perturbations in L2(R). The nonlinearity f(|ψ|2) is arbitrary, but assumed to be well-behaved (double-integrable).
This equation has a rich history of study; the cubic nonlinear Schrödinger equation, f(|ψ|2) = ±|ψ|2, describes the
envelope of a slowly modulated carrier wave in a dispersive medium [SS1999, AS1981]. This equation, and others
of NLS-type with higher order nonlinearities, arise in the study of a plethora of physical systems, including: water
waves [Zakharov1968, HO1972]; nonlinear optics [Agrawal2013, HM2003]; plasma physics [Chen2016, LTE2019,
MOMT1976]; and Bose-Einstein condensates [Gross1961, Pitaevskii1961].

Since the dynamics of equation (1) exhibit linear, nonlinear and modulatory behaviour, the literature includes analyses
of linearized, orbital and modulational stability. If one chooses a suitable potential f(|ψ|2) such that equation (1) is
integrable, then it is possible to give an explicit description of the spectrum. The cubic nonlinear Schrödinger equation
is the best example of this [BDN2011, DS2017], however relying on integrability is not necessary [GLCT2017].
Rowlands determined the spectral stability of stationary periodic solutions of the cubic nonlinear Schrödinger equation
subject to long-wavelength disturbances [Rowlands1974], and in so doing demonstrated modulational instability in
the focusing case. Alfimov, Its and Kulagin [AIK1990] constructed the homoclinic orbit for an unstable, spatially
periodic solution to the focusing nonlinear Schrödinger equation, essentially providing a nonlinear description of
the modulational stability of this type of solution. Using the general methods of [GSS1987, GSS1990], Gallay and
Hǎrǎguş proved that quasiperiodic, small-amplitude solutions to the cubic nonlinear Schrödinger equation are orbitally
stable within the class of solutions having the same period and Floquet multipler [GH2007A]. They further proved
that these solutions are linearly stable under bounded perturbations in the defocusing case, but linearly unstable in the
focusing case. In [GH2007B], Gallay and Hǎrǎguş extend the orbital stability results in [GH2007A] to solutions of any
amplitude.

This paper deals with modulational stability of equation (1), that is, the spectral stability subject to long-wavelength per-
turbations. Rigorously speaking, this amounts to expanding the spectrum of the linearized operator in a neighbourhood
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of the origin in the spectral plane. Whitham modulation theory [Whi1965A, Whi1965B, Whi1967, Whi1970, Whi1999]
provides a formal procedure in which the modulational stability is computed by considering the hyperbolicity of a
system of PDEs called the Whitham modulation equations. These modulation equations arise from an asymptotic
expansion of the governing PDE via (x, t) 7→ (εx, εt) along with a WKB approximation of the solution. To O(ε), these
equations are an homogeneous system of PDEs in terms of the slowly-varying parameters of the original PDE. Proving
that the Whitham modulation theory accurately predicts the results of the rigorous analysis of the linearized spectrum is
non-trivial, and to our knowledge is an open problem in the general case. Our present analysis is influenced by the
examples of where this has been done, such as: the nonlinear Klein-Gordon equation [JMMP2014]; the generalized
Korteweg-de Vries equation [JZ2010]; and systems of viscous conservation laws [Serre2005, OZ2006].

In addition to the WKB approximation and asymptotic expansion, Whitham proves that there are several other, equivalent
methods for deriving the Whitham modulation equations [Whi1970, Whi1999]. In particular, these are: the variational
principle applied to an averaged Lagrangian; and averaging and two-timing a system of conservation laws. As a result
of unwieldy algebra that arises in the modulation equations, one often chooses the method which provides the simplest
derivation of the Whitham modulation equations, thereafter making a change of variables in order to prove that the
hyperbolicity of the Whitham system is equivalent to the linearized stability theory. When the modulational instability
criterion from the linearized stability theory is given in terms of the derivatives of special quantities of the original PDE
such as the period, mass and momentum, a useful technique is to introduce a classical action variable W , since the
derivatives of W are related to these special quantities. This is the case for both the nonlinear Klein-Gordon equation
[JMMP2014] and the generalized Korteweg-de Vries equation [BJ2010, JZ2010]. This approach relies on the symmetry
properties of Lagrangian systems, and Whitham in fact derives the modulation equations using the averaged Lagrangian
method in the cases of both of these PDEs (only the non-generalized case for KdV) [Whi1999]. Equation (1) admits
a Lagrangian (cf. equation (22)), and so we follow the averaged Lagrangian method in order to more easily derive
the Whitham modulation equations. If, however, there is not an obvious Lagrangian but the travelling wave ODE is
integrable, one can compute the tangent space to the manifold of travelling wave solutions and construct the kernel of
the linearized operator from a basis of the tangent space. In [Serre2005], Serre performs this exact procedure to prove
that the hyperbolicity criterion of the Whitham modulation equations agrees with the rigorous modulational stability
analysis (as determined from an Evans function expansion) of a system of scalar, viscous conservation laws [OZ2003],
which is later extended to the multi-dimensional case [OZ2006].

There is a well-developed Whitham modulation theory for the nonlinear Schrödinger equation; Düll and Schneider
have proven that the Whitham modulation equations are a valid approximation of spatial and temporal modulations
of periodic wave solutions of the cubic nonlinear Schrödinger equation [DS2009]. In [Bridges2015, BR2019], the
authors investigate the transition between a hyperbolic and elliptic system of Whitham modulation equations for cubic
NLS in the single phase case and a coupled NLS system in the multiphase case. In [Kamchatnov2000], Kamchatnov
provides techniques for calculating the Riemann invariants of the cubic nonlinear Schrödinger equation, from which
the hyperbolicity of the Whitham modulation equations can be determined. Moreover, the Riemann invariants of a
Whitham modulation system encode the asymptotic description of a dispersive shock wave; El and Hoefer provide an
extensive discussion on this connection in [EH2016], as well as an analysis of dispersive shock waves in the case of
cubic NLS and numerical simulations of dispersive shock wave behaviour for equation (1). El and Hoefer also note that
applying the Madelung transformation to equation (1) yields the hydrodynamic system:

ρt + (ρu)x = 0

(ρu)t +
(
ρu2 + P (ρ)

)
x

=

(
1

4
ρ (ln ρ)xx

)
x

,

with P (ρ) =
∫ ρ

0
sf ′(s)ds. Serre’s results [Serre2005] are not proven to extend to higher order dispersive terms such

as 1
4ρ (ln ρ)xx. To this end, we do not rely on Serre’s techniques, but rather we provide a direct calculation of the

characteristics of the Whitham system associated with equation (1).

The main result of this paper, Theorem 3, shows that the Whitham modulation theory for equation (1) correctly
predicts the rigorous spectral stability results contained in [LBJM2019]. Leisman et. al. relate spectral instability of
periodic travelling wave solutions of equation (1) near the origin of the spectral plane to the breakup of the generalized
kernel of the operator of the linearized problem. The authors express the genericity conditions on the Jordan chains
of the linearized operator in terms of matrices whose entries are moments of the travelling wave solutions. They
use these matrices to derive a normal form for the spectrum of the linearized operator at the origin subject to both
longitudinal and transverse perturbations. We give a brief summary of their results, before applying Whitham’s
averaged Lagrangian method to derive the Whitham modulation equations. We use the genericity conditions given in
[LBJM2019] to homogenize the modulation equations, turning them into a quasi-linear system of four equations in
four slowly-modulated parameters of the travelling wave solutions. The characteristics of this system are the zeros of
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a quartic equation which, upon changing variables, we identify as the normal form for the four continuous bands of
spectrum emerging from the origin.

We have organized this paper into two main sections. In Section 2, we introduce the relevant spectral stability results
of [LBJM2019], leading to a rigorous criterion for modulational instability in Corollary 1. We begin Section 3 with a
general overview of Whitham’s averaged Lagrangian approach to deriving the modulation equations. We then apply
this theory to equation (1) in Section 3.1, from which we conclude in Corollary 2 that the Whitham theory criterion for
modulational instability agrees exactly with the rigorous spectral analysis of Section 2. We conclude the paper with a
discussion in Section 4 as well as, to the best of our knowledge, several open problems in the area. We include some
necessary, though long calculations, as well as, we hope, some useful identities in appendices A to F.

2 Modulational stability from the linear theory

In this section, we follow the analysis of the modulational stability problem contained in [LBJM2019].

We seek travelling wave solutions of equation (1) in the form

ψ(x, t) = eiωtφ(x+ ct).

Writing y = x+ ct, we express φ in polar coordinates

φ(y) = exp
(
i
(
θ0 +

cy

2
+ S(y + y0)

))
A(y + y0). (2)

Substituting equation (2) into equation (1) and equating real and imaginary parts we have:

2AySy +ASyy = 0 (3)

Ayy = −
(
ω +

c2

4

)
A+AS2

y − ζf(A2)A. (4)

Integrating equation (3) yields

Sy =
κ

A2
, (5)

which can be substituted into equation (4) and upon integrating we have:

A2
y = 2E −

(
ω +

c2

4

)
A2 − κ2

A2
− ζF (A2). (6)

The symmetries of equation (1) allow us to eliminate several of the seven parameters E,ω, c, κ, ζ, y0, θ0. In particular,
equation (1) is invariant under the transformations (assume α ∈ R):

• ψ(x, t) 7→ ψ(x, t)eiα (phase invariance);

• ψ(x, t) 7→ ψ(x+ α, t) (translation invariance);

• ψ(x, t) 7→ ψ(x+ αt, t)e−i
(
α
2 x+α2

4 t
)

(Galilean invariance).

Phase and translation invariance means that we can eliminate θ0 and y0 from equation (2). Furthermore, by Galilean
invariance we can reduce ψ to:

ψ(x, t) = e
i
(
ω+ c2

4

)
t
eiS(x)A(x). (7)

Both equation (7) and equation (6) suggest that we can absorb c2

4 into ω, eliminating c from the equations. This leads
us to make the following definition about the parameter space Ω:
Definition 1 (Definition 1 [LBJM2019]). We define the parameter domain Ω as the open set of parameter values
(E, κ, ω, ζ) such that:

• κ > 0;

• The function P (A) = 2E − ωA2 − κ2

A2 − ζF (A2) has two positive, real, simple roots a−, a+ with a− < a+

and P (A) is real and positive for A ∈ (a−, a+).

3
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As explained in [LBJM2019, Remark 1], parameter values in Ω represent the most generic case and allow us to freely
differentiate with respect to the parameters. The cases where κ = 0 or R(A) has higher order roots correspond to
degenerate cases which require their own analyses. We assume henceforth that our parameters are taking values in Ω.

We are interested in periodic solutions A to equations (5) and (6). We make the assumption A(0) = a−, A(T∗2 ) = a+,
which we can always guarantee by translating the wave. Under these conditions, the function ψ has the quasi-periodic
boundary conditions:

ψ(T∗) = ψ(0)eiη (8)

ψy(T∗) = ψ(0)eiη, (9)

where the period T∗ and the quasi-momentum η = S(T∗) − S(0) are functions of the parameters E, κ, ω, ζ. These
quantities, and the mass M , can be expressed as derivatives of the classical action:

K(E, κ, ω, ζ) =

∫ T∗

0

A2
ydy = 2

∫ a+

a−

√
2E − ωA2 − κ2

A2
− ζF (A2)dA. (10)

In particular, we have:

T∗(E, κ, ω, ζ) = 2

∫ a+

a−

1

Ay
dA = 2

∫ a+

a−

1√
2E − ωA2 − κ2

A2 − ζF (A2)
dA

=
∂K

∂E

(11)

η(E, κ, ω, ζ) = S(T∗)− S(0) = 2

∫ a+

a−

κ

A2Ay
dA

= 2

∫ a+

a−

κ

A2

√
2E − ωA2 − κ2

A2 − ζF (A2)
dA

= −∂K
∂κ

(12)

M(E, κ, ω, ζ) = 2

∫ a+

a−

A2

Ay
dA = 2

∫ a+

a−

A2√
2E − ωA2 − κ2

A2 − ζF (A2)
dA

= −2
∂K

∂ω
.

(13)

We now consider the linearized problem under the perturbation:

ψ(y, t) = eiωt
(
φ(y) + εei[S(y+y0)+ cy

2 +θ0]W (y, t)
)
.

Since the phase exp(i[S(y + y0) + cy
2 + θ0]) is also present in φ(y) (equation (2)), then we can consider W as a

complex-valued perturbation of A. At O(ε) we have:

iWt = Wyy + ωW − S2
yW + ζf(A2)W + 2ζf ′(A2)A2Re(W ) + i(SyyW + 2SyWy). (14)

Writing W (y, t) = u(y, t) + iv(y, t) in equation (14), we have the two linearized equations

ut = vyy + ωv − S2
yv + ζf(A2)v + Syyu+ 2Syuy

−vt = uyy + ωu− S2
yu+ ζf(A2)u+ 2ζf ′(A2)A2u− Syyv − 2Syvy,

which can be collected into the equation (
u
v

)
t

=

(
K −L−
L+ K

)(
u
v

)
(15)

where

K = Syy + 2Sy∂y

L+ = −ω − ∂yy + S2
y − ζf(A2)− 2ζf ′(A2)A2

L− = −ω − ∂yy + S2
y − ζf(A2).

4
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We can further manipulate equation (15):(
u
v

)
t

=

(
0 −1
1 0

)(
L+ K
KT L−

)(
u
v

)
(16)

= L
(
u
v

)
. (17)

Since L is the product of a skew-symmetric operator and symmetric operator then equation (17) defines a Hamiltonian
eigenvalue problem. From here, the idea is to analyze the Jordan chains of L. In particular, we wish to find the
genericity conditions on the Jordan structure of the linearized operator in terms of the derivatives of K. Having found
these conditions, we can then perturb L and analyze the affect this has on the generalized kernels. The following result
summarizes the genericity conditions.
Theorem 1 (Theorem 1 [LBJM2019]). Assume that:

• (E, κ, ω, ζ) ∈ Ω;

• F (x) is linearly independent from 1, x, 1
x ;

• A(y) is non-constant.

The generalized kernel of L (defined in equation (17)) generically takes the form of a direct sum of two Jordan chains of
length two. Making the definitions

σ := {T∗, η}E,κ = T∗Eηκ − T∗κηE

D :=

∣∣∣∣∣∣∣
Kκκ KκE Kκω T∗
KκE KEE KEω 0
Kκω KEω Kωω 0
T∗ 0 0 −M

∣∣∣∣∣∣∣ ,
then the genericity conditions on these Jordan chains are:

σ 6= 0 (18)
D 6= 0. (19)

Remark 1. We have chosen to omit several results from Theorem 1 in [LBJM2019], such as the explicit calculation of
the Jordan chains of L. This is because the Whitham theory in the later sections of this paper makes use of just the
genericity conditions on these chains.
Remark 2. In the proof of Theorem 1, the authors calculate the determinant D in terms of T∗,M, η and the Poisson
bracket quantities defined in appendix A. Using the Dodgson-Jacobi-Desnanot condensation identity, they calculate:

−σ
3

4
D =

∣∣∣∣a2 b2
b2 d2

∣∣∣∣ ,
where a2, b2, d2 are defined in appendix A.

We now examine the breakup of the Jordan chains of L under perturbations of the quasi-periodic boundary conditions.
We start with the following proposition:
Proposition 1 (Proposition 1 [LBJM2019]). Let L be an operator with compact resolvent. Suppose further that L has
a d-dimensional kernel spanned by {u2j}d−1

j=0 and a d-dimensional first generalized kernel spanned by {u2j+1}d−1
j=0

satisfying Lu2j+1 = u2j . Suppose similarly that L has a left basis satisfying v2j+1L = 0, v2jL = v2j+1. Consider
a perturbation of the form L+ µL(1) + µ2L(2), where L(1)(λ− L)−1, L(1)(λ− L(1))−1L(1) and L(2) are bounded
operators. Suppose that the first order perturbation satisfies the conditions:

v2j+1L(1)u2k = 0 ∀j, k = 0, . . . , d− 1.

Then, to leading order in µ, the 2d-dimensional generalized kernel breaks up into 2d eigenspaces, with the eigenvalues
given by

λ(µ) = λ1µ+O(µ2),

where λ1 is a root of the polynomial

det(λ2
1M

(2) + λ1M
(1) + M(0)) = 0,

5
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with the d× d matrices M(i) are defined as:

M
(2)
j,k = v2j+1u2k+1

M
(1)
j,k = −v2jL(1)u2k − v2j+1L(1)u2k+1

M
(0)
j,k = v2j+1L(1)L−1L(1)u2k − v2j+1L(2)u2k.

Proposition 1 allows us to relate the eigenvalues λ near the origin to the break up of the generalized kernels of L
under small perturbations. We will first deal with the case of longitudinal perturbations, that is, the 1D NLS equation
equation (1). In particular, when we substitute (

u
v

)
= eλtu(y)

into the linearized problem equation (17) we have:

Lu = λu. (20)

Equation (20) can be written as a system of four first order ODEs in y with T∗-periodic coefficients, and so by
applying Floquet theory we see that the spectrum of L is the union over all µ ∈ (− π

T∗
, πT∗ ] of the spectrum of L with

quasi-periodic boundary conditions:

u(T∗) = eiµT∗u(0)

uy(T∗) = eiµT∗uy(0).

If instead we write u = eiµyv, then v has periodic boundary conditions, and the µ-dependency is instead captured by a
µ-dependent operator:

L(µ)v = λv

L(µ) := L+ 2iµ

(
Sy ∂y
−∂y Sy

)
+ µ2

(
0 −1
1 0

)
.

Taking

L(1) = 2i

(
Sy ∂y
−∂y Sy

)
L(2) =

(
0 −1
1 0

)
allows us to apply proposition 1, leading to the following theorem.
Theorem 2 (Corollary 1 [LBJM2019]). Suppose that L is defined as in equation (17), and further suppose that the
genericity conditions of Theorem 1 apply. For small values of the Floquet exponent µ, the normal form for the four
continuous bands of spectrum emerging from the origin in the spectral plane is:

det

(
λ2

(
a2 b2
b2 d2

)
+ λµ

(
a1 b1
b1 d1

)
+ µ2

(
a0 b0
b0 d0

))
+O(5) = 0, (21)

where O(5) consists of terms λiµj with i, j > 0 and i+ j ≥ 5. The matrix entries are given in appendix A.

Corollary 1 (Modulational instability criterion). If any of the roots λ of equation (21) are not purely imaginary, then
the periodic travelling wave ψ about which we have linearized is modulationally unstable.

3 Whitham modulation theory

Our goal in this section is to provide a formal Whitham theory calculation which results in the same criterion for
modulational instability as the rigorous results in the previous section, in particular Theorem 2 and Corollary 1. We
want to show that the equation for the characteristics of the Whitham modulation equations is equivalent to the normal
form equation (21). There are several ways to derive the Whitham modulation equations; we choose to use the averaged
Lagrangian formulation and the variational principle from Whitham’s work [Whi1965B, Whi1970, Whi1999], since
the averaged Lagrangian closely resembles the classical action K (cf. equation (10)) from the rigorous linear theory.

6
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As a side note, many of the symbols of the previous section will be re-used but with the subscript ∗. These subscripted
symbols are seen as completely new, and not connected to their un-subscripted counterparts. We start with the
Lagrangian of equation (1):

L(ψt, ψx, ψ, ψt, ψx, ψ) = i(ψψt − ψψt) + 2|ψx|2 − 2ζF (|ψ|2), (22)

which satisfies the Euler-Lagrange equations:

Lψ − ∂tLψt − ∂xLψx = 0

Lψ − ∂tLψt − ∂xLψx = 0.

We seek solutions to equation (1) of the form:

ψ(x, t) = r(x, t)eiϕ(x,t).

Upon subsitution, we have (for imaginary and real parts respectively)

rt = 2ϕxrx + ϕxxr (23)

−ϕtr = rxx − ϕ2
xr + ζf(r2)r, (24)

with the Lagrangian:

L(rx, r, ϕt, ϕx) = −2ϕtr
2 + 2(rx)2 + 2(ϕx)2r2 − 2ζF (r2). (25)

We now seek periodic solutions r, ϕ, with period normalized to 2π. Introducing the variable θ = kx− ω∗t, we let

r(x, t) = R(θ)

ϕ(x, t) = βx− γ∗t+ Φ(θ).

The pseudo-phase component βx− γ∗t is a necessary generalization since only the derivatives of ϕ appear in L (cf.
equation (25)). Consequently, the pseudo-phase ensures that the quantities ϕx and ϕt have mean β and−γ∗ respectively
when averaged over one period. This is reminiscent of the quasi-periodic boundary conditions set for ψ in equation (8).
Substituting into equations (23) to (25) yields:

− ω∗Rθ = 2kRθ(β + kΦθ) + k2ΦθθR (26)

R(γ∗ + ω∗Φθ) = k2Rθθ −R(β + kΦθ)
2 + ζf(R2)R (27)

L(kRθ, R,−γ − ω∗Φθ, β + kΦθ) = 2R2(γ∗ + ω∗Φθ) + 2k2R2
θ + 2R2(β + kΦθ)

2 − 2ζF (R2). (28)

For a slow modulation, we consider the the parameters ω∗, k, γ∗, β to be functions of X = εx and T = εt. We write:

θ = ε−1Θ(X,T ), βx− γ∗t = θ̃ = ε−1Θ̃(X,T ), (29)

and define:

−ω∗(X,T ) = ΘT , k(X,T ) = ΘX , −γ∗(X,T ) = Θ̃T , β(X,T ) = Θ̃X . (30)

Our functions R and Φ are also written in these variables as:

R = R(θ,X, T ; ε), Φ = Φ(θ,X, T ; ε).

The fact that these functions are evolving on both slow and fast scales is called two-timing, and is closely examined
in [Whi1970, Whi1999]. When averaging the Lagrangian, we consider R and Φ to be functions of three independent
variables θ, X, T , even though θ is a function of X and T in equation (29). This extra flexibility ensures that secular
terms in the asymptotic expansions are suppressed, and in conjunction with the variational principle this is equivalent to
a WKB approximation [Whi1999]. According to Whitham’s theory [Whi1999, Whi1970], the leading order modulation
equations can be derived from the variational principle:

δ

∫ ∫
1

2π

∫ 2π

0

L(kRθ, R,−γ∗ − ω∗Φθ, β + kΦθ)dθdXdT = 0. (31)

For functions h which vanish on the (θ,X, T ) boundary, equation (31) means that, for variations in R (denoted δR),
we have:

δR :

∫ ∫
1

2π

∫ 2π

0

L(k(R+ h)θ, R+ h,−γ∗ − ω∗Φθ, β + kΦθ)dθdXdT = 0

=⇒
∫ ∫

1

2π

∫ 2π

0

hθLRθ + hLR +O(h2)dθdXdT = 0.

7



A PREPRINT - NOVEMBER 19, 2020

Integrating by parts, we end up with∫ ∫
1

2π

∫ 2π

0

h(LR − ∂θLRθ )dθdXdT = 0.

Since this is true for all such h, we conclude that:

∂θLRθ − LR = 0. (32)

Equation (32) is simply equation (27), one of the Euler-Lagrange equations for L (cf. equation (28)). The other
Euler-Lagrange equation comes from considering variations in Φ, which yields:

∂θLΦθ = 0. (33)

Equation (33) has an immediate first integral:

B(X,T ) = LΦθ , (34)

so B is constant with respect to θ, however it is now added to the ensemble of slowly-varying parameters. Equation (33)
is in fact a multiple of equation (26) (the factor is 4R), so finding B is equivalent to finding a first integral of
equation (26). Equation (32) also admits an integral, since this equation is an ODE in the variable θ. To see this, we
multiply equation (32) by Rθ:

Rθ∂θLRθ −RθLR = 0

=⇒ ∂θ(RθLRθ )−RθθLRθ −RθLR = 0

=⇒ ∂θ(RθLRθ )− ∂θL+BΦθθ = 0.

Note that we have used equation (33) to write the θ-derivative of L as:

∂θL = RθθLRθ +RθLR +BΦθθ.

Integrating, we have:

RθLRθ +BΦθ − L = A∗(X,T ), (35)

for a slowly-varying parameter A∗. For variations in Θ, we consider Θ(X,T ) + h(X,T ) for an appropriate function h
vanishing on the (X,T ) boundary. This means that k will be replaced by k + hX , and similarly ω∗ by ω − hT :

δΘ :

∫ ∫
1

2π

∫ 2π

0

L((k + hX)Rθ, R,−γ − (ω∗ − hT )Φθ, β + (k + hX)Φθ)dθdXdT = 0. (36)

Writing the averaged Lagrangian as

L(ω∗, k, γ∗, β) =
1

2π

∫ 2π

0

Ldθ, (37)

equation (36) implies: ∫ ∫
hXLk − hTLω∗ +O(h2)dXdT = 0. (38)

From equation (38), we have: ∫ ∫
h(∂TLω∗ − ∂XLk)dXdT = 0,

which is true for all such h, and so we conclude that:

∂TLω∗ − ∂XLk = 0. (39)

Equation (39) is called a modulation equation since the quantities involved are functions of the slowly-modulated
variables X and T . Similarly for variations δΘ̃, we have another modulation equation:

∂TLγ∗ − ∂XLβ = 0. (40)

The last two modulation equations are associated with the conservation of waves:

∂T k + ∂Xω∗ = 0 (41)
∂Tβ + ∂Xγ∗ = 0, (42)

8
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which is a consequence of requiring the mixed partial derivatives of Θ(X,T ) and Θ̃(X,T ) to be equal. At this point,
we have derived four modulation equations in the four parameters (ω∗, k, γ∗, β). In order to evaluate the averaged
Lagrangian equation (37), we need to solve equations (34) and (35) for R,Φ. Instead, Whitham proposes using the first
integrals A∗(X,T ) and B∗(X,T ) to simplify the form of the averaged Lagrangian [Whi1999]. We can avoid directly
computing R,Φ, and moreover we can absorb the dispersion relations into one variational principle. To this end, we
consider a Hamiltonian transformation with the variables:

Π1 = LRθ , Π2 = LΦθ = B. (43)

These are generalized momenta, and so we apply a Legendre transform to L in order to eliminate Rθ and Φθ from the
equations:

H(Π1,Π2, R,Φ;ω∗, k, γ∗, β) = RθΠ1 + ΦθΠ2 − L. (44)

We see from the transformation that

Rθ = ∂Π1
H, Φθ = ∂Π2

H, (45)

and it follows from equation (32) and equation (33) respectively that

∂θΠ1 = −∂RH, ∂θΠ2 = −∂ΦH = 0. (46)

Equations (45) and (46) are Hamilton’s equations. We can now write the earlier variational principle equation (31) as:

δ

∫ ∫
LdXdT = 0, (47)

where

L =
1

2π

∫ 2π

0

(RθΠ1 +BΦθ −H)dθ (48)

=
1

2π

∫ 2π

0

(RθΠ1 −H)dθ, (49)

since Φ is 2π-periodic. The averaged Lagrangian is now a function of H, B and the previous four parameters. We note
that Hamilton’s equations (45) and (46) follow from the independent variations δΠ1, δR, δΠ2, δΦ in equation (48). We
use this extension as Whitham describes in [Whi1970, Whi1999]. Next, we observe that equation (44) is the same as
equation (35), so we identify:

H(Π1,Π2, R;ω∗, k, γ∗, β) = A∗(X,T ). (50)

The stationary values of equation (48) also satisfy equation (50), meaning that we can restrict the stationary values of
equation (48) to the class of functionsR, Φ, Π1, Π2 which satisfy equation (50). Importantly, this is the only restriction
we make; using the dispersion relation or any information about the forms of the solutions Π1 and Rθ (equation (45))
would result in L having no variation. We relabel H(Π1,Π2, R,Φ;ω∗, k, γ∗, β) as H(X,T ) in equation (48), and we
solve equation (50) for Π1(R;H,ω∗, k, B, γ∗, β) which yields:

L (H,ω∗, k, B, γ∗β) =
1

2π

∮
Π1dR−H, (51)

where the integral is taken around the orbit of R. The variational principle equation (47) can now be written as

δ

∫ ∫
L (H,ω∗, k, B, γ∗β)dXdT = 0. (52)

As mentioned earlier, we have now added the two parameters H and B, however we have exchanged the variational
equations δR, δΠ1 and δΦ, δΠ2 for δH and δB:

δH : LH = 0 (53)
δB : LB = 0. (54)

Equations (53) and (54) are relations between the parameters of the periodic wavetrain, and so they are in fact the
dispersion relations. Our aim is to use these equations in order to eliminate two of the six parameters from the four
modulation equations, resulting in a homogeneous system of first-order PDEs. Using equations (41), (42) and (52), we
now have a complete picture of the Whitham theory:

∂TLω∗ − ∂XLk = 0 (55)
∂TLγ∗ − ∂XLβ = 0 (56)

∂T k + ∂Xω∗ = 0 (57)
∂Tβ + ∂Xγ∗ = 0. (58)

9



A PREPRINT - NOVEMBER 19, 2020

3.1 Whitham theory applied to NLS

In this subsection, we apply the more general theory and observations from section 3 to equation (1). We provide
a direct computation of the characteristics of the Whitham modulation equations, from which we conclude that the
modulational instability criterion from the Whitham theory agrees with the spectral analysis in section 2. For the sake
of brevity, we include more detailed calculations in appendices B to F.

We calculate L in terms of the parameters H,ω∗, k, B, γ∗β using equations (26) to (28). Firstly, Π2 = B amounts to
taking an integral of equation (26), which yields:

B = 2ω∗R
2 + 4kR2(β + kΦθ). (59)

Next, we calculate H using equation (44), eliminating Φθ and Rθ via equation (59) and Π1 = LRθ = 4k2Rθ:

H =
Π2

1

4k2
+BΦθ −

Π2
1

8k2
− 2R2(γ∗ + ω∗Φθ)− 2R2(β + kΦθ)

2 + 2ζF (R2)

=
Π2

1

8k2
− βB

k
− ω∗B

2k2
+ 2R2

(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
+

B2

8k2R2
+ 2ζF (R2)

=⇒ Π2
1

8k2
= H +

βB

k
+
ω∗B

2k2
− 2R2

(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
− B2

8k2R2
− 2ζF (R2).

This can also be written as:

2k2R2
θ = H +

βB

k
+
ω∗B

2k2
− 2R2

(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
− B2

8k2R2
− 2ζF (R2), (60)

which we identify as the first integral of equation (27) once Φθ has been eliminated, i.e:

k2Rθθ = −R
(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
+

B2

16k2R3
− ζf(R2)R. (61)

The averaged Lagrangian is hence:

L =
k
√

2

π

∮ √
H +

βB

k
+
ω∗B

2k2
− 2R2

(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
− B2

8k2R2
− 2ζF (R2)dR−H. (62)

Following Whitham’s examples [Whi1965A, Whi1999], we introduce a function W which is essentially the classical
action:

W (H,ω∗, k, B, γ∗, β) =
1

2π

∮
Π1

2k
dR (63)

=

√
2

2π

∮ √
H +

βB

k
+
ω∗B

2k2
− 2R2

(
βω∗
k

+
ω2
∗

4k2
− γ∗

)
− B2

8k2R2
− 2ζF (R2)dR. (64)

This allows us to write equation (62) as:

L = 2kW −H. (65)

For a generic evaluation of W from equation (64), we require assumptions similar to those listed in definition 1. We
derive these assumptions by equating our periodic solution ψ(x, t) = R(θ) exp(i(βx− γ∗t+ Φ(θ))) with the periodic
solution equation (2), which yields (once translation invariance and phase invariance are taken into account):

R(θ) = A(y) (66)

βx− γ∗t+ Φ(θ) =

(
ω − c2

4

)
t+

cy

2
+ S(y) (67)

Note that we have redefined ω as ω − c2

4 as suggested by equation (7). Taking x and t derivatives of equation (66), we
have:

kRθ = Ay, −ω∗Rθ = cAy (68)

=⇒ c = −ω∗
k
. (69)

10
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Similarly for equation (67) we have:

β + kΦθ =
c

2
+ Sy, −γ∗ − ω∗Φθ = ω − c2

4
+
c2

2
+ cSy (70)

=⇒ ω =
βω∗
k

+
ω2
∗

4k2
− γ∗. (71)

Substituting equations (68) to (70) into equation (5) yields:

β +
ω∗
2k

+ kΦθ =
κ

R2
,

and recalling equation (59) we identify:

κ =
B

4k
. (72)

Finally, using equations (66), (68), (69), (71) and (72), we see that equation (60) is twice equation (6), with:

E =
1

4

(
H +

βB

k
+
ω∗B

2k2

)
. (73)

Equations (69) and (71) to (73) now express the parameters of the linear theory in terms of our Whitham parameters.
Recalling definition 1, we have that the parameters (H,ω∗, k, B, γ∗, β) exist such that:

• B
k > 0;

• The function P (R) = H + βB
k + ω∗B

2k2 − 2R2
(
βω∗
k +

ω2
∗

4k2 − γ∗
)
− B2

8k2R2 − 2ζF (R2) has two positive, real,
simple roots R− = a− and R+ = a+, with R− < R+ and P (R) real and positive for R ∈ (R−, R+).

We make the change of variables:

U =
ω∗
k

J =
B

k
.

This eliminates the explicit dependence of P (R) on k, which will be advantageous when we calculate the characteristics
of the modulation equations. Also note that the two roots R−, R+ are now functions of H,U, J, γ, β, ζ. Updating W
in equation (64), we have:

W (H,U, J, γ, β, ζ) =

√
2

π

∫ R+

R−

√
H + βJ +

UJ

2
− 2R2

(
βU +

U2

4
− γ∗

)
− J2

8R2
− 2ζF (R2)dR. (74)

Moreover, we can relate the classical action from equation (10) with W :
K = πW. (75)

We now calculate the derivatives of W with respect to the parameters:

WH =

√
2

π

∫ R+

R−

1

2
√
H + βJ + UJ

2 − 2R2
(
βU + U2

4 − γ∗
)
− J2

8R2 − 2ζF (R2)
dR (76)

WJ = WH

(
β +

U

2

)
− η∗ (77)

η∗ :=

√
2

π

∫ R+

R−

J

8R2

√
H + βJ + UJ

2 − 2R2
(
βU + U2

4 − γ∗
)
− J2

8R2 − 2ζF (R2)
dR (78)

M∗ := Wγ∗ =

√
2

π

∫ R+

R−

R2√
H + βJ + UJ

2 − 2R2
(
βU + U2

4 − γ∗
)
− J2

8R2 − 2ζF (R2)
dR (79)

WU =
J

2
WH −M∗

(
β +

U

2

)
(80)

Wβ = JWH − UM∗ (81)

Wζ = −
√

2

π

∫ R+

R−

F (R2)√
H + βJ + UJ

2 − 2R2
(
βU + U2

4 − γ∗
)
− J2

8R2 − 2ζF (R2)
dR. (82)

11
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We choose the notation η∗ and M∗ because these integrals are closely related to the η and M from the linear theory. We
give the relations in appendix B. Using equation (65), we have:

Lω∗ = 2WU

Lk = 2W − 2UWU − 2JWJ

Lγ∗ = 2kWγ∗

Lβ = 2kWβ

We are now in a position to write the modulation equations in terms of the derivatives of W . For equations (55) and (56)
we have:

∂TWU + U∂XWU + J∂XWJ +WUUX +WJJX − ∂XW = 0 (83)
∂T (2kWγ∗)− ∂X (2kWβ) = 0. (84)

We now seek to use the variational equations equations (53) and (54) to eliminate two parameters from the Whitham
system. Using equation (53) with equation (65) we have:

LH = 0 (85)

=⇒ WH =
1

2k
. (86)

Similarly for equation (54):

LB = 0 (87)
=⇒ WJ = 0. (88)

Since W and its derivatives have no explicit dependence on k, then equation (86) is in fact the dispersion relation for k
in terms of the other parameters H,U, J, γ∗, β, ζ . Substituting equation (86) into the modulation equations allows us to
eliminate k entirely. This is particularly relevant for equation (57):

∂T k + ∂X(kU) = 0

=⇒ ∂T

(
1

2WH

)
+ ∂X

(
U

2WH

)
= 0,

which simplifies to:

∂TWH + U∂XWH −WHUX = 0.

Equation (83) is already free of k, but equation (84) can be simplified using equations (79), (81) and (86):

WH∂TM∗ −M∗∂TWH + UWH∂XM∗ − UM∗∂XWH +WHM∗UX −W 2
HJX = 0.

We also observe that equation (88) can eliminate terms in equation (83). The four modulation equations are now:

βT + γ∗X = 0 (89)
∂TWH + U∂XWH −WHUX = 0 (90)

∂TWU + U∂XWU +WUUX − ∂XW = 0 (91)

WH∂TM∗ −M∗∂TWH + UWH∂XM∗ − UM∗∂XWH +WHM∗UX −W 2
HJX = 0. (92)

The derivatives of WJ with respect to the parameters H and J do no vanish simultaneously, so we can apply the implicit
function theorem in order to eliminate another parameter. Recalling the genericity condition σ 6= 0 from Theorem 1, we
have that σ∗ = {WH ,WJ}J,H defined in appendix C is non-zero, which implies that at least one of WHJ and WJJ are
non-zero. We first assume that WHJ 6= 0. By the implicit function theorem, there exists a continuously differentiable
function g defined on the appropriate parameter space such that:

H = g(U, J, γ∗, β). (93)

Next we take derivatives of the equation WJ = 0:

∂JWJ(g, U, J, γ∗, β) = 0

=⇒ gJWHJ +WJJ = 0

12
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Similarly for the other derivatives:

gJWHJ = −WJJ (94)
gUWHJ = −WUJ (95)
gγ∗WHJ = −Wγ∗J (96)
gβWHJ = −WβJ . (97)

Equations (94) to (97) allow us to expand the X and T derivatives of WH and M∗ in equations (90) to (92) by using the
chain rule. For example:

∂TWH = gTWHH + JTWHJ + UTWHU + γ∗TWHγ∗ + βTWHβ

= (gJJT + gUUT + gγ∗γ∗T + gββT )WHH + JTWHJ + UTWHU + γ∗TWHγ∗ + βTWHβ

= (gJWHH +WHJ)JT + (gUWHH +WHU )UT + (gγ∗WHH +WHγ∗)γ∗T + (gβWHH +WHβ)βT .

If we multiply the derivative by WHJ , we have:

WHJ∂TWH = (W 2
HJ −WHHWJJ)JT + (WHUWHJ −WHHWUJ)UT + (WHγ∗WHJ −WHHWγ∗J)γ∗T

+ (WHβWHJ −WHHWβJ)βT
= {WH ,WJ}J,HJT + {WH ,WU}J,HUT + {WH ,Wγ∗}J,Hγ∗T + {WH ,Wβ}J,HβT .

Using appendix C, we can identify

{WH ,WJ}J,H = σ∗
{WH ,Wγ∗}J,H = −{WH ,WJ}H,γ∗ = −ρ∗,

where we have used the properties of Poisson brackets quoted in appendix C.
Remark 3. An important consideration when computing these Poisson brackets is the order of differentiation and substi-
tution. The correct order is to compute the Poisson bracket and then substitute H = g(U, J, γ∗, β) into the expression,
rather than applying the chain rule within a Poisson bracket. This is because the Poisson brackets produce identities that
hold regardless of the equations tying the parameters together; we are using them as a convenient notation for leveraging
the symmetry of the mixed partial derivatives of W . As an example, we make the substitution H = g(U, J, γ∗, β) into
the identity {WH ,Wγ∗}J,H = −{WH ,WJ}H,γ∗ = −ρ∗ instead of computing ∂JWH(g, U, J, γ∗, β) and other such
derivatives.

For {WH ,WU}J,H , we have:

{WH ,WU}J,H =

{
WH ,

JWH

2
−
(
β +

U

2

)
Wγ∗

}
J,H

= {WH ,
JWH

2
}J,H −

(
β +

U

2

)
{WH ,Wγ∗}J,H

= ν∗ +

(
β +

U

2

)
ρ∗,

and similarly we calculate

{WH ,Wβ}J,H = 2ν∗ + Uρ∗,

allowing us to write WHJ∂TWH in the following way:

WHJ∂TWH =
(
σ∗ −ρ∗ ν∗ +

(
β + U

2

)
ρ∗ 2ν∗ + Uρ∗

) JT
γ∗T
UT
βT

 . (98)

Repeating the process of expressing the derivatives in the modulation equations as products of vectors as in equation (98),
we can write the modulation equations as a quasi-linear first order system:

A

 JT
γ∗T
UT
βT

+ a

 JX
γ∗X
UX
βX

 = 0 (99)

13
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with

A =

 0 0 0 1
A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 (100)

a =

 0 1 0 0
UA21 UA22 UA23 − 2τ UA24

UA31 + a31 UA32 + a32 UA33 + a33 UA34 + a34

UA41 − 2τWH UA42 UA43 + 2τM UA44

 (101)

and the coefficients (calculated in appendix D)

A21 = σ∗
A22 = −ρ∗

A23 = ν∗ + ρ∗

(
β +

U

2

)
A24 = 2ν∗ + Uρ∗

A31 = τ∗ +
Jσ∗

2
+

(
β +

U

2

)
Γ

A32 = −J
2
ρ∗ −

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

A33 =
J

2
ν∗ +

WHMH

2

(
β +

U

2

)
− M∗WHJ

2
+
J

2
ρ∗

(
β +

U

2

)
+

(
β +

U

2

)2

{WH ,Wγ∗}J,γ∗

A34 = Jν∗ +WHM∗H

(
β +

U

2

)
−M∗WHJ +

J

2
Uρ∗ + U

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

A41 = −ΓWH − σ∗M∗
A42 = WH{WH ,Wγ∗}J,γ∗ + ρ∗M∗

A43 = −W
2
HM∗H

2
−WH

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗ −M∗(ν∗ + ρ∗

(
β +

U

2

)
)

A44 = −W 2
HM∗H − UWH{WH ,Wγ∗}J,γ∗ −M∗(2ν∗ + Uρ∗)

a31 = WHWJJ

a32 = WHM∗J −WHJM∗

a33 =
W 2
H

2
+ Jτ∗ −WHM∗J

(
β +

U

2

)
a34 = W 2

H + UM∗WHJ − UWHM∗J .

If any of the characteristics of the system in equation (99) are complex, then according to Whitham’s theory [Whi1999],
the system is modulationally unstable. Our task is to find the characteristics of equation (99) by solving for X ′, T ′ in:

det(AX ′ − aT ′) = 0, (102)

where X ′ = dX
ds , T

′ = dT
ds along a characteristic curve in the (X,T )-plane parametrized by s. The degenerate case

X ′ = T ′ = 0 in equation (102) corresponds to the non-existence of c1, c2 not both zero such that

det(c1A+ c2a) 6= 0. (103)

To demonstrate that our system indeed satisfies equation (103), consider:

detA = −WHJτ∗

(
M∗(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)−

W 2
H

2
{WH ,Wγ∗}H,γ∗

)
= −WHJτ∗

29π4
D

6= 0,

14
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where D is the non-vanishing determinant defined in Theorem 1, which has been calculated in appendix C as
equation (124). Hence c2 = 0 and any c1 6= 0 satisfies equation (103), so we do not need to consider the degenerate
case. We now focus on computing:

det(AX ′ − aT ′) =

∣∣∣∣∣∣
0 −T ′ 0 X′

A21(X′−UT ′) A22(X′−UT ′) A23(X′−UT ′)+2τ∗T
′ A24(X′−UT ′)

A31(X′−UT ′)−a31T ′ A32(X′−UT ′)−a32T ′ A33(X′−UT ′)−a33T ′ A34(X′−UT ′)−a34T ′

A41(X′−UT ′)+2τ∗WHT
′ A42(X′−UT ′) A43(X′−UT ′)−2τ∗MT ′ A44(X′−UT ′)

∣∣∣∣∣∣. (104)

Equation (104) can be written in block form:

det(AX ′ − aT ′) =

∣∣∣∣P11 P12

P21 P22

∣∣∣∣ , (105)

with

P11 =

(
0 −T ′

A21(X ′ − UT ′) A22(X ′ − UT ′)

)
P12 =

(
0 X ′

A23(X ′ − UT ′) + 2τ∗T
′ A24(X ′ − UT ′)

)
P21 =

(
A31(X ′ − UT ′)− a31T

′ A32(X ′ − UT ′)− a32T
′

A41(X ′ − UT ′) + 2τ∗WHT
′ A42(X ′ − UT ′)

)
P22 =

(
A33(X ′ − UT ′)− a33T

′ A34(X ′ − UT ′)− a34T
′

A43(X ′ − UT ′)− 2τ∗MT ′ A44(X ′ − UT ′)

)
.

Lemma 1. Under the assumptions of Theorem 1, the matrix

P11 =

(
0 −T ′

A21(X ′ − UT ′) A22(X ′ − UT ′)

)
is invertible.

Proof. We note that
detP11 = A21T

′(X ′ − UT ′) = σ∗T
′(X ′ − UT ′). (106)

From Theorem 1, σ∗ 6= 0, so P11 is invertible if and only if T ′ 6= 0 and X ′ 6= UT ′. If T ′ = 0, then
det(AX ′ − aT ′) = X ′4 detA

=
−WHJτ∗

29π4
X ′4D.

By assumption, WHJ 6= 0, WH 6= 0 (this corresponds to the underlying periodic wave having non-zero period) and
hence τ∗ = 1

2WHWHJ 6= 0. Moreover, D 6= 0 from Theorem 1, hence for X ′, T ′ to solve equation (102) with T ′ = 0
we have:

det(AX ′ − aT ′) = 0 =⇒ T ′ = X ′ = 0,

which we exclude as a trivial solution. In fact, if T ′(s∗) = 0 for some value of s = s∗, we have that X ′(s∗) = 0 as well,
meaning that the characteristic curve (X(s), T (s)) terminates at s = s∗. This is not possible, since the characteristic
curves are defined for all X,T ∈ R, so in fact T ′ can never vanish. Next, if X ′ = UT ′, then:

det(AX ′ − aT ′) =

∣∣∣∣∣∣∣
0 −T ′ 0 UT ′

0 0 2τ∗T
′ 0

−a31T
′ −a32T

′ −a33T
′ −a34T

′

2τ∗WHT
′ 0 −2τ∗MT ′ 0

∣∣∣∣∣∣∣
= −2τ∗T

′

∣∣∣∣∣ 0 −T ′ UT ′

−a31T
′ −a32T

′ −a34T
′

2τ∗WHT
′ 0 0

∣∣∣∣∣
= −4τ2

∗WHT
′2(a34T

′2 + a32UT
′2)

= −4τ2
∗WHT

′4 (W 2
H + UM∗WHJ − UWHM∗J + U(WHM∗J −WHJM∗)

)
= −4τ2

∗W
3
HT
′4.

Only T ′ is able to vanish, hence if X ′ = UT ′ then
det(AX ′ − aT ′) = 0 =⇒ T ′ = X ′ = 0.

There is no non-trivial solution (X ′, T ′) of equation (102) for which P11 is singular, which proves the lemma.
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Lemma 1 allows us to use the Schur determinant formula (see, for example, [Zhang2006]) in equation (105), in
particular:

det(AX ′ − aT ′) = det(P11) det(P22 − P21P
−1
11 P12). (107)

Direct calculation of P22 − P21P
−1
11 P12 yields:

P22 − P21P
−1
11 P12 =

(
m11 m12

m21 m22

)
,

where

m11 = A33(X ′ − UT ′)− a33T
′ − 1

σ∗(X ′ − UT ′)
(A23(X ′ − UT ′) + 2τ∗T

′)(A31(X ′ − UT ′)− a31T
′) (108)

m12 = A34(X ′ − UT ′)− a34T
′ +

X ′

T ′
(A32(X ′ − UT ′)− a32T

′)− A24

σ∗
(A31(X ′ − UT ′)− a31T

′) (109)

− A22X
′

σ∗T ′
(A31(X ′ − UT ′)− a31T

′) (110)

m21 = A43(X ′ − UT ′)− 2τ∗MT ′ − 1

σ∗(X ′ − UT ′)
(A23(X ′ − UT ′) + 2τ∗T

′)(A41(X ′ − UT ′) + 2τ∗WHT
′)

(111)

m22 =
1

T ′
(X ′ − UT ′)(A42X

′ +A44T
′)− A24

σ∗
(A41(X ′ − UT ′) + 2τ∗WHT

′)− A22X
′

σ∗T ′
(A41(X ′ − UT ′) + 2τ∗WHT

′).

(112)

We make the substitution λ = X ′ − UT ′ and µ = iT ′ (justified by the end result) and note from equation (107) that:

det(AX ′ − aT ′) = σ∗(−iλµ)

∣∣∣∣m11 m12

m21 m22

∣∣∣∣
=

1

σ∗WH

∣∣∣∣σ∗λWHm11 −iσ∗µWHm12

σ∗λm21 −iσ∗µm22

∣∣∣∣ ,
which can be simplified to:

det(AX ′ − aT ′) =
1

σ∗WH

∣∣∣∣a′11λ
2 + b′11λµ+ c′11µ

2 a′12λ
2 + b′12λµ+ c′12µ

2

a′21λ
2 + b′21λµ+ c′21µ

2 a′22λ
2 + b′22λµ+ c′22µ

2

∣∣∣∣ . (113)

We calculate the coefficients in appendix E. To list them, we have:

a′11 = 2τ∗

(
β +

U

2

)2

(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)− 2τ∗ρ∗WH

(
β +

U

2

)
− σ∗τ∗M∗ − ν∗τ∗WH

b′11 = 2iτ∗WH(2τ∗ + 2Γ

(
β +

U

2

)
+ Jσ∗)

c′11 = −2τ∗W
2
HWJJ

a′12 = ρ∗τ∗WH − 2τ∗

(
β +

U

2

)
(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

b′12 = 2iτ∗WH(ν∗ − Γ + ρ∗

(
β +

U

2

)
)

c′12 = 4τ2
∗WH

a′21 = ρ∗τ∗WH − 2τ∗

(
β +

U

2

)
(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗) = a′12

b′21 = 2iτ∗WH(ν∗ − Γ + ρ∗

(
β +

U

2

)
) = b′12

c′21 = 4τ2
∗WH = c′12

a′22 = 2τ∗(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

b′22 = −4iτ∗ρ∗WH

c′22 = 4τ∗ν∗WH .
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We note that the matrix in equation (113) is symmetric, which simplifies our calculations. Now we perform row and
column operations to equation (113), which will leave the determinant unchanged. Adding (β + U

2 ) times the second
row to the first row, and then (β + U

2 ) times the second column to the first column, we have the following result:

det(AX ′ − aT ′) =
1

σ∗WH

∣∣∣∣Q11(λ, µ) Q12(λ, µ)
Q21(λ, µ) Q22(λ, µ)

∣∣∣∣ . (114)

The polynomials are calculated in appendix E. We list them as:

Q11(λ, µ) =
τ∗

215π5σ∗
(d2λ

2 + d1λµ+ d0µ
2)

Q12(λ, µ) =
τ∗

215π5σ∗
(b2λ

2 + b1λµ+ b0µ
2)

Q21(λ, µ) = Q12(λ, µ)

Q22(λ, µ) =
τ∗

215π5σ∗
(a2λ

2 + a1λµ+ a0µ
2)

We can swap the two columns and then the two rows without changing the determinant:

det(AX ′ − aT ′) =
1

σ∗WH

∣∣∣∣Q22(λ, µ) Q21(λ, µ)
Q12(λ, µ) Q11(λ, µ)

∣∣∣∣ (115)

=
τ2
∗

230π10σ3
∗WH

∣∣∣∣a2λ
2 + a1λµ+ a0µ

2 b2λ
2 + b1λµ+ b0µ

2

b2λ
2 + b1λµ+ b0µ

2 d2λ
2 + d1λµ+ d0µ

2

∣∣∣∣ (116)

=
WHW

2
HJ

232π10σ3
∗

det

(
λ2

(
a2 b2
b2 d2

)
+ λµ

(
a1 b1
b1 d1

)
+ µ2

(
a0 b0
b0 d0

))
. (117)

This concludes the calculation of det(AX ′ − aT ′) when WHJ 6= 0. For completeness, we must carry out the same
calculation starting with the assumption that WJJ 6= 0 and WHH 6= 0, which is the other case arising from the
genericity condition σ∗ 6= 0. This second calculation is unremarkable, so we give the final result here, but provide some
working in appendix F. In this case, we have, almost exactly as before:

det(AX ′ − aT ′) = −WHW
2
JJ

232π10σ3
∗

det

(
λ2

(
a2 b2
b2 d2

)
+ λµ

(
a1 b1
b1 d1

)
+ µ2

(
a0 b0
b0 d0

))
, (118)

with the difference being the non-zero factor W 2
JJ . This leads us to the following theorem.

Theorem 3. Suppose that the assumptions of Theorem 1 hold, that is, σ 6= 0 and D 6= 0. Further, assume that
T∗ = 4πWH 6= 0. Then, the equation for the characteristics of the Whitham modulation equations associated with the
nonlinear Schrödinger equation (1) is equivalent to the normal form for the continuous bands of spectrum emerging
from the origin in the spectral plane, given in Theorem 2.

Proof. To solve for the characteristics of the Whitham system, we substitute into equation (102) the appropriate
expression for det(AX ′ − aT ′) given in either equation (117) or equation (118). In both cases, we can divide
det(AX ′ − aT ′) by the constants we have assumed to be non-zero, so X ′ and T ′ solve the quartic

det

(
λ2

(
a2 b2
b2 d2

)
+ λµ

(
a1 b1
b1 d1

)
+ µ2

(
a0 b0
b0 d0

))
= 0,

with

λ = X ′ − UT ′, µ = iT ′. (119)

This is exactly the normal form given in Theorem 2.

Remark 4. The substitution µ = iT ′ implies that T ′ ∈ iR, however this is not required for (X ′, T ′) to be a solution
to equation (102). Rather, we can safely make the restriction that T ′ ∈ iR by multiplying equation (102) by a phase
function e4if(s) so that T ′ becomes purely imaginary and X ′ 7→ X ′eif(s) is possibly complex.
Corollary 2. Whitham modulation theory predicts the same criterion for modulational instability as the linear
theory given in Corollary 1, that is, the existence of a complex characteristic of the system of modulation equations
(equation (99)) corresponds to a root λ of the normal form equation (21) with Re(λ) 6= 0, indicating modulational
instability of the underlying periodic, travelling wave.
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Proof. Noting that detA 6= 0 and T ′(s) 6= 0, we may rewrite equation (102) as:

det

(
X ′

T ′
−A−1a

)
= 0. (120)

Since T ′(s) 6= 0 for any s, the characteristic curves may instead be parametrized by T , so that dXdT = X′(s)
T ′(s) . Hence the

eigenvalues X′(s)
T ′(s) of A−1a define the characteristic curves, which is clear once equation (99) is instead written as: JT

γ∗T
UT
βT

+A−1a

 JX
γ∗X
UX
βX

 = 0,

and similarly for equation (125). According to the Whitham theory [Whi1999], modulational instability occurs when
one of the characteristics of a Whitham system is complex. From equation (120), this is equivalent to X′

T ′ ∈ C. We have

X ′

T ′
=
λ− iUµ
−iµ

=
iλ

µ
+ U.

We note that µ ∈ R since it is the Floquet exponent of the periodic solutions to equation (20), and from remark 4 we
know that this does not restrict the class of characteristic curves. Hence we have that

X ′

T ′
∈ C ⇐⇒ Re(λ) 6= 0,

which agrees with Corollary 1.

Remark 5. The transformation from the characteristic variables of the Whitham system (X ′, T ′) to the spectral
variable λ and Floquet exponent µ may have greater significance in the scope of rigorously proving the agreement
of Whitham modulation theory with linear stability at the origin. In fact, the transformation in all previous examples
[Serre2005, OZ2006, JZ2010, JMMP2014] is:

λ = X ′ − cT ′, µ = − iT
′

T∗
,

where T∗ is the period of the underlying wave. To explain the factor of 1
T∗

, the cited papers all consider the Floquet
multiplier to have the form eiµ, whereas we have chosen to consider eiµT∗ in keeping with [LBJM2019].

4 Discussion and open problems

In this paper, we show that the formal Whitham modulation theory correctly predicts the modulational instability of
periodic, travelling wave solutions of the general nonlinear Schrödinger equation (1) as prescribed by the rigorous
spectral analysis at the origin in [LBJM2019]. Applying the variational principle to the averaged Lagrangian allows us to
derive four modulation equations, which we then homogenize using the genericity conditions described in [LBJM2019].
This results in two cases depending on which slowly-varying parameters we eliminate, however the calculations are
essentially the same. Finally, we compute a quartic equation for the characteristics of the homogenized modulation
equations from the determinant of the quasi-linear system equation (99). By invoking various determinant identities
inspired by the proof of [LBJM2019, Proposition 1] and also a change of variables, we deduce that the characteristics
of the Whitham system satisfy the same quartic equation as the normal form for the four continuous bands of spectrum
at the origin [LBJM2019].

Leisman et al. also provide a modulational instability criterion for transverse perturbations, where they consider the
stability of periodic solutions of equation (1) to the two-dimensional equation:

iψt = ψxx ± ψzz + ζf(|ψ|2)ψ.

The extension is neat from the perspective of the linear theory, however we believe extending the Whitham theory
would involve a two-phase approach, making the homogenization process considerably more difficult. We have decided
that this lies outside the scope of this paper.
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One interesting future direction for our results would be to compute Riemann invariants and investigate the behaviour
of dispersive shock waves for suitable one-dimensional potentials f(|ψ|2). This would involve diagonalizing the matrix
A−1a from the quasi-linear system equation (99).

Another obvious extension would be to consider a coupled general nonlinear Schrödinger system:

iψ1t = ψ1xx + ζ1f(ζ1|ψ1|2, ζ2|ψ2|2)ψ1

iψ2t = ψ2xx + ζ2f(ζ1|ψ1|2, ζ2|ψ2|2)ψ2,

which has the Lagrangian:

L = i(ψ1ψ1t − ψ1ψ1t) + i(ψ2ψ2t − ψ2ψ2t) + 2|ψ1x|2 + 2|ψ2x|2 − 2F (ζ1|ψ1|2, ζ2|ψ2|2).

More generally, we could couple n general nonlinear Schrödinger equations together, which yields

i∂tψ = ∂2
xψ +∇ψF (|ψ1|2, . . . , |ψn|2) (121)

L = i(ψ · ∂tψ −ψ · ∂tψ) + 2|∂xψ|2 − 2F (|ψ1|2, . . . , |ψn|2), (122)

where F is a scalar potential. We believe that the Whitham theory for these systems would closely resemble the
procedure for equation (1), however difficulty may arise in the homogenization process. In particular, one must find
suitable genericity conditions to eliminate enough slowly-varying parameters.

Finally, we cite the open problem of proving that the modulational instability criterion derived from the hyperbolicity of
a Whitham modulation system coincides with spectral instability of a periodic travelling wave solution of some general
class of PDEs. The difficulty in developing a general proof lies in the homogenization of the Whitham equations.
This process is guided by genericity conditions which are determined from the underlying PDE in the course of the
rigorous linearized spectral analysis; this explains the disparity amongst the analyses of [Serre2005, OZ2006, JZ2010,
JMMP2014] and this paper. On the other hand, it is promising that the transformation between the characteristics of the
Whitham system and the spectral variables (equation (119)) appears in the cited examples where the Whitham theory
has been rigorously verified, perhaps offering another avenue for research.
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Appendix A Poisson brackets from the linear theory

We first define the Poisson brackets:

γ = {T∗, η}κ,ω ρ = {T∗, η}ω,E τ =
T∗T∗κ

2

ν = −T∗T∗E
2

ξ = {T∗, η}κ,ζ χ = {T∗, η}ζ,E .

With these definitions, we can list the matrix entries in equation (21):

a2 = −σ
2

(γME + ρMκ + σMω)

b2 = −σρT∗
2

= −σ(τME + νMκ)

d2 = −σ
2

(νT∗ +
σ

2
M)

a1 = 2iσρT∗
b1 = iσT∗(ν + γ)

d1 = iσT∗(2τ + σκ)

a0 = 2σνT∗
b0 = 2στT∗
d0 = 2σT∗(ωγ − ζξ − Eσ)

19



A PREPRINT - NOVEMBER 19, 2020

Appendix B Relations between K and W

In this appendix, we give the relations between the derivatives of K and the derivatives of W , defined in equations (10)
and (64) respectively. This is carried out by taking a derivative of equation (75) with respect to one of the parameters
H,U, J, γ, β, ζ and then applying the chain rule, simplifying the results using equations (71) to (73). Finally, we use
equations (11) to (13) to eliminate K. For the period T = KE in the linear theory:

T∗ = 4πWH

T∗E = 16πWHH

T∗κ = 16π(WHJ − (β +
U

2
)WHH) = −16πη∗H

T∗ω = −4πMH .

Next, for η we have:

η = 4πη∗
ηE = 16πη∗H

ηκ = 16π(η∗J − (β +
U

2
)η∗H)

ηω = −4πη∗γ∗ .

Finally for M :

M = 2πM∗
ME = 8πM∗H

Mκ = 8π(M∗J − (β +
U

2
)M∗H)

Mω = −2πM∗γ∗ .

Since ζ is the same parameter for both cases, we have that:

Kζ = πWζ .

Appendix C Poisson brackets for the modulation equations

Similarly to the Poisson brackets in appendix A, we make the following definitions for Poisson brackets for the Whitham
system:

σ∗ = {WH , η∗}H,J = {WH ,WJ}J,H
ρ∗ = {WH , η∗}γ∗,H = {WH ,WJ}H,γ∗
Γ = {WH , η∗}J,γ∗ = {WH ,WJ}γ∗,J

ν∗ = −1

2
WHWHH

τ∗ =
1

2
WHWHJ

ξ∗ = {WH , η∗}J,ζ = {WH ,WJ}ζ,J
χ∗ = {WH , η∗}ζ,H = {WH ,WJ}H,ζ .

The reason we have included the Poisson brackets in terms of WJ as well as η∗ is because it is more straightforward to
use the symmetry of mixed partial derivatives of W when using WJ .

We make extensive use of several properties of Poisson brackets. Let P,Q, S be functions of w, x, y, z with symmetric
mixed partial derivatives. Then:

• {P,Q}w,x = −{P,Q}x,w = −{Q,P}w,x;
• {Pw, Qx}y,z = {Py, Qz}w,x;
• {P, P}w,x = 0;
• {PQ,S}w,x = P{Q,S}w,x +Q{P, S}w,x;
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• {αP,Q}w,x = α{P,Q}w,x for a constant α.

The above definitions allow us to express the equivalent Poisson brackets in appendix A in terms of these newly-defined
Poisson brackets for the Whitham parameters:

σ = 256π2σ∗

ρ = −64π2ρ∗

γ = −64π2(Γ +

(
β +

U

2

)
ρ∗)

ν = 64π2ν∗

τ = 64π2(τ∗ +

(
β +

U

2

)
ν∗)

χ = 64π2χ∗

ξ = 64π2(ξ∗ +

(
β +

U

2

)
χ∗)

Ultimately, we use these expressions to express the matrix entries of equation (21) (given in appendix A) in terms of the
Whitham parameters:

a2 = 216π5σ∗(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

b2 = 215π5ρ∗σ∗WH = −216σ∗(τ∗M∗H + ν∗M∗J)

d2 = −215π5σ∗(ν∗WH + σ∗M∗)

a1 = −217iπ5σ∗ρ∗WH

b1 = 216iπ5σ∗WH(ν∗ − Γ−
(
β +

U

2

)
ρ∗)

d1 = 216iπ5σ∗WH(2τ∗ + 2

(
β +

U

2

)
ν∗ + Jσ∗)

a0 = 217π5σ∗ν∗WH

b0 = 217π5σ∗WH(τ∗ +

(
β +

U

2

)
ν∗)

For the last entry d0, we use the identity:

W = 2WH

(
H + βJ +

UJ

2

)
− 2M∗

(
βU +

U2

4
− γ∗

)
− Jη∗ − 2ζWζ . (123)

In particular, taking Poisson brackets of equation (123) with WJ and derivatives with respect to H and J , and using the
fact that WJ = 0 in equation (88) yields:

WHη∗J = −σ∗
(

2H + βJ +
UJ

2

)
− 2Γ

(
βU +

U2

4
− γ∗

)
− 2ζξ∗.

Similarly, we have for a Poisson bracket of equation (123) with WH and derivatives H and J :

WHη∗H = 2ρ∗

(
βU +

U2

4
− γ∗

)
+ Jσ∗ + 2ζχ∗.

Hence

d0 = 2σT (ωγ − ζξ − Eσ)

= 217π5σ∗WH(−
(
βU +

U2

4
− γ∗

)
Γ− ζξ∗ −

(
H + βJ +

UJ

2

)
σ∗ −

(
β +

U

2

)
(ρ∗

(
β +

U2

4
− γ∗

)
+ ζχ∗))

= 216π5σ∗W
2
H(η∗J − η∗H

(
β +

U

2

)
).
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Now writing η∗H , η∗J as the derivatives of WJ using its definition in equation (77), we see that

d0 = 216π5σ∗W
2
H(2WHJ

(
β +

U

2

)
−WJJ −

(
β +

U

2

)2

WHH)

= 216π5σ∗WH(4τ∗

(
β +

U

2

)
+ 2ν∗

(
β +

U

2

)2

−WHWJJ).

We also provide a calculation of the determinant D from theorem 1 in terms of the Whitham parameters:

D = − 4

σ3
(a2d2 − b22)

= − 4

224π6σ3
∗

(
(216π5σ∗(ΓM∗H + ρ∗M∗J + σ∗M∗γ))(−215π5σ∗(ν∗WH + σ∗M∗))− (216π5σ∗(τ∗M∗H + ν∗M∗J))2

)
= −29π4

σ∗

(
−(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)(ν∗WH + σ∗M∗)− 2(τ∗M∗H + ν∗M∗J)2

)
=

29π4

σ∗

(
σ∗M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗) + ν∗WH (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗) +

W 2
H

2
(WHJM∗H −WHHM∗J)

2

)
= 29π4

(
M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

+
W 2
H

2σ∗

(
−WHH (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗) +W 2

HJM
2
∗H − 2WHJWHHM∗HM∗J +W 2

HHM
2
∗J
))

= 29π4

(
M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ)− W 2

H

2σ∗

(
σ∗WHHM∗γ +WHHM∗H(M∗HWJJ −WHJM∗J)

+WHHM∗J(WHHM∗J −WHJM∗H)−W 2
HJM

2
∗H + 2WHJWHHM∗HM∗J −W 2

HHM
2
∗J

))
= 29π4

(
M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)−

W 2
H

2σ∗

(
σ∗WHHM∗γ∗ −M2

∗H(W 2
HJ −WHHWJJ)

))
= 29π4

(
M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)−

W 2
H

2σ∗

(
σ∗WHHM∗γ∗ − σ∗M2

∗H
))

from which we have:

D = 29π4

(
M∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)−

W 2
H

2
{WH ,Wγ∗}H,γ∗

)
. (124)
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Appendix D Calculating matrix elements

In this appendix, we provide some calculations for the matrix elements of equations (100) and (101). We already
calculated A21, A22, A23, A24 in equation (98). For equation (91), we compute:

WHJ∂TWU = {WU ,WJ}J,HJT + {WU ,WJ}γ∗,Hγ∗T + {WU ,WJ}U,HUT + {WU ,WJ}β,HβT

=

{
JWH

2
−Wγ∗

(
β +

U

2

)
,WJ

}
J,H

JT +

{
JWH

2
−Wγ∗

(
β +

U

2

)
,WJ

}
γ∗,H

γ∗T

+

{
JWH

2
−Wγ∗

(
β +

U

2

)
,WJ

}
U,H

UT +

{
JWH

2
−Wγ∗

(
β +

U

2

)
,WJ

}
β,H

βT

=

(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
JT +

(
−J

2
ρ∗ −

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

)
γ∗T

+

(
J

2

{
JWH

2
−Wγ∗

(
β +

U

2

)
,WH

}
H,J

− 1

2
M∗WHJ −

(
β +

U

2

){
JWH

2
−Wγ∗

(
β +

U

2

)
,WH

}
γ∗,J

)
UT

+

(
J

2

{
JWH − UWγ∗ ,WH

}
H,J
−M∗WHJ −

(
β +

U

2

){
JWH − UWγ∗ ,WH

}
γ∗,J

)
βT

=

(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
JT +

(
−J

2
ρ∗ −

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

)
γ∗T

+

(
J

2
ν∗ +

J

2
ρ∗

(
β +

U

2

)
− 1

2
M∗WHJ +

1

2
WHM∗H

(
β +

U

2

)
+

(
β +

U

2

)2

{WH ,Wγ∗}J,γ∗

)
UT

+

(
Jν∗ +

J

2
Uρ∗ −M∗WHJ +WHMH

(
β +

U

2

)
+ U

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

)
βT

= A31JT +A32γ∗T +A33UT +A34βT .

For a31, a32, a33, a34:

WHJWUUX −WHJ∂XW = WHJWUUX − {W,WJ}J,HJX − {W,WJ}γ∗,Hγ∗X − {W,WJ}U,HUX − {W,WJ}β,HβX
= WHWJJJX − (M∗WHJ −WHM∗J)γ∗X +WHWUJUX − (WβWHJ −WHWβJ)βX .

Taking the J-derivatives of WU and Wβ defined in equations (80) and (81) respectively, we have:

WHJWUUX −WHJ∂XW = WHWJJJX − (M∗WHJ −WHM∗J)γ∗X +WH

(
1

2
WH +

J

2
WHJ −M∗J

(
β +

U

2

))
UX

− (WHJ(JWH − UM∗)−WH(WH + JWHJ − UM∗J))βX

= WHWJJJX − (M∗WHJ −WHM∗J)γ∗X +

(
1

2
W 2
H + Jτ∗ −WHM∗J

(
β +

U

2

))
UX

−
(
−W 2

H + UWHM∗J − UM∗WHJ

)
βX

= a31JX + a32γ∗X + a33UX + a34βX .

Finally, in equation (92) we compute:

WHJWH∂TM∗ = WH{WH ,WJ}J,γ∗JT +WH{WH ,Wγ∗}J,γ∗γ∗T +WH{WH ,WU}J,γ∗UT +WH{WH ,Wβ}J,γ∗βT

= −WHΓJT +WH{WH ,Wγ∗}J,γ∗γ∗T +WH

{
WH ,

JWH

2
−Wγ∗

(
β +

U

2

)}
J,γ∗

UT

+WH

{
WH , JWH − UWγ∗

}
J,γ∗

βT

= −WHΓJT +WH{WH ,Wγ∗}J,γ∗γ∗T +WH

(
−1

2
WHM∗H −

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

)
UT

+WH (−WHM∗H − U{WH ,Wγ∗}J,γ∗)βT
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Hence for A41, A42, A43, A44, we have:

WHJWH∂TM∗ −WHJM∗∂TWH = (−ΓWH − σ∗M∗) JT + (WH{WH ,Wγ∗}J,γ∗ + ρ∗M∗)

+

(
−1

2
W 2
HM∗H −WH

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗ −M∗

(
ν∗ + ρ∗

(
β +

U

2

)))
+
(
−W 2

HM∗H − UWH{WH ,Wγ∗}J,γ∗ −M∗(2ν∗ + Uρ∗)
)

= A41JT +A42γ∗T +A43UT +A44βT .

The X-derivatives of equation (92) are:

U(WHJWH∂XM∗ −WHJM∗∂XWH) +WHJWHM∗UX −WHJW
2
HJX

= (UA41 − 2τ∗WH)JX + UA42γ∗X + (UA43 + 2τM∗)UX + UA44βX

Appendix E Matrix elements for the Schur determinant calculation

In this appendix, we calculate the coefficients in equation (113), using the expressions form11,m12,m21,m22 computed
in equations (108) and (110) to (112). We derive a number of useful identities that we use freely in the subsequent
calculations:

σ∗{WH ,Wγ∗}J,γ∗ − ρ∗Γ = σ∗(WHJM∗γ∗ −M∗HM∗J)− (M∗JWHH −M∗HWHJ)(M∗HWJJ −M∗JWHJ)

= WHJσ∗M∗γ∗ −M∗HM∗J(W 2
HJ −WHHWJJ)

−
(
M∗JM∗HWHHWJJ −M2

∗HWHJWJJ −M2
∗JWHHWHJ +M∗HM∗JW

2
HJ

)
= WHJ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

1

2
σ∗WHM∗H − ν∗Γ =

1

2
WHM∗H(W 2

HJ −WHHWJJ) +
1

2
WHWHH(M∗HWJJ −M∗JWHJ)

=
1

2
WHWHJ(M∗HWHJ −M∗JWHH)

= −τ∗ρ∗
W 2
H

2
σ∗ − ν∗WHWJJ + 2τ2

∗ =
W 2
H

2
(W 2

HJ −WHHWJJ +WHHWJJ +W 2
HJ)

= W 2
HW

2
HJ

= 4τ2
∗

2τ∗Γ−WHWJJρ∗ −WHM∗Jσ∗ = WH(WHJ(M∗HWJJ −M∗JWHJ)−WJJ(M∗JWHH −M∗HWHJ)

−M∗J(W 2
HJ −WHHWJJ))

= 2WHWHJ(M∗HWJJ −M∗JWHJ)

= 4τ∗Γ

σ∗M∗J + ρ∗WJJ = M∗J(W 2
HJ −WHHWJJ) +WJJ(M∗JWHH −M∗HWHJ)

= WHJ(M∗JWHJ −M∗HWJJ)

= −WHJΓ

σ∗WHM∗H − 2ν∗Γ = WH

(
M∗H(W 2

HJ −WHHWJJ) +WHH(M∗HWJJ −M∗JWHJ)
)

= WHWHJ(M∗HWHJ −M∗JWHH)

= −2τ∗ρ∗.
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For the coefficients a′11, b
′
11, c

′
11, we have:

a′11 = WH(σ∗A33 −A23A31)

= WH

[
J

2
ν∗σ∗ +

J

2
ρ∗σ∗

(
β +

U

2

)
− 1

2
σ∗M∗WHJ +

1

2
σ∗WHM∗H

(
β +

U

2

)
+ σ∗

(
β +

U

2

)2

{WH ,Wγ∗}J,γ∗

−
(
ν∗ + ρ∗

(
β +

U

2

))(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))]
= WH

[(
β +

U

2

)2

(σ∗{WH ,Wγ∗}J,γ∗ − ρ∗Γ) +

(
β +

U

2

)(
1

2
σ∗WHM∗H − ν∗Γ− τ∗ρ∗

)
− 1

2
σ∗M∗WHJ − ν∗τ∗

]
= WHWHJ

(
β +

U

2

)2

(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)− 2τ∗ρ∗WH

(
β +

U

2

)
− σ∗τ∗M∗ − ν∗τ∗WH

b′11 = iWH(σ∗a33 −A23a31 + 2τ∗A31)

= iWH

(
W 2
H

2
σ∗ + Jτ∗σ∗ −WHM∗Jσ∗

(
β +

U

2

)
−WHWJJ

(
ν∗ + ρ∗

(
β +

U

2

))
+ 2τ∗

(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

)))
= iWH

(
W 2
H

2
σ∗ − ν∗WHWJJ + 2τ2

∗ + 2Jτ∗σ∗ + (2τ∗Γ−WHWJJρ∗ −WHM∗Jσ∗)

(
β +

U

2

))
= iWH

(
4τ2
∗ + 2Jτ∗σ∗ + 4τ∗Γ

(
β +

U

2

))
c′11 = −2τ∗WHa31

= −2τ∗W
2
HWJJ

Next for a′12, b
′
12, c

′
12:

a′12 = WH(σ∗A32 −A22A31)

= WH

[
−J

2
ρ∗σ∗ − σ∗

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗ + ρ∗

(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))]
= WH

[(
β +

U

2

)
(ρ∗Γ− σ∗{WH ,Wγ∗}J,γ∗) + τ∗ρ∗

]
= τ∗ρ∗WH − 2τ∗

(
β +

U

2

)
(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

b′12 = −iWH [σ∗A34 + σ∗UA32 − σ∗a32 −A24A31 − UA22A31 +A22a31]

= −iWH

[
Jν∗σ∗ + σ∗WHM∗H

(
β +

U

2

)
− σ∗M∗WHJ +

J

2
Uρ∗σ∗ + Uσ∗

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗

− J

2
Uρ∗σ∗ − Uσ∗

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗ − σ∗WHM∗J + σ∗WHJM∗ − (2ν∗ + Uρ∗)

(
τ∗ +

Jσ∗
2

+ Γ

(
β +

U

2

))
+ Uρ∗

(
τ∗ +

Jσ∗
2

+ Γ

(
β +

U

2

))
− ρ∗WHWJJ

]
= −iWH

[
−2ν∗τ∗ −WH(σ∗M∗J + ρ∗WJJ) +

(
β +

U

2

)
(σ∗WHM∗H − 2ν∗Γ)

]
= 2iτ∗WH

(
ν∗ − Γ + ρ∗

(
β +

U

2

))
c′12 = WH [σ∗a34 + σ∗Ua32 −A24a31 − UA22a31]

= WH

[
σ∗(W

2
H + UM∗WHJ − UWHM∗J) + Uσ∗(WHM∗J −WHJM∗)−WHWJJ(2ν∗ + Uρ∗) + Uρ∗WHWJJ

]
= WH

[
σ∗W

2
H − 2ν∗WHWJJ

]
= W 3

HW
2
HJ

= 4τ2
∗WH .
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Now for a′21, b
′
21, c

′
21:

a′21 = σ∗A43 −A23A41

= σ∗

(
−W

2
HM∗H

2
−WH

(
β +

U

2

)
{WH ,Wγ∗}J,γ∗ −M∗

(
ν∗ + ρ∗

(
β +

U

2

)))
−
(
ν∗ + ρ∗

(
β +

U

2

))
(−ΓWH − σ∗M∗)

= WH

(
β +

U

2

)
(ρ∗Γ− σ∗{WH ,Wγ∗}J,γ∗) + ν∗ΓWH −

W 2
H

2
σ∗M∗H

= −2τ

(
β +

U

2

)
(ΓM∗H + ρ∗M∗J + σ∗M∗γ∗) + τ∗ρ∗WH

b′21 = i(2τ∗σ∗M∗ + 2τ∗WHA23 + 2τ∗A41)

= 2iτ∗

(
σ∗M∗ +WH

(
ν∗ + ρ∗

(
β +

U

2

))
− ΓWH − σ∗M∗

)
= 2iτ∗WH

(
ν∗ − Γ + ρ∗

(
β +

U

2

))
c′21 = 4τ2

∗WH

Finally for a′22, b
′
22, c

′
22:

a′22 = σ∗A42 −A22A41

= σ∗ (WH{WH ,Wγ∗}J,γ∗ + ρ∗M∗) + ρ∗ (−ΓWH − σ∗M∗)
= WH (σ∗{WH ,Wγ∗}J,γ∗ − ρ∗Γ)

= 2τ∗ (ΓM∗H + ρ∗M∗J + σ∗M∗γ∗)

b′22 = −i (Uσ∗A42 + σ∗A44 −A24A41 − 2τ∗WHA22 − UA22A41)

= −i
(
Uσ∗(WH{WH ,Wγ∗}J,γ∗ + ρ∗M∗) + σ∗

(
−W 2

HM∗H − UWH{WH ,Wγ∗}J,γ∗ −M∗(2ν∗ + Uρ∗)
)

− (2ν∗ + Uρ∗)(−ΓWH − σ∗M∗) + 2τ∗ρ∗WH + Uρ∗(−ΓWH − σ∗M∗)
)

= −i
(
−σ∗W 2

HM∗H + 2ν∗ΓWH + 2τ∗ρ∗WH

)
= −4iτ∗ρ∗WH

c′22 = 2τ∗WHA24 + 2τ∗UWHA22

= 2τ∗WH (2ν∗ + Uρ∗ − Uρ∗)
= 4τ∗ν∗WH .

For the calculation of the quadratics in equation (114), we have:

Q11(λ, µ) =

[
a′11 +

(
β +

U

2

)
a′21 +

(
β +

U

2

)(
a′12 +

(
β +

U

2

)
a′22

)]
λ2

+

[
b′11 +

(
β +

U

2

)
b′21 +

(
β +

U

2

)(
b′12 +

(
β +

U

2

)
b′22

)]
λµ

+

[
c′11 +

(
β +

U

2

)
c′21 +

(
β +

U

2

)(
c′12 +

(
β +

U

2

)
c′22

)]
µ2

= −τ∗ [ν∗WH + σ∗M∗]λ
2 + 2iτ∗WH

[
2τ∗ + 2

(
β +

U

2

)
ν∗ + Jσ∗

]
λµ

+ 2τ∗WH

[
4τ∗

(
β +

U

2

)
+ 2ν∗

(
β +

U

2

)2

−WHWJJ

]
µ2

=
τ∗

215π5σ∗

(
d2λ

2 + d1λµ+ d0µ
2
)

26



A PREPRINT - NOVEMBER 19, 2020

Next:

Q12(λ, µ) =

[
a′12 +

(
β +

U

2

)
a′22

]
λ2 +

[
b′12 +

(
β +

U

2

)
b′22

]
λµ+

[
c′12 +

(
β +

U

2

)
c′22

]
µ2

= ρ∗τ∗WHλ
2 + 2iτ∗WH

[
ν∗ − Γ− ρ∗

(
β +

U

2

)]
λµ+ 4τ∗WH

[
τ∗ + ν∗

(
β +

U

2

)]
µ2

=
τ∗

215π5σ∗

(
b2λ

2 + b1λµ+ b0µ
2
)
.

Using the symmetry of the matrix in equation (113), we have:

Q21(λ, µ) =

[
a′21 +

(
β +

U

2

)
a′22

]
λ2 +

[
b′21 +

(
β +

U

2

)
b′22

]
λµ+

[
c′21 +

(
β +

U

2

)
c′22

]
µ2

=

[
a′12 +

(
β +

U

2

)
a′22

]
λ2 +

[
b′12 +

(
β +

U

2

)
b′22

]
λµ+

[
c′12 +

(
β +

U

2

)
c′22

]
µ2

= Q12(λ, µ).

Finally:

Q22(λ, µ) = a′22λ
2 + b′22λµ+ c′22µ

2

=
τ∗

215π5σ∗

(
a2λ

2 + a1λµ+ a0µ
2
)
.

Appendix F Overview of the case WJJ 6= 0

In this appendix, we provide an overview for finding the characteristics of the Whitham modulation equations (89)
to (92) when WJJ and WHH are assumed to be non-vanishing. This provides justification for equation (118). In
a similar manner to equation (93), we start by applying the implicit function theorem to WJ = 0, which yields a
continuously differentiable function h such that:

J = h(H,U, γ∗, β).

Taking derivatives of WJ = 0 provides the relations:

∂H : hHWJJ = −WHJ

∂U : hUWJJ = −WUJ

∂γ : hγ∗WJJ = −Wγ∗J

∂β : hβWJJ = −WβJ .

We now apply the chain rule to the T and X derivatives in the modulation equations in order to write them in terms of
derivatives of the parameters. With z = T,X , the required derivatives are:

WJJ∂zWH = {WH ,WJ}H,JHz + {Wγ ,WJ}H,Jγ∗z + {WU ,WJ}H,JUz + {Wβ ,WJ}H,Jβz

= −σ∗Hz + Γγ∗z −
(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
Uz − (2τ∗ + Jσ∗ + UΓ)βz

WJJ∂zWU = {WU ,WJ}H,JHz + {WU ,WJ}γ∗,Jγ∗z + {WU ,WJ}U,JUz + {WU ,WJ}β,Jβz

= −
(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
Hz +

(
−WHM∗J

2
+ JΓ−

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

)
γ∗z

+

(
−1

4
W 2
H − Jτ∗ −

J2

4
σ∗ −

1

2
M∗WJJ +WHM∗J

(
β +

U

2

)
− JΓ

(
β +

U

2

)
+

(
β +

U

2

)2

{Wγ∗ ,WJ}γ∗,J

)
Uz

+

(
−1

2
W 2
H − 2Jτ∗ −

J2

2
σ∗ −M∗WJJ +WHM∗J (β + U)− JΓ(β + U) + U

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

)
βz

WJJ∂zW = WHWJJHz +M∗WJJγ∗z +WUWJJUz +WJJ(JWH − UM∗)βz
WJJ∂zWγ∗ = {Wγ∗ ,WJ}H,JHz + {Wγ∗ ,WJ}γ∗,Jγ∗z + {Wγ∗ ,WJ}U,JUz + {Wγ∗ ,WJ}β,Jβz

= ΓHz + {Wγ∗ ,WJ}γ∗,Jγ∗z +

(
−WHM∗J

2
+ JΓ−

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

)
Uz

+ (−WHM∗J + JΓ− U{Wγ∗ ,WJ}γ∗,J)βz.
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As in equation (99), we write the modulation equations in the quasi-linear form:

A

HT

γ∗T
UT
βT

− a
HX

γ∗X
UX
βX

 = 0 (125)

with

A =

 0 0 0 1
A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



a =

 0 1 0 0
UA21 UA22 UA23 −WHWJJ UA24

UA31 + a31 UA32 + a32 UA33 UA34 + a34

UA41 + 2τWH UA42 +W 2
HM∗J UA43 + a43 UA44 + a44


and the coefficients

A21 = −σ∗
A22 = Γ

A23 = −
(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
A24 = −(2τ∗ + Jσ∗ + UΓ)

A31 = −
(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
A32 = −WHM∗J

2
+
J

2
Γ−

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

A33 =

(
−1

4
W 2
H − Jτ∗ −

J2

4
σ∗ −

1

2
M∗WJJ +WHM∗J

(
β +

U

2

)
− JΓ

(
β +

U

2

)
+

(
β +

U

2

)2

{Wγ∗ ,WJ}γ∗,J

)

A34 =

(
−1

2
W 2
H − 2Jτ∗ −

J2

2
σ∗ −M∗WJJ +WHM∗J (β + U)− JΓ(β + U) + U

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

)
A41 = ΓWH + σ∗M∗
A42 = WH{Wγ∗ ,WJ}γ∗,J − ΓM∗

A43 = WH

(
−WHM∗J

2
+
J

2
Γ−

(
β +

U

2

)
{Wγ∗ ,WJ}γ∗,J

)
+M∗

(
τ∗ +

J

2
σ∗ + Γ

(
β +

U

2

))
A44 = WH(−WHM∗J + JΓ− U{Wγ∗ ,WJ}γ∗,J) +M∗(2τ∗ + Jσ∗ + UΓ)

a31 = −WHWJJ

a32 = −M∗WJJ

a34 = −WJJ(JWH − UM∗)

a43 = M∗WHWJJ +W 2
H

(
WH

2
+
JWHJ

2
−M∗J

(
β +

U

2

))
a44 = W 2

H(WH + JWHJ − UM∗J).

The equation for the characteristics is

AX ′ − aT ′ = 0.

The matrices A, a satisfy equation (103), since we can compute:

det(AX ′) =
WHW

2
JJ

210π4
X ′4D 6= 0. (126)

Moreover, we can follow the same procedure of applying the Schur determinant formula. The upper-left block matrix is:

P11 =

(
0 −T ′

−σ∗(X ′ − UT ′) Γ(X ′ − UT ′)

)
,
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which is only singular when X ′ = T ′ = 0 (from equation (126)), or when X ′ = UT ′. However, X ′ = UT ′ leads to
the determinant calculation:

det(UAT ′ − aT ′) = W 5
HW

2
JJT

′4,

which only vanishes when T ′ = 0, leading to the trivial solution X ′ = T ′ = 0. From here, the procedure of using the
Schur determinant formula and manipulating the determinant calculation is the same as in the Section 3.1. The end
result is given in equation (118).
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