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Abstract. The existence of travelling wave solutions to a haptotaxis dominated model is
analysed. A version of this model has been derived in Perumpanani et al (1999) to describe
tumour invasion, where di↵usion is neglected as it is assumed to play only a small role in the
cell migration. By instead allowing di↵usion to be small, we reformulate the model as a singular
perturbation problem, which can then be analysed using geometric singular perturbation theory.
We prove the existence of three types of physically realistic travelling wave solutions in the case
of small di↵usion. These solutions reduce to the no di↵usion solutions in the singular limit as
di↵usion as is taken to zero. A fourth travelling wave solution is also shown to exist, but that
is physically unrealistic as it has a component with negative cell population. The numerical
stability, in particular the wavespeed of the travelling wave solutions is also discussed.

1. Introduction

1.1. Travelling waves in cell migration. Cell migration has been studied by both biologists
and mathematicians for years, see for example [4, 28] and references within. It is important in
a variety of contexts including wound healing, cancer (or other tumour) growth, and embry-
onic growth and development. Travelling wave solutions arising from continuum mathematical
models to describe various modes of cell migration (purely di↵usive, purely advective or a com-
bination of both) are of particular interest. As well as the mode of migration, the speed of the
travelling wave solutions is of interest, as this corresponds to the rate of invasion of cells.

One of the most famous examples of a model exhibiting travelling wave solutions is the Fisher-
KPP equation [8, 16]. This model has been extensively studied and is an example of travelling
wave solutions arising from a purely di↵usive flux term. Another class of models known to
exhibit travelling waves are the Keller-Segel type models [14, 15]. These models describe cell
migration resulting from a combined di↵usive and advective flux term. Advective motion (or
advection) is the preferential motion of cells in a particular direction. This could be due to the
flow of a fluid they are suspended in, or a response to a chemical gradient, for example. In
all these examples, the observed travelling wave solutions are smooth. However, if the e↵ect
of di↵usion on cell migration is reduced so that the balance between di↵usive and advective
migration shifts towards purely advective, the fronts of the travelling wave solutions can steepen
and become shock-like. Note that true shocks or discontinuities will not be observed if even a
small amount of di↵usion is present.

True shocks, or solutions containing actual discontinuities arise from models with a purely
advective flux term. This type of flux term can be used to model cell migration if, for exam-
ple, cells are migrating in response to a gradient in a chemical that is bound to some surface.
The bound chemical reduces the amount of random motion of the cells considerably and hence
di↵usive-like motion is minimal or non-existent. In these types of models, travelling wave solu-
tions are still observed, and furthermore, the shock-like behaviour observed in the low di↵usion
case can develop into actual shocks. It is the low di↵usion, high advection limit of cell migration
that we are interested in.

1.2. Shock-fronted travelling waves. By applying a standard travelling wave analysis (see
for example [28]) to models of purely chemotactically (advectively) driven growth processes,
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systems of two-species, coupled, ordinary di↵erential equations (ODEs) of the form

(1)

du

dz
= R(u,w),

P (u,w)
dw

dz
= Q(u,w)

were uncovered [31,32]. Systems of first order di↵erential equations such as these can be studied
using methods from dynamical systems theory (see for example [12, 27]), where solution tra-
jectories are analysed in the (u,w)-phase plane. However, due to the term premultiplying the
left-hand side, this type of ODE system leads to singularities in the phase plane for P (u,w) = 0
and Q(u,w) 6= 0. In general, solution trajectories cannot cross this wall of singularities except
at the point P (u,w) = Q(u,w) = 0, called the hole in the wall, where the indeterminate form
means that the system is no longer singular.

Since the discovery of these walls of singularities, they have been studied in a variety of
biological (and other) applications [1,18–20,22–25,30]. These studies (beginning with [24]) have
led to the discovery of the possibility of both smooth and shock-fronted travelling wave solutions,
arising as a result of the singular behaviour in the phase plane. Of particular interest is the
transition from smooth to shock-fronted travelling waves and the role di↵usive versus advective
migration plays in determining the type of wavefront [20].

1.3. Geometric singular perturbation theory and canards. In [39], the authors studied
the existence of shock-fronted travelling waves using methods from geometric singular pertur-
bation theory (GSPT) with a particular focus on a special class of solutions known as canards.

The geometric approach to singular perturbation problems was introduced by [7]. As with
other singular perturbation methods, geometric singular perturbation theory is applied to sys-
tems exhibiting two (or more) distinct time or length scales, indicated mathematically by a
perturbation parameter multiplying the highest derivative. For a review of geometric singular
perturbation methods see [11, 13], or as they apply to problems in mathematical biology [9].
These methods have been used to construct smooth travelling wave solutions to a bioremedia-
tion model [2], as well as to find pulse solutions to a three-component reaction-di↵usion equation
arising from a model for gas discharge dynamics [6]. However, these theorems only apply under
the assumption of normal hyperbolicity, and break down in the neighbourhood of points where
normal hyperbolicity is lost, such as a wall of singularities. This is where the theory of canards
comes into play.

The theory of canard solutions allows the extension of Fenichel theory to points in the neigh-
bourhood of non-hyperbolic points [3, 17, 34, 36–38]. In [39], it was revealed that the holes in

the wall investigated in [31] using traditional phase plane analysis, are equivalent to the folded

singularities investigated independently in [36] as part of the development of the existence of
canards. We will use the latter approach.

1.4. The model. In this work, we study a model originally presented in [30]. The model
describes haptotactic cell invasion in the context of malignant tumour growth, in particular
melanoma (a type of skin cancer). In [30], the following simplified, dimensionless model is
derived:

@c

@t

= �c

2
u,

@u

@t

= u(1� u)� @

@x

✓
@c

@x

u

◆
,

with boundary conditions,

c(�1) = 0, c(1) = ĉ, u(�1) = 1, u(1) = 0,

and x 2 R, t 2 R+. Here c(x, t) is the extracellular matrix (ECM) concentration and u(x, t) is the
invasive tumour cell population. Note that the original description of the tumour invasion process
included an expression for the density of protease, but it was neglected as the density of protease
can be assumed to be constant to leading order, within certain parameter regimes [25,30]. The
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tumour cells proliferate logistically, independent of the presence of ECM, all the while consuming
it. They also respond haptotactically to a gradient in ECM, and so migrate preferentially up
the ECM gradient.

Haptotaxis is a type of advection similar to chemotaxis. Both describe the directed motion of
cells up (down) the gradient of some chemical or chemoattractant (chemorepellent). Chemotaxis,
as the better known term, arises when the chemoattractant (or chemorepellent) is suspended in a
fluid. On the exterior of each cell are receptors that detect chemoattractant and allow it to pass
into the cell. Based on the locations around the cell of the receptors admitting chemoattractant,
the cells determine the most favourable migration direction. For example, if more receptors of
the right hand side of the cell detect chemoattractant than on the left, the cell will move to the
right. Thus, if a gradient in the chemoattractant is present, the cells will, on average, migrate up
the chemical gradient. The opposite occurs in the case of a chemorepellent. Haptotaxis follows
a similar mechanism but arises when the chemoattractant is bound to a surface. In this case,
the concentration of cell adhesion sites could even act as a chemoattractant, as well as actual
substrate-bound chemicals, such as present in the ECM.

Since the ECM is a substrate, to which the cells essentially bind themselves, it is reasonable
to assume that di↵usion plays a very small role in the tumour invasion process and therefore is
ignored in [30]. (We shall not ignore di↵usion but rather allow it to be small, see Section 1.5.)

In [30] and subsequently [24], the authors show that this model exhibits both smooth and
shock-fronted travelling waves; we shall first provide a summary of the relevant results here, for
more details we refer to the original works. Although the model was originally presented in [30],
we focus on the analysis undertaken in the revised and self-contained version [24]. However,
before we begin, we must address the issue of nomenclature. Within the travelling wave litera-
ture, it is convention to use c as the wavespeed of a travelling wave solution, not as a variable
as in [24, 30]. Moreover, the model studied here fits the general framework of [39], and thus we
choose to use the notation therein. Consequently, we let c(x, t) = ũ(x, t), u(x, t) = w̃(x, t) and
will henceforth consider the system

(2)
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◆
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In order to investigate travelling wave solutions, the coordinate transformation z = x� ct is
applied, where c is now the speed of the travelling wave. Thus (2) can be rearranged to the
system of first order ODEs:

(3)

du

dz
=

u

2
w

c

,

✓
2u2w

c

� c

◆
dw

dz
= w(1� w)� 2u3w3

c

2
,

where we have dropped the tildes for convenience. Note that this is now in the form (1). As
a result, this model exhibits a wall of singularities and a hole in the wall when analysing the
phase plane. The wall of singularities is defined by the zeros of the term premultiplying the
w-derivative,

(4) w =
c

2

2u2
=: F (u).

The hole in the wall is defined as the point, on the wall of singularities, where the right hand side
of the w-equation also vanishes, and thus appears at the intersection of the wall of singularities
(4) and the non-trivial w-nullcline. This gives

(5) (uH , wH) =

✓
c

4
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i
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◆
.

By examining the phase plane, a two parameter family of heteroclinic orbits representing both
smooth (Type 1) and shock-fronted (Type 2) travelling waves were identified. These orbits are
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constructed numerically, or using a power series solution centered at (uH , wH) to approximate
the two trajectories that cross through the wall of singularities, with the shocks defined by the
Rankine-Hugoniot and Lax entropy conditions, see for example [33] and references within. Note
that the power series solutions appear to provide a good approximation su�ciently far away
from the (0, 1) steady state.

The two parameters are the wavespeed c and the end state of the u-wave, which we shall
denote u1. Thus,

u1(c) = lim
z!1

u(z),

and is equivalent to the parameter ĉ in the original notation [24, 30]. The transition from the
smooth to the shock-fronted waves is characterised by u1 = ucrit = ucrit(c) or, equivalently,
c = ccrit = ccrit(u1). Maximum and minimum values for u1 and c, respectively, are identified
for the appearance of physically realistic (non-negative) shock-fronted waves.

An illustration of the di↵erent types of waves is given in Figure 1, emphasising the di↵erence
between the smooth and non-smooth waves. The solution curves for u are represented by the
dashed lines and those for w by the solid lines. Initial conditions are shown in black, with the
successive solutions plotted at equal time intervals. The di↵erent wave types were generated
by varying the steepness of the initial profiles. This is discussed further in Section 3.1 and
Section 3.4.
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Figure 1. An illustration of the appearance of both smooth solutions and those
exhibiting shock-like behaviour. The solutions are examples of a Type 1 wave,
Type 2 wave with infinite support, and Type 2 wave with semi-compact support,
from left to right; alternatively, a Type I, II and III wave. The solutions are
generated from the numerical solution of (6) with " = 0.005, however, are qual-
itatively the same as those presented in [24] for " = 0. Dashed lines represent
the u-solutions and solid lines the w-solutions, with initial conditions shown in
black. Solutions are plotted at equal time intervals.

In summary, it is concluded in [24] based on numerical evidence that Type 1 solutions exist
for c � ccrit and Type 2 solutions for cmin < c  ccrit, for fixed u1. Both wave types were
demonstrated to be numerically stable. A third, Type 3 wave was also considered, however, it
did not satisfy the Lax entropy condition and was demonstrated to be numerically unstable.
Waves for which c < cmin were not considered as they would be non-physical. These results can
also be expressed in terms of ranges of the parameter u1, for fixed c.

The existence of the Type 1 waves is rigorously proven in [10] by considering a desingularised
version of (3) and constructing an invariant region to which the Type 1 waves are restricted.
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1.5. Outline and main results. In this work we formalise the results from [24], and extend the
work of [10], to provide a rigorous proof of existence of both smooth and shock-fronted travelling
wave solutions to (2). Furthermore, we prove the existence of travelling wave solutions for the
more general model, where both the ECM and cell species are allowed to di↵use,

(6)
ut = �u

2
w + "uxx,

wt = w(1� w)� (uxw)x + "wxx,

with x 2 R, t 2 R+ and " ⌧ 1. From a biological or modelling perspective, this formulation is
advantageous as it allows us to investigate the e↵ects of small di↵usion, as well as no di↵usion.
(Note that for " = 0, (6) is equivalent to (2).)

The background states of (6) are (u,w) = (0, 1) and (u,w) = (u1, 0), u1 2 R. Hence,
we are searching for travelling wave solutions on an unbounded domain that connect (0, 1)
(representing a state with no ECM and a dimensionless concentration of 1 of tumour cells) to
(u1, 0) (representing the tumour free state with a variable amount of ECM). Thus, we have

(7) u(�1) = 0, u(1) = u1, w(�1) = 1, w(1) = 0.

Due to the nature of the background states, we expect to see right-moving travelling waves,
that is c > 0. The second condition in (7) implies that the right hand boundary condition on
u, denoted u1, is free. Since u and w represent physical quantities, we shall focus on solutions
to (6) for which u,w 2 [0,1) for all x 2 R, t 2 R+. Hence, for this purpose we assume u1 � 0.
We will however, consider one type of solution for which w < 0.

From a mathematical perspective, the advantage of the formulation (6) over (2) lies in the
applicability of GSPT to (6), as demonstrated in [39]. In [39], travelling wave solutions of the
general model (to which (6) conforms),

(8)
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are investigated, with f(u,w), g(u,w) and h(u,w) adhering to certain assumptions. We explicitly
check these assumptions for (6). Upon introducing a new variable v = ux, (8) is transformed
into the singularly perturbed system of coupled balance laws:

(9)
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Consequently, GSPT, including Fenichel theory [7] and the theory of canard solutions [17, 34,
36–38], is used to provide a general framework for a proof of the existence of travelling wave
solutions of (8). These solutions include smooth travelling waves, as well as those that exhibit
shock-like behaviour.

The key steps of the proof are as follows:

• reformulate the model as a singular perturbation problem as in (9);
• in the singular limit " ! 0, identify a fold(s) in the critical manifold (see Lemma 2.2);
• identify a folded saddle canard point(s) (see Lemma 2.3);
• construct heteroclinic orbits (see Lemmas 2.4, 2.5 and 2.6);
• prove the persistence of the singular heteroclinic orbits for su�ciently small " > 0 (see
Section 2.5).

Note that the folded nature of the critical manifold is essential for the existence of shock-fronted
travelling wave solutions in the limit " ! 0. Furthermore, the existence of the folded saddle
canard point is an important feature of such models as (8) that was previously unrecognised.

In Section 2, following the steps outlined above we identify singular heteroclinic orbits repre-
senting so called Type I, II, III and IV waves. The classification of the travelling wave solutions
as Type I, II, III or IV is based on distinguishing features of the waves in the singular limit
" ! 0. We assume the label for the Type 1 waves from [24], that is, any smooth travelling waves
are classified as Type I. The Type 2 waves identified by [24] are waves that exhibit a shock in
w, including both those with infinite and semi-compact support. We split this category in two;
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Type II waves, which are the Type 2 waves from [24] with infinite support, and Type III waves,
which have semi-compact support in w. The reason for the explicit distinction between the Type
II and III waves will become apparent in Section 3. Note that the Type III waves should not be
confused with the Type 3 waves from [24], which we show do not exist. The Type IV waves are
those that exhibit a shock and have a negative component in w. This type of solution was not
considered in [24] as it is non-physical.

Numerical solutions of (6) with " = 0.005 are shown in Figure 1, illustrating the three,
physically relevant types of travelling wave solutions. While we used a solver developed to
deal with sharp-fronted solutions by a combination of high-order upwinding and reaction term
linearisation in time to produce these plots [29], they are qualitatively the same as those given
in [24] where " = 0 and a Kuganov-Tadmor flux-limiting scheme was employed.

Having completed the proof of existence, in Section 3 we present additional numerical results,
in particular, relating to the wavespeeds of the various travelling wave solutions. We derive an
expression for the wavespeed of Type I and II waves that compares well with the numerically
measured wavespeeds. However, an expression for the wavespeed of the Type III, minimum
wavespeed wave remains to be found. No Type IV waves were observed numerically. We
conclude in Section 4.

2. Existence

In this section we prove the existence and uniqueness of travelling wave solutions to (6) for
su�ciently small ". These solutions include both travelling waves with and without a shock.

Before we begin we wish to make clear what we mean by a shock or a shock-fronted travelling
wave. For " = 0, the system is strictly hyperbolic and so is known to exhibit shocks. These
shocks are defined by the Rankine-Hugoniot and Lax conditions. Thus for " = 0, when we
talk about solutions exhibiting a shock we are referring to weak solutions of (2), which contain
discontinuities, with the solution away from the discontinuity satisfying (2) and the discontinuity
satisfying the appropriate shock conditions. As we turn on " these discontinuities smooth out
and thus the entire solution will satisfy (6). However, for 0 < " ⌧ 1 su�ciently small the
solutions will still contain regions with steep gradients where the discontinuity was previously
observed.

Thus, when we refer to a shock we are referring to the region in a solution containing very
steep gradients, which in the limit " ! 0 becomes a discontinuity. From a geometric perspective,
the shocks correspond to components of the solutions that arise from a diversion through the
fast subsystem.

Theorem 2.1. There exists an "0 such that for " 2 [0, "0] travelling wave solutions exist for

the system (6) with boundary conditions (7), and are unique. Furthermore, for fixed wavespeeds

and u1 > 0 four wave types can be identified. The Type I wave exists for 0 < u1 < ucrit, and

is smooth. The Type II wave exists for ucrit < u1 < u3, and exhibits a shock in w. The Type

III wave exists for u1 = u3, and exhibits a shock and has semi-compact support in w. The Type

IV wave exists for u3 < u1 < uupper, and exhibits a shock and has a negative component in w.

Remark For " = 0, the travelling wave solutions are not solutions in the strong sense, but in
the weak sense.

We follow [39] and begin by introducing a new variable, v = ux, such that we can write (6)
as a system of coupled balance laws,

(10)

ut = �u

2
w + "uxx,

vt = �(u2w)x + "vxx,

wt = w(1� w)� (vw)x + "wxx.
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Since we are looking for travelling wave solutions we introduce the coordinate z = x� ct, where
c > 0. This gives

(11)

("u0 + cu)0 = u

2
w,

("v0 � u

2
w + cv)0 = 0,

("w0 � vw + cw)0 = �w(1� w),

where the prime indicates di↵erentiation with respect to z. Defining three new variables

û

:= "u

0 + cu,

v̂

:= "v

0 � u

2
w + cv,

ŵ

:= "w

0 � vw + cw,

allows us to write (11) as a system of first order di↵erential equations,

û

0 = u

2
w,

v̂

0 = 0,

ŵ

0 = �w(1� w),

"u

0 = û� cu,

"v

0 = v̂ + u

2
w � cv,

"w

0 = ŵ + vw � cw.

The second equation implies v̂ is a constant and moreover, it can be shown that in fact v̂ = 0.
Therefore, we now have a five-dimensional, singular perturbation problem:

(12)

û

0 = u

2
w,

ŵ

0 = �w(1� w),

"u

0 = û� cu,

"v

0 = u

2
w � cv,

"w

0 = ŵ + vw � cw,

containing two slow variables (û and ŵ) and our three, original fast variables (u, v and w). We
refer to (12) as the five-dimensional slow system, with z the slow travelling wave coordinate. To
investigate the problem on the fast timescale we introduce the fast travelling wave coordinate

y = z/", which gives the corresponding five-dimensional fast system:

(13)

˙̂
u = "u

2
w,

˙̂
w = �"w(1� w),

u̇ = û� cu,

v̇ = u

2
w � cv,

ẇ = ŵ + vw � cw,

provided " 6= 0 and where the dot indicates di↵erentiation with respect to y.
The fixed points of the five-dimensional systems, denoted P⌥ for the respective end states of

the wave, are P�(û, ŵ, u, v, w) = (0, c, 0, 0, 1) and P+(û, ŵ, u, v, w) = (cu1, 0, u1, 0, 0).
As per geometric singular perturbation theory, we now examine the singular limit of the

slow and fast systems, (12) and (13), respectively. This provides us with two lower-dimensional
problems, which are consequently more amenable to analysis. In the singular limit " ! 0 the
five-dimensional slow system (12) reduces to the two-dimensional reduced problem with three
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algebraic constraints:

(14)

û

0 = u

2
w,

ŵ

0 = �w(1� w),

0 = û� cu,

0 = u

2
w � cv,

0 = ŵ + vw � cw.

Similarly, as " ! 0 the five-dimensional fast system (13) reduces to the three-dimensional layer
problem with two parameters:

(15)

˙̂
u = 0,

˙̂
w = 0,

u̇ = û� cu,

v̇ = u

2
w � cv,

ẇ = ŵ + vw � cw.

Given the above two subsystems, GSPT allows us to study each independently, and construct
singular limit solutions that are concatenations of solution segments of both subsystems. Then,
assuming certain conditions are met, we can prove that the singular limit solutions perturb to
nearby solutions of the full, five-dimensional problem for 0 < " ⌧ 1.

2.1. Layer problem. We begin our analysis with the layer problem (15) and note that within
the layer problem the slow variables are constants of integration and so the layer flow is inde-
pendent of the slow variables, or is along so called fast fibres. A diversion of the solution through
the fast subsystem, or equivalently along a fast fibre, corresponds to a shock in the travelling
wave solution. Thus, this condition implies that the slow variables will be constant along any
shocks in the travelling wave solutions.

The steady states of the layer problem define a critical surface or critical manifold,

(16) S =

⇢
(û, ŵ, u, v, w)

���� û = cu, v =
u

2
w

c

, ŵ = cw � vw

�
.

The critical manifold can be represented as a graph over (u,w). Consequently, we henceforth
consider the problem in a single coordinate chart by projecting onto (u,w)-space.

Lemma 2.2. The critical manifold S is folded around F (u), defined in (4), with one attracting

side, Sa, and one repelling, Sr. Moreover, S is symmetric in w around F (u).

Proof. The Jacobian of the layer problem,

J =

2

4
�c 0 0
2uw �c u

2

0 w �c+ v

3

5
,

evaluated along S, has eigenvalues given by

�1 = �c,

�2,3 = �c+
u

2
w

2c
±
s✓

u

2
w

2c

◆2

+ u

2
w.

The eigenvalues �1 and �3 are negative for u,w � 0, whereas �2 can change sign. Thus, for
�2 < 0 (2u2w < c

2) S is stable or attracting (denoted Sa) and for �2 > 0 (2u2w > c

2) is unstable
or repelling (denoted Sr).

This configuration of eigenvalues implies that the critical manifold is folded, provided the
non-degeneracy and transversality conditions,

p · (D2
UUG)(U , Û )(q , q) 6= 0 and p · (DÛG)(U , Û ) 6= 0
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respectively, are met [38]. Here U = (u, v, w), Û = (û, v̂, ŵ) and G = (u̇, v̇, ẇ), with u̇, v̇ and ẇ

defined in (15), and where U and Û are evaluated along �2 = 0, which coincides with w = F (u)
as in (4). Therefore, U = (u, v, w) = (u, c/2, c2/(2u2)). The vectors p are q and the left and
right null vectors of J respectively, with q · q = p · q = 1:

p =
1

P

✓
c

4

2u3
,

c

3

2u2
, c

2

◆
, q =

1

Q

�
0, u2, c

�T
,

where

P =
3c3

2Q
, Q =

p
c

2 + u

4
.

The first condition is equivalent to showing that p ·B(q , q) 6= 0, where

B i(q , q) =
X

j,k

@

2Gi

@U k@U j
(q j �U j)(qk �U k),

with the derivatives, as well as U j and U k evaluated along �2 = 0. This gives

B(q , q) =

✓
0,

c(4u2 � cQ)

Q

,

4cu4 � 4c2u2Q+ c

3
Q

2

2u2Q2

◆T

,

and

p ·B(q , q) =
2c3u2

PQ

2
,

which is non-zero for c 6= 0 and u 6= 0.
The second condition reduces to

p ·
2

4
1 0 0
0 0 0
0 0 1

3

5 =

✓
c

4

2u3P
, 0,

c

2

P

◆
6= 0.

Therefore, the critical manifold S is folded with the fold curve corresponding to where �2 = 0
or 2u2w = c

2. This fold curve is equivalent to the wall of singularities (4) found in [24].
Furthermore, on S we have

ŵ(u,w)|w=F (u)+A = ŵ(u,w)|w=F (u)�A ,

where A is an arbitrary constant. Consequently, S is symmetric in w around the fold line and
points on S connected by fast fibres will be equidistant from the fold line in the w-variable:

(17) F (u) =
w+ + w�

2
,

where w± 2 Sr,a are the values of w at either end of the fast fibre. ⇤
To visualise S we plot

(18) ŵ = cw � u

2
w

2

c

,

as seen in Figure 2, with the black line indicating the fold curve, F . The fast fibres mentioned
previously connect points on S with constant û and ŵ. Due to the stability of S, the direction
of the flow along these fast fibres is from the Sr to Sa, see Figure 3.

Remark For " = 0 and u,w > 0, (10) is strictly hyperbolic, and so solutions can exhibit shocks.
These shocks must satisfy the Rankine-Hugoniot and Lax entropy conditions, which are given
in [24]. The Rankine-Hugoniot conditions can be written:

cu+ = cu�,

v+ � v� =
u

2

c

(w+ � w�),

cw+ � v+w+ = cw� � v�w�,

where the ± subscript denotes the value of the given variable at the beginning or end state of
the shock respectively. By comparing these conditions with the definition of S in (16), we see
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0 1 2 3 0
0.5

1
0

0.2

0.4

0.6

0.8

1

Sa

Sr

u

w

ŵ

(a)

1 1.5 2 2.5 3 0 0.2
0.40

0.1

0.2
Sa

Sr

u

w

ŵ

(b)

Figure 2. The critical manifold S defined in (18) for c = 1. The black line
represents the fold curve. In the left hand figure, the upper corner (0,1,1) is the
unstable steady state. The right hand figure is a close-up, so as to more easily
observe the folded nature of the critical manifold. In the case the upper corner
(1,1/2,1/4) is the canard point.

Sr

Sa

F

(u, v+, w+, û, ŵ)

(u, v�, w�, û, ŵ)

Figure 3. A schematic of the critical manifold S. The fold curve F is repre-
sented by the dashed, green line. The upper part of the surface is the repelling
side of the manifold Sr and the lower part the attracting side of the manifold
Sa. The flow of the layer problem is along fast fibres, two examples of which are
drawn in. They connect a point on Sr (labelled (u, v+, w+, û, ŵ)), to a point of
Sa (labelled (u, v�, w�, û, ŵ)). Along these fast fibres u, û and ŵ are constant.
The direction of the flow can only be in that shown here; that is, from Sr to Sa.

that they are satisfied since û and ŵ are constant along any shocks in the system. Furthermore,
the second and third conditions combined, can be rearranged to give (17). The Lax entropy
condition reduces simply to w+ > w�, but can also be written as

2u2w� < c

2
< 2u2w+.

This implies that the direction of the shock must be from the attracting to the repelling side of
the manifold.
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Hence, the combinations of slow variables being constant within the layer problem, and the
shape and stability of the critical manifold encapsulate the restrictions imposed by the Rankine-
Hugoniot and Lax entropy conditions and discussed in [24]. Note that the Lax entropy condition
is not satisfied for the Type 3 waves in [24], and consequently they do not exist.

2.2. Reduced problem. The reduced problem (14) is a di↵erential-algebraic problem, that is,
the reduced flow is constrained to a manifold. This implies that the reduced vector field must
be in the tangent bundle of the critical manifold S. Since S is given as a graph over (u,w)-space
we can study the reduced flow in the single coordinate chart (u,w).

Lemma 2.3. The reduced problem contains a folded saddle canard point.

Proof. We substitute the definitions of û and ŵ in (16) into the di↵erential equations of (14), to
obtain the reduced vector field on S, written in matrix form:

M


u

w

�0
:=


c 0

�2uw2
/c c� 2u2w/c

� 
u

w

�0
=


u

2
w

�w(1� w)

�
,

where M is singular along 2u2w = c

2, the fold curve or wall of singularities. We multiply both
sides by the cofactor matrix of M ,


c� 2u2w/c 0
2uw2

/c c

�
,

to give

(19)
�
c

2 � 2u2w
 

u

w

�0
=


cu

2
w � 2u4w2

/c

�cw(1� w) + 2u3w3
/c

�
.

The above system is still singular for 2u2w = c

2, but the singularity can be removed by rescaling
the independent variable z̄, such that

(20)
dz

dz̄
= c

2 � 2u2w.

This gives the desingularised system,

(21)

du

dz̄
= cu

2
w � 2u4w2

c

,

dw

dz̄
= �cw(1� w) +

2u3w3

c

.

The equilibrium points of (21) are (uU , wU ) = (0, 1), (uS , wS) = (u1, 0), u1 2 R and

(22) (uH , wH) =

✓
c

4

h
c+

p
c

2 + 8
i
,

1

uH + 1

◆
.

The former equilibrium points correspond to the background states of (6) given in (7), while the
latter is a product of the desingularisation. More specifically: (uU , wU ) = (0, 1) has eigenvalues
and eigenvectors

�1 = c,  1 = (0, 1), �2 = 0,  2 = (1, 0),

and is therefore centre-unstable; (uS , wS) = (u1, 0) has eigenvalues and eigenvectors

�1 = �c,  1 = (�u

2
1, 1), �2 = 0,  2 = (1, 0),

and is therefore centre-stable; and finally, (uH , wH) has eigenvalues and eigenvectors

�± =

 
c�p

c

2 + 8

2

!4
2

41± c

s✓
4

c�p
c

2 + 8

◆4

� 3

3

5
,  ± = (f±(c),�1),

and is therefore a saddle (we consider f±(c) in more detail in Section 2.4). The phase portrait
of (21) is shown in Figure 4a, with u and w parameterised by z̄.
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To obtain the (u,w)-phase portrait parameterised by z, we observe that
dz

dz̄
> 0 on Sa (that is,

below the fold curve F ), while
dz

dz̄
< 0 on Sr. Therefore, the direction of the trajectories in the

(u(z), w(z))-phase portrait will be in the opposite direction to those in the (u(z̄), w(z̄))-phase
portrait for trajectories on Sr, but in the same direction for trajectories on Sa. This does not
a↵ect the stability or type of the fixed points (uU , wU ) and (uS , wS). However, (uH , wH) is not
a fixed point of (19).

Rather, as the direction of the trajectories on Sr are reversed, the saddle equilibrium of (21)
becomes a folded saddle canard point of (19) [39], equivalent to the hole in the wall (5). In
particular, on Sr the stable (unstable) eigenvector of the saddle equilibrium of (21) becomes the
unstable (stable) eigenvector of the folded saddle canard point. This allows two trajectories to
pass through (uH , wH): one from Sa to Sr and one from Sr to Sa. We refer to the former as the
canard solution and the latter the faux canard solution. The (u,w)-phase portrait parameterized
by z is shown in Figure 4b. ⇤

u

w

0 2 4 6
0

1

F

N

Sa

Sr

z̄ increasing

(a) Vector field of (21).

u

w

0 2 4 6
0

1

F

N

Sa

Sr

z increasing

(b) Vector field of (19).

Figure 4. The left and right hand figures show the (u,w)-phase portraits param-
eterised by z̄ and z, respectively. The fold curve is labelled F and the non-trivial
u-nullcline N with the saddle equilibrium (filled black diamond), and folded sad-
dle canard point (open red diamond) visible at the intersection of these curves,
in the left and right hand figures respectively. The other black diamonds corre-
spond the the background states of (6), which are fixed points of both (19) and
(21), with the series along the u-axis indicating the the whole axis is a steady
state. Trajectories representing travelling wave solutions connect the unstable
steady state (0, 1) to any of the family of stable steady states (u1, 0) along the
u-axis. The region below F , shaded blue corresponds to the attracting side of
the critical manifold Sa, and above F , shaded red to the repelling side Sr.

Since all the equilibrium points of (19) lie on Sa, there are only two possible ways to create
heteroclinic orbits. Smooth connections can be made (on Sa) to the u1 steady states up to a
critical value of u1, which we call ucrit. These heteroclinic orbits correspond to smooth travelling
wave solutions and the are Type 1 waves identified in [24]. These connections are made purely
on Sa, that is without crossing through the canard point onto Sr.

Lemma 2.4. For 0 < u1  ucrit, ucrit 2 (uH ,1], there exist singular heteroclinic orbits � = �s

representing Type I waves; that is, singular heteroclinic orbits that live solely on Sa.

Proof. From the phase plane analysis we know that for u < uH , w < 1, trajectories cross the
w-nullcline N from left to right, and travel along the {u = 0}-nullcline in a downward direction.



EXISTENCE OF TRAVELLING WAVE SOLUTIONS 13

Furthermore, a calculation comparing the gradient of N with the stable eigenvector of the canard
point (on Sa) reveals that the canard solution enters the canard point under N . Finally, it can
be shown using a monotonicity argument for the derivative

(23)
dw

du
= �c

2(1� w)� 2u3w2

u

2(c2 � 2u2w)
,

that in Figure 4b all solutions on Sa (Sr) and below (above) N will be monotonically decreasing
in w and consequently increasing in u [30]. (This is indicated in Figure 5 by the direction of the
blue arrows.) Together, these conditions guarantee that the component of the canard solution
on Sa connects (uH , wH) to the unstable steady state (u,w) = (0, 1) (in backward z). We denote
this trajectory WS

⇤ ; see Figure 5.
Similarly, due to monotonicity, the component of the faux canard solution on Sa connects

(uH , wH) to a stable steady state (u,w) = (ucrit, 0), ucrit 2 (uH ,1) in forward z. We denote
this trajectory WU

crit, as in Figure 5.
The two trajectories WS

⇤ and WU
crit, along with the u- and w-axes act as separatrices that

bound the region in which smooth heteroclinic connections can be made on Sa. Therefore, any
trajectory leaving (0, 1) with a gradient less than WS

⇤ , will make a smooth connection on Sa to
(u1, 0), u1 2 (0, ucrit). Since a singular heteroclinic orbit � representing a Type I wave consists
of a single slow segment �s, we have simply � = �s. ⇤

An example of a Type I wave, with the corresponding phase trajectory is shown in Figure 6a.

2.3. Travelling waves with shocks. The second way to connect the steady states is by con-
catenating solutions from the reduced and layer problems.

Lemma 2.5. For u1 > ucrit, there exist singular heteroclinic orbits � = �c[�f [�s representing

Type II waves.

Proof. Type II waves correspond to solutions that follow WS
⇤ and pass through the folded saddle

canard point (uH , wH) onto Sr. Once on Sr the solution can then switch onto a fast fibre of the
layer problem, which connects a point on Sr to the point on Sa with constant û and ŵ. We refer
to this action as a jump or shock. Since u = û/c on S, the value of u at either end of the shock
will also be constant. The values of w at either end (denoted w±) are the solutions of (18) for
the given values of ŵ and u. Alternatively, if the value of w at one end of the shock is known,
the value at the other end can be computed from (17).

Once the solution has returned to Sa via the fast fibre, monotonicity guarantees that the
solution trajectory continues to a stable steady state (u1, 0), thus completing the heteroclinic
orbit. For Type II waves, we are assuming that the jump lands at a point on Sa with w > 0.

Thus, a singular heteroclinic orbit � representing a Type II wave is a concatenation of three
components: �c, the slow segment of the orbit that follows that canard solution; �f , the fast
segment of the orbit along a fast fibre; and �s, the remaining slow component of the orbit that
connects to the end state (u1, 0). ⇤

We define the take-o↵ curve To↵(u) as the set of points (u,w+ = To↵(u)) from which the
solution leaves Sr and switches onto a fast fibre of the layer problem. Note that To↵ coincides
with the canard solution on Sr. Similarly, we define the touch-down curve Tdown(u) as the set
of points (u,w� = Tdown(u)) on Sa to which the fast fibres connect, or equivalently, the landing
points of any jumps in the solution. These curves are illustrated in Figure 5. Both To↵ and
Tdown are monotonically decreasing functions of u and as a result u � uH and w  wH along
To↵ and Tdown.

If Tdown intersects the u-axis at say, u = u3 (with u3 2 (uH ,1) as labelled in Figure 5), then
there is the possibility for jumps to land on Sa with u  0, as opposed to with u > 0 as is the
case for a Type II wave. It is worth noting that in all the cases we tested numerically, u3 < 1.

Lemma 2.6. If u3 < 1, that is, Tdown intersects the u-axis, then there exist singular heteroclinic

orbits � representing Type III (� = �c [ �f ) and Type IV (� = �c [ �f [ �s) waves.
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u

w

0

1

WU
crit

Tdown

To↵

FN

ucrit u3

(uH , wH)

WS
⇤

Sa

Sr

Figure 5. An illustration of the important curves and points in the phase plane
of the reduced problem. The blue shaded region corresponds to Sa and the red
shaded region to Sr. The blue arrows are indicative of the sign of the derivative
(23), and consequently the monotonic decrease or increase of solution trajectories
in the respective regions.

Proof. The Type III wave corresponds to the special case where the jump or fast fibre connects
the solution trajectory directly to the stable steady state (u3, 0). Due to this direct connection,
Type III waves have semi-compact support, in contrast to Type II waves, which have infinite
support. Furthermore, the direct connection implies a singular heteroclinic orbit � representing
a Type III wave is a concatenation of only two components, � = �c[�f . For the Type III wave,
we can determine using (17), the relationship between the end state of the wave u1 = u3, and
the point along To↵ where the jump occurs: (u,w+) = (u3, c2/2u3).

For u > 0, w < 0, there is a single w-nullcline, which trajectories cross from right to left, as
well as the {u = 0}-nullcline, along which trajectories travel upwards. Between the u-axis and
this negative w-nullcline, solution trajectories are monotonically decreasing in u and increasing
in w. Below the negative w-nullcline solution trajectories are monotonically decreasing in both
u and w. Consequently, jumps landing on Sa with w < 0 connect to a stable steady state, thus
completing the heteroclinic orbit. These connections represent Type IV waves, and akin to the
Type II waves, consist of the three components � = �c [ �f [ �s, but where w < 0 along �s. ⇤

The Type II, III and IV waves correspond to travelling wave solutions with a shock, with the
Type II and III waves together equivalent to the Type 2 waves in [24]. Examples of Type II,
III and IV waves with the corresponding phase trajectories are shown in Figures 6b, 6c and 6d,
respectively.

2.4. Uniqueness of heteroclinic orbits. We are also interested in the uniqueness of the
singular heteroclinic orbits constructed in Sections 2.2 and 2.3. For a travelling wave solution
to be unique we require that for fixed c and u1, only one heteroclinic orbit exists connecting
the unstable steady state (0, 1) to the stable steady state (u1, 0).

Lemma 2.7. The singular heteroclinic orbits representing Type I, II, III and IV waves are

unique.

Proof. The uniqueness of the heteroclinic orbits constructed as Type I, II, III and IV waves
follows from the following lemmas. The first concerns the transversality of the vector field (23)
and Tdown. If the vector field were tangent to Tdown at any point, we would observe non-unique
solutions.

Lemma 2.8. The vector field (23) has a transverse intersection with Tdown.
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(a) Type I wave, with u1 = 1, c = 2.
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(b) Type II wave, with u1 = 1, c = 0.715.

u

w

0 1
0

1

0 0.5 1 0 0.5 1
0

0.2

0.4

0.6

u

w

ŵ
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(c) Type III wave, with u1 = 1, c = 0.665.
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(d) Type IV wave, with u1 = 1, c = 0.625.

Figure 6. Example solutions for the four types of waves described in Sections
2.2 and 2.3. The first columns shows the singular heteroclinic orbit in the phase
plane of the reduced vector field, with the vertical lines representing the diversion
along a fast fibre. The second column is the same orbit plotted onto the critical
manifold S. In these figures, the diversion along a fast fibre is more easily seen,
as we can explicity see the trajectory leaving S. The third column shows the
corresponding wave shape for each orbit. The darker line is the w solution and
the lighter one the u solution. The singular heteroclinic orbits and corresponding
wave shapes are constructed using the numerical method described in Section 3.3.
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Proof. We know that along Tdown the vector field satisfies (23) with w = w�(u). Furthermore,
since we are only considering u > uH and w < wH , we can relate w� to w+ using (17).
Therefore, demonstrating the transversality of the intersection between the vector field (23) and
Tdown requires showing that

dTdown

du
� dw

du

����
w=w�=2F (u)�w+

6= 0.

This defines the transversality condition, where the former derivative denotes the slope of Tdown

and the latter the vector field (23) along it. Recalling that w�(u) = Tdown (and w+(u) = To↵),
we again use (17) to rewrite the slope of Tdown as

(24)
dTdown

du
=

dw�(u)

du
= 2

dF (u)

du
� dw+(u)

du
.

Along w+(u) = To↵ the vector field is tangent to To↵ as this is a solution trajectory. Thus, the
final derivative in (24) is written simply as the vector field (23) evaluated at w = w+, and we
rewrite the transversality condition as

dTdown

du
� dw

du

����
w=w�

= 2
dF (u)

du
� dw

du

����
w=w+

� dw

du

����
w=2F (u)�w+

.

Recalling from (4) that F (u) = c

2
/2u2, we evaluate the derivatives on the right hand side of

the above expression by explicitly di↵erentiating F (u), and substituting w = w+ and w =
2F (u)� w+ = c

2
/u

2 � w+ into (23), respectively to give

dTdown

du
� dw

du

����
w=w�

= �2c2

u

3
+

c

2(1� w+)� 2u3w2
+

u

2(c2 � 2u2w+)
+

c

2(1� (c2/u2 � w+))� 2u3(c2/u2 � w+)2

u

2(c2 � 2u2(c2/u2 � w+))

=
c

2

u

4
> 0 for c, u 6= 0.

Thus Tdown does not lie tangent to, but rather will always be less steep than, the vector field at
any point. ⇤

The second opportunity for non-unique solutions to arise is if WU
crit � Tdown at any point.

Consider the regime depicted in Figure 7b, or in fact any regime where WU
crit � Tdown. Under

this regime we can identify multiple pairs of solutions (one with and one without a shock) that
connect (0, 1) to the same (u1, 0) end state. One such example is drawn in Figure 7b. Here, to
connect (0, 1) and (ucrit, 0) the solution can either follow WS

⇤ then WU
crit, or WS

⇤ then To↵ until
a jump is made to the intersection point between WU

crit and Tdown, after which the solutions
continues to (ucrit, 0).

Lemma 2.9. For all u > uH , Tdown(u) > WU
crit(u).

Proof. From Lemma 2.8, we know that for u > uH , WU
crit can only intersect Tdown from top to

bottom. That is, if an intersection occurs at (u,w) = (u⇤, w⇤), WU
crit(u) > Tdown(u) for u < u

⇤

and WU
crit(u) < Tdown(u) for u > u

⇤. If the intersection were to occur in the opposite direction,
the vector field at point of intersection would be shallower than the instantaneous slope of Tdown,
which is in contradiction to Lemma 2.8. (They also cannot touch without intersecting as this
would result in their gradients being equal at that point.) Therefore, if WU

crit is greater than
Tdown at any point, it must be initially, as the two curves leave the canard point.

Consider a linearisation around the canard point, where we are interested in the di↵erence in
slope (at a linear level) of Tdown and WU

crit:

dTdown

du
� dWU

crit

du
.

The eigenvectors of the canard point are

 ± = (f±(c),�1),
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Figure 7. An illustration of the possibility of non-unique solutions if WU
crit >

Tdown for any u > uH . The left hand figure displays the actual location of the
curves WU

crit and Tdown, showing no intersection and Tdown > WU
crit for all u > uH .

The right hand figure gives example locations of the curves WU
crit and Tdown, that

lead to non-unique solutions. In this case, there are two possible connections to
ucrit. Firstly, by following WS

⇤ and then WU
crit; secondly, by following WS

⇤ , then
To↵ until switching onto a fast fibre as shown in red, and finally following WU

crit
to the steady state (ucrit, 0). Other non-unique solutions could be drawn in this
configuration, but have been omitted for clarity. Similarly, other configurations
could be drawn, such as with WU

crit > Tdown for all u > uH , that also lead to
non-unique solutions.

where

f

±(c) =
c

2(c+B)4

64(c2 + cB + 1)± 2(c+B)2
p
16 + 24cB � 48c2 + 6c3B � 6c4

,

with B =
p
c

2 + 8. In this case,  + corresponds to the direction of WU
crit and  

� to To↵ . Hence,
by taking the gradient of the eigenvectors and using (24), we approximate the di↵erence in slopes
of Tdown and WU

crit near the canard point by

(25)
dTdown

du
� dWU

crit

du
⇡ dTdown

du
+

1

f

+(c)
= 2

dF (u)

du

����
u=uH

+
1

f

�(c)
+

1

f

+(c)
.

Consider only the sum
1

f

�(c)
+

1

f

+(c)
=

f

+(c) + f

�(c)

f

+(c)f�(c)
,

where

f

±(c) =
↵

� ± �

,

with

↵ = c

2(c+B)4, � = 64(c2 + cB + 1), � = 2(c+B)2
p
16 + 24cB � 48c2 + 6c3B � 6c4.

Then,

f

+(c) + f

�(c)

f

+(c)f�(c)
=

✓
2↵�

�

2 � �

2

◆�✓
↵

2

�

2 � �

2

◆
=

2�

↵

,

and we can simplify (25) to

dTdown

du
+

1

f

+(c)
= �2c2

u

3
H

+
2�

↵

= � 128

c(c+B)3
+

128(c2 + cB + 1)

c

2(c+B)4
=

128

c

2(c+B)4
,

which is positive for all c 6= 0. Therefore, we can say that near the canard point Tdown lies above
WU

crit, which together with Lemma 2.8, implies that in fact Tdown > WU
crit for all u > uH . ⇤
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The vector fields of the layer problem (15) and the desingularised system (21) are continuous,
and su�ciently smooth to ensure uniqueness within the individual problems. The existence of
the canard point in the reduced problem provides a unique trajectory that connects (0, 1) to
(uH , wH). This, together with the above results, guarantees the uniqueness of the heteroclinic
orbits representing Type I, II, III and IV waves. ⇤

An implication of Lemma 2.9 is that u3 > ucrit. This implies that for fixed c, as u1 is
increased (or similarly for fixed u1 and decreasing c) the singular heteroclinic orbits vary from
representing Type I, to Type II, Type III and Type IV waves, in that order, as depicted in
Figure 8b. In particular, for fixed c, Type I waves exist for 0 < u1  ucrit, Type II waves for
ucrit < u1 < u3, Type III waves for u1 = u3, and Type IV waves for u3 < u1 < uupper, with
uupper 2 (u3,1]. Note that these results can also be expressed in terms of ranges of c, for fixed
u1. A summary of where in the phase plane the di↵erent wave types are observed is given in
Figure 8a.

u

w

0

1

Type I Type II

Type III

Type IV

(a)

u

w

0

1

(b)

Figure 8. An illustration of the di↵erent types of waves observed as u1 is
varied, for fixed c = 1. The left hand figure shows a schematic of the regions
of the phase plane of the reduced problem in which the di↵erent wave types are
observed. The right hand figure demonstrates the smooth transition between the
wave types. Note that this smooth transition is also observed if u1 is fixed and
c varied.

2.5. Persistence of solutions for 0 < " ⌧ 1.

Proof of Theorem 2.1. Having constructed travelling wave solutions in the singular limit " ! 0,
we now show that these singular limit solutions persist as nearby solutions of the full problem
(6) for su�ciently small 0 < " ⌧ 1, as in [39]. Firstly, we note that the end states of the waves
(0, 1) and (u1, 0), which are the background states of (6), do not depend on " and so remain
unchanged for " > 0.

The existence of Type I waves for " > 0 follows from Fenichel theory alone [7]. Away from the
fold curve, the normally hyperbolic manifolds Sa and Sr deform smoothly to locally invariant
manifolds Sa," and Sr," respectively, and the slow flow on these manifolds is a smooth, O(")
perturbation of the flow on S. Hence, the singular Type I waves � established in Lemma 2.4 will
perturb to nearby Type I waves �" of the full system (6), connecting (1, 0) to (u1, 0). Note that
since u1 is a free parameter, we in fact have a family of possible end states. Consequently, for a
given singular heteroclinic orbit � connecting to a particular end state (u1, 0) with wavespeed
c, �" will connect to this end state with a nearby wavespeed c(") for " > 0, with c(0) = c.
Equivalently, with the wavespeed fixed, the perturbed heteroclinic orbit �" connects to a nearby
end state (u1("), 0) for " > 0, with u1(0) = u1.

The existence of Type II–IV waves for " > 0 follows from a combination of Fenichel theory,
canard theory, and the transversality condition in Lemma 2.8. We first focus on the slow
segments �c and �s of � defined in Lemmas 2.5 and 2.6. As mentioned above, away from the
fold curve, Sa and Sr deform smoothly to locally invariant manifolds Sa," and Sr,", and the slow
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flow on these manifolds is a smooth, O(") perturbation of the flow on S. Hence, the segment
�s perturbs smoothly to �

"
s on Sa," connecting to the end state (u1, 0). The persistence of

the segment �c relies on canard theory [17, 34, 38] since normal hyperbolicity is lost near the
fold. Canard theory guarantees the existence of a maximal folded saddle canard �

"
c in the full

system. Geometrically speaking, the stable and unstable slow manifolds (Sa," and Sr,") intersect
transversally near the folded saddle singularity for " > 0 within the three-dimensional centre
manifold corresponding to the two slow and the non-hyperbolic fast direction; see [5] and [39]
for details. This transverse intersection defines the so called maximal canard, and a family of
canard solutions nearby, tracing the maximal canard exponentially close.

Next, we focus on the fast dynamics. The normally hyperbolic branch Sa has an associated
local stable manifoldWS(Sa) = [p2SaWS(p) (stable layer fibration) and the normally hyperbolic
branch Sr has an associated local unstable manifold WU (Sr) = [p2SrWU (p) (unstable layer
fibration). The points p 2 Sa/r are called base points of the fast fibres. Fenichel theory [7] implies
that these local stable and unstable manifolds (fibrations) perturb smoothly to O(")-close local
stable and unstable fibrations WS(Sa,") and WU (Sr,") with base points p" 2 Sa/r,". Recall that
a fast segment �f connects the base points w+ = To↵(u) 2 Sr and w� = Tdown(u) 2 Sa with
u = uf . Since the layer fibre intersection of WU (To↵) ⇢ WU (Sr) and WS(Tdown) ⇢ WS(Sa)
is transverse, it will persist for 0 < " ⌧ 1. The transversality condition in Lemma 2.8 ensures
that the two slow solution segments �"c and �

"
s intersect transversally (projected along fast fibres

onto Sa,"). This unique intersection point identifies the base point location uf (") for " > 0 of
the fibre intersection �f," uniquely. Note that �f," is not a solution of the full system (while �f

is a solution of the layer problem).
Finally, recall that the end state (uU , wU ) 2 Sa," is repelling for u � 0. This end state can

only be approached in backward z by solutions that are in Sa," (which is only unique up to
exponentially small terms). Note that the attracting manifold Sa," extended past the folded
saddle singularity aligns with the unstable fibres of Sr,". We just showed that the unstable
fibration of Sr," along �

"
c has a unique fibre intersection. Hence, if we start on this fibre we will

approach the travelling wave end states in forward and backward z, and the singular Type II
and Type IV waves � established in Lemmas 2.5 and 2.6 will perturb to nearby Type II and
Type IV waves �" of the full system (6), connecting (1, 0) to (u1, 0) with nearby c = c("). The
above argument also holds for Type III waves, but without tracing backwards on Sr,". ⇤

3. Numerical results

In the previous section we used geometric singular perturbation theory to prove the existence
and uniqueness of travelling wave solutions to (6), based on analysis of the corresponding ODE
system. When studying the ODE system, the wavespeed acts as an input parameter. However, in
reality, the wavespeed is an output of the PDE system. The existence and uniqueness of travelling
wave solutions provides no information about the stability of the solutions, in particular which
wavespeeds will be observed from given initial conditions. In this section, we investigate the
observed wavespeeds of travelling wave solutions, numerically.

3.1. Estimating the wavespeed. The model (6) under consideration is

ut = �u

2
w + "uxx,

wt = w(1� w)� (uxw)x + "wxx.

Based on the solution of the linearisation of the reduced problem (19) as z ! 1, we make the
ansatz that the leading edge of the solutions behave like

(26)
u(x, t) = u1 � u

2
1Ae�⇠(x�ct) = u1 � u

2
1w(x, t),

w(x, t) = Ae�⇠(x�ct)
,

as x ! 1, with ⇠, A > 0, evolving from initial conditions:

(27) u(x, 0) = O(u1), w(x, 0) = O(e�⇠x),
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as x ! 1. Substituting (26) into (6) gives

�⇠cu

2
1w(x, t) = �(u1 � u

2
1w(x, t))2w(x, t)� "⇠

2
u

2
1w(x, t),

⇠cw(x, t) = w(x, t)(1� w(x, t)) + 2⇠2u21w

2(x, t) + "⇠

2
w(x, t).

Since w ! 0 as x ! 1 we neglect O(w2) terms to obtain the dispersion relation for both
equations:

⇠c = 1 + "⇠

2 or c = "⇠ +
1

⇠

.

This dispersion relation is equivalent to that of the Fisher-KPP equation. Thus, applying the
argument in [21, 26] we infer that solutions evolving from initial conditions as in (27) will have
wavespeeds:

(28) c =

(
1
⇠ + "⇠, if ⇠ <

1p
"
,

2
p
", if ⇠ � 1p

"
.

For " = 0, (28) suggests a wavespeed of c = 1/⇠ for all ⇠. This has been numerically verified
for Type I and II waves [24]. However, minimum wavespeed waves with semi-compact support
(Type III waves) were also observed in [24], where the speed of these waves was much greater
than the expected value of zero and evolved from initial conditions with various, finite values
of ⇠. This result is in contradiction to (28), however is not unexpected since the analysis is
not valid for Type III waves. Initial conditions with semi-compact support also evolved to the
minimum wavespeed, Type III wave [24]. No numerical experiments were carried out for " > 0
in [24] as their model did not include di↵usion.

3.2. Numerical method for the solution of the PDE system. We investigate the validity
of (28) for " > 0. However, before we present our results, we digress briefly to describe how the
wavespeeds of the travelling wave solutions are computed. To solve (6) we employ a numerical
scheme that uses the finite volume method for the spatial discretisation, with a third order
upwinding scheme for the advection term and linearisation in time of the non-linear source term
w(1 � w), and a Crank-Nicolson timestepping scheme [29]. The system is solved on the finite
domain 0  x  L with L su�ciently large to allow a travelling wave to evolve, and with a
spatial resolution �x = 0.1. The size of each time step is �t = 0.01 and su�cient time steps are
taken (until t = T = 100) such that the solution settles to a travelling wave with (approximately)
constant wavespeed. We choose as our initial conditions,

(29) u(x, 0) = u1, w(x, 0) =

(
1 if x  x0,

e�⇠x if x > x0,

where x0 = L/5, which are consistent with (27).
To measure the wavespeed numerically we compute,

ck =
xi�k � xi�j�k

ti�k � ti�j�k
,

where i = T/�t, j = (T/�t)/2 and xl denotes the x-location of the point on the wave where
w = 0.2 at time t = tl, that is x such that w(xl, tl) = 0.2. An average over multiple k-values is
taken to give the numerically computed wavespeed,

c =
1

K

K�1X

k=0

ck

where we let K = (T/�t)/20. The values for j and K (as fractions of T/�t), as well as w(xl, tl),
were varied to observe any e↵ect on the computed wavespeed. Similar results were obtained
over a variety of parameter values.
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3.3. Numerical method for the solution of the ODE system. To produce solutions for
" = 0, we can also consider the desingularised system (21), along with (20). In general, this
system is considerably easier to solve numerically than (19) due to the lack of singularities, and
provides an alternative and simpler method of constructing solutions for " = 0 than the PDE
solver. However, as a result of using (21), the canard point behaves like an equilibrium point,
and consequently does not allow trajectories to pass through it. Thus, to construct solutions
we are required to piece together various trajectories in the phase plane Figure 4. To compute
these trajectories, MATLAB’s inbuilt ODE solver ode15s is used. Recall that for the ODE solver,
c is an input parameter.

The construction of Type I solutions is the most straightforward. An initial condition is
chosen su�ciently close to the end state of the wave (u,w) ⇡ (u1, 0), and then we evolve z̄

backwards until the initial state of the wave (u,w) ⇡ (0, 1) is reached, to the required accuracy.
To construct Type II, III and IV waves, we must first connect the initial state of the wave

with the canard point (now an equilibrium point). As for the Type I waves, this connection is
made by choosing an initial condition su�ciently close to the canard point and then evolving
the solution backwards until the initial state of the wave is reached. The second component
of the solution is the take-o↵ curve, which leaves the canard point on the repelling manifold.
To construct this piece we again choose initial conditions su�ciently close to the canard point
and evolve the solution backwards until the Type III jump point is reached, which we know
analytically as a function of c and u3. To construct a Type III wave, we then simply make a
jump directly to the steady state (u3, 0).

For the Type II and IV waves, an arbitrary point along To↵ before and after the Type III
jump point, respectively, is chosen. Based on the values of u and w at this point, we analytically
determine the corresponding point on Tdown where a jump will land. This point is taken as the
initial condition for the final component of the trajectory, and the solution is evolved forwards
until the end state of the wave is reached.

3.4. Numerical results for " > 0. Figure 9 shows a comparison between (28) (solid lines) and
the numerically measured wavespeeds (markers), for various values of " (" = 0, 0.05, 0.1, . . . , 0.5)
with fixed u1 = 1. We observe that the markers appear to lie on the solid lines up to a
critical value of ⇠. Beyond this, (28) suggests the curves should flatten out to 2

p
", the expected

minimum wavespeed. However, this is only true for moderate values of ", in the case where
u1 = 1 approximately " � 0.3. For smaller values of ", the transition to the minimum wavespeed
occurs for smaller values of ⇠ and larger values of c than suggested by (28).

For wavespeeds above the minimum wavespeed, both Type I and Type II waves are observed
numerically; Type I waves for smaller values of ⇠ (corresponding to faster wavespeeds), and
Type II waves for larger values of ⇠ (corresponding to slower wavespeeds). However, as seen (or
rather not seen) in Figure 9, there is no distinguishing feature visible in the data to suggest a
transition from Type I to Type II waves. This is because the transition point is determined by
u1; in particular, the value of u1 corresponding to u1 = ucrit(c, ") for the chosen values of ⇠,
", and consequently c.

For wavespeeds equal to the minimum wavespeed, only Type III waves are observed. Since
this minimum wavespeed is greater than that suggested by (28) from the linear analysis, the
numerical results indicate that the Type III wave is a pushed front, in contrast to the Type I and
II waves which are pulled fronts [35]. We still require an expression for the minimum wavespeed.
No Type IV waves were observed numerically to evolve from initial conditions of the kind used
here. Furthermore, initial conditions similar to the Type IV wave in Figure 6d evolved to a
Type III wave.

Figure 10 shows the relationship between the minimum wavespeed and u3. The solid, blue
curve is numerical data obtained from the ODE solver for (21), described in Section 3.3. The
black, dashed curve represents the power series approximation between c and u3 given in [24],
assuming small c. (Note that [24] also provides an approximation assuming large c, which
compares well against our numerical results, but is not shown here.) The remaining curves are
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Figure 9. A plot of the numerically measured wavespeeds (markers) against
(28) (solid lines) for various values of ⇠ and ". The colours of the curves and
markers are alternated purely as a visual aid, they do not represent anything
mathematically significant.

plots of numerical data obtained from the PDE solver described in Section 3.2 for various values
of " (" = 0, 0.02, . . . , 0.1, 0.2, . . . , 0.5), with c increasing as " increases.

A first observation is that the data from the PDE and ODE solvers for " = 0 compare well.
They also compare well with the power series approximation suggested in [24], which is only for
" = 0. The results suggest that the minimum wavespeed depends not only on " as suggested by
(28), but also u1 or u3. The power series solution in [24] suggests a quadratic relationship for
" = 0, however we do not have an approximation for c = c(u3, ") for " 6= 0.

For " 6= 0, the most notable feature of the plots is the flattening out of the curves for small
u3. This indicates that for su�ciently large " and su�ciently small u3, the dependence of the
minimum wavespeed on u3 is removed, that is, it only depends on ": c = c("). However, the
curves suggest that independent of the size of ", for su�ciently large values of u3, the minimum
wavespeed will still depend on u3, and the power series provides a reasonable approximation.
That is, as u3 ! 1, c(u3, ") ⇡ c(u3, 0) ⇠ p

u3.

3.5. Numerical results for " = 0. An interesting result from the numerical solutions of the
ODE system, is the relationship between the jump length of Type II, III and IV waves and
u1. The jump length is measured as w+ � w�, with results for various wavespeeds depicted in
Figure 11. In particular, Figure 11a illustrates the relationship between the jump length of a
particular wave and its end state u1, and Figure 11b, the relationship between the jump length
and the value of u where the jump occurs. As expected, at the onset of Type II waves the jump
length is zero, and then increases as u1 or u increases. The jump length corresponding to the
Type III wave is marked with an ⇥. As u1 or u increases further, the jump length reaches a
maximum and starts to decrease once more. This implies that there is a turning point in the
di↵erence between the take-o↵ curve w = To↵(u) and the fold curve w = F (u). Also, that the
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Figure 10. The minimum wavespeed as a function of u1. Since the minimum
wavespeed wave corresponds to a Type III wave, u1 = u3. The solid, blue curve
is data obtained from the numerical solution of the ODE system (21), and so
is for " = 0. The dashed, black curve is a power series approximation between
u3 and c for " = 0 given in [24]. The remaining curves show data from the
numerical solution of the PDE system (6) for " = (0, 0.02, . . . , 0.1, 0.2, . . . , 0.5),
as labelled. The colours of these curves are alternated purely a visual aid, and
do not represent anything mathematically significant.

jump length does not uniquely determine u1 for any given c, or vice versa. Figures 11a and
11b show curves for three wavespeeds and in all three cases the Type III jump point (marked
by the ⇥) occurs before the turning point. That is, the wave with the largest jump is a Type
IV wave. This suggests that for physically realistic waves, the jump length will increase as u1
increases (for fixed c). However, it appears that as c increases the Type III jump point moves
closer to the turning point. If it were to cross onto the other side, such that the wave with the
largest jump was a Type II wave, then there would exist two physically realistic waves with equal
jump length. However, numerical experiments suggest that as c is increased further, the Type
III jump point approaches, but does not cross over the turning point. This is an interesting
result since it gives a one-to-one relationship between the jump length and end state of the wave
(u1, 0), for physically relevant waves.

Furthermore, these numerical results suggest that for any given c, there is a maximum value
of u1 for the existence of travelling waves as constructed in this article; that is, uupper is finite.
This is clearly seen in Figure 11a. However, although there appears to be a maximum value of
u1, the u-location of the jump is not bounded. That is, as the jump length goes to zero, the
jump location goes to infinity. This is demonstrated in Figure 11b. An example trajectory for
the Type IV wave with a jump length close to zero is shown in Figure 11c. This illustrates the
point that as the jump location moves closer to infinity, the jump size decreases, and that the
corresponding end state of the wave u1, though also increasing, appears to be bounded.



24 K.E. HARLEY, P. VAN HEIJSTER, R. MARANGELL, G.J. PETTET, AND M. WECHSELBERGER

u1

jump length

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Type III

c = 0.5
c = 1
c = 1.5

T
y
p
e
II

T
y
p
e
IV

T
y
p
e
II

T
y
p
e
IV

T
y
p
e
II

T
y
p
e
IV

(a)

u

jump length

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Type III

c = 0.5
c = 1
c = 1.5

(b)

u

w

80

�0.2

0

0.2

2 4

�0.2

0

0.2

(c)

Figure 11. The first two plots show data from the numerical solutions of the
ODE system (21) illustrating how the jump length varies with u1 and u, for
various values of c (and " = 0). The jump length corresponding to a Type III
wave is marked with an ⇥. The corresponding value of u1 or u at this point
is u1 = u3. Before this (for smaller values of u1 or u) the waves are Type II
waves, and after (for larger values of u1 or u) are Type IV waves. The third
plot shows an example trajectory for a Type IV wave with jump length close to
zero, with c = 0.5.

Finally, as c is increased, Figures 11a and 11b indicate that the maximum jump length
decreases, and approaches zero as c ! 1. This is to be expected, since (uH , wH) ! (1, 0) as
c ! 1, so all the solutions will be Type I and therefore not contain a jump.

4. Discussion

Thus far, we have proved the existence and uniqueness of travelling wave solutions to a model
of malignant tumour invasion (6) for su�ciently small 0  " ⌧ 1. The wavespeed of the
travelling wave solutions that evolved from initial conditions (29) was also discussed. Other
initial conditions for w were also considered that satisfied (27), but are not shown here. In all
cases the resulting wavespeed was equivalent to that resulting from (29).

The proof of existence of travelling wave solutions to (6) was constructed using geometric
singular perturbation theory. Accordingly, the solutions were constructed as heteroclinic orbits
in the singular limit " ! 0, and then extended to solutions of the full system (6) using Fenichel
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theory and the theory of canard solutions, assuming su�ciently small ". These travelling wave
solutions were classified as Type I, II, III or IV waves.

In [30], di↵usion was neglected as it was assumed that it played a small role in the migration
process. We have provided a rigorous proof of the travelling wave solutions for " = 0 found nu-
merically in [24], and furthermore, have shown that these solutions persist for small ". Therefore,
we can confirm that the e↵ect of di↵usion is in fact small.

4.1. Protease. Recall that in Section 1.4 a third expression was neglected in (2) describing the
density of protease ⇢:

(30)
@⇢

@t

=
1

�

(⇢� u

2
w),

where 0 < � ⌧ 1. This expression was neglected as it was assumed in [30] that the protease
reaction occurred on a su�ciently fast time scale that the protease density could be considered to
be at steady state to leading order. Subsequently we ask: which is smaller, the added di↵usivity
" in (6) or the inverse protease density rate parameter �?

For our analysis we assume that � = O("⌘), where ⌘ > 1, such that � ! 0 faster than " and
the protease reaction can be neglected while the di↵usion is not. In [25], the authors consider
the full system of three partial di↵erential equations, (2) and (30). They suggest that travelling
wave solutions are not observed for this model unless di↵usion is added to the cell species w,
with " = O(�). Throughout the analysis, parameter regimes with both " > � and " < � are
considered. The former regime gives rise to solutions that appear to be an O(") perturbation
of the solutions constructed in the singular limit, whereas the latter results in solutions that
exhibit oscillations at the wave front. Analysis of the full system (2) and (30) using the method
employed here is the topic of future investigation, to explore the e↵ect of the relative sizes of �
and ".
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