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Abstract. We consider the NLS equation with a linear double well potential.
Symmetry breaking, i.e., the localisation of an order parameter in one of the poten-
tial wells that can occur when the system is symmetric, has been studied extensively.
However, when the wells are asymmetric, only a few analytical works have been re-
ported. Using double Dirac delta potentials, we study rigorously the effect of such
asymmetry on the bifurcation type. We show that the standard pitchfork bifurcation
becomes broken and instead a saddle-centre type is obtained. Using a geometrical
approach, we also establish the instability of the corresponding solutions along each
branch in the bifurcation diagram.

1. Introduction

Symmetry breaking where an order parameter becomes localised in one of sym-
metric potential wells, appears as a ubiquitous and important phenomenon in a wide
range of physical systems, such as in particle physics [1], Bose-Einstein condensates
[2, 3], metamaterials [4], spatiotemporal complexity in lasers [5], photorefractive me-
dia [6], biological slime moulds [7], coupled semiconductor lasers [8] and in nanolasers
[9]. When such a bifurcation occurs, the ground state of the physical system that
normally has the same symmetry as the external potential becomes asymmetric with
the wave function concentrated in one of the potential wells.

A commonly studied fundamental model in the class of conservative systems is
the nonlinear Schrödinger (NLS) equation. It was likely first considered in [10] as a
model for a pair of quantum particles with an isotropic interaction potential, where
the ground state was shown to experience a broken rotational symmetry above a
certain threshold value of atomic masses. Later works on symmetry breaking in the
NLS with double well potentials include among others [11, 12, 13, 14, 15]. At the
bifurcation point, stable asymmetric solutions emerge in a pitchfork type, while the
symmetric one that used to be the ground state prior to the bifurcation, becomes
unstable.

While previous works only consider symmetric double well potentials, an interesting
result was presented in [16], on a systematic methodology, based on a two-mode
expansion and numerical simulations, of how an asymmetric double well potential
is different from a symmetric one. It was demonstrated that, contrary to the case
of symmetric potentials where symmetry breaking follows a pitchfork bifurcation, in
asymmetric double wells the bifurcation is of the saddle-centre type. In this paper,
we consider the NLS on the real line with an asymmetric double Dirac delta potential
and study the effect of the asymmetry in the bifurcation. However, different from
[16], our present work provides a rigorous analysis on the bifurcation as well as the
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linear stability of the corresponding solutions using a geometrical approach, following
[13] on the symmetric potential case (see also [17, 18, 19] for the approach).

Since the system is autonomous except at the defects, we can analyse the exis-
tence of the standing waves using phase plane analysis. We convert the second order
differential equation into a pair of first order differential equations with matching
conditions at the defects. In the phase plane, the solution which we are looking for
will evolve first in the unstable manifold of the origin, and at the first defect it will
jump to the transient orbit, and again evolves until the second defect, and then jumps
to the stable manifold to flow back to the origin. We also present the analytical solu-
tions that are piecewise continuous functions in terms of hyperbolic secant and Jacobi
elliptic function. We analyse their instability using geometric analysis for the solution
curve in the phase portrait.

The paper is organised as follows. In Section 2, we present the mathematical model
and set up the phase plane framework to search for the standing wave. In Section
4, we discuss the geometric analysis for the existence of the nonlinear bound states
and show that there is a symmetry breaking of the ground states. Then, the stability
of the states obtained are analysed in Section 5, where we show the condition for
the stability in terms of the threshold value of ’time’ for the standing wave evolving
between two defects. In Section 6, we present our numerics to illustrate the results
reported previously. Finally we summarize the work in Section 7

2. Mathematical model

We consider the one dimensional NLS equation

(1) iψt(x, t) = −ψxx(x, t) + ωψ(x, t)− |ψ(x, t)|2ψ(x, t) + V (x)ψ(x, t),

where ψ ∈ C is a complex-valued function of the real variables t and x. The asym-
metric double-well potential V (x) is defined as

(2) V (x) = −δ(x+ L)− εδ(x− L), 0 < ε ≤ 1,

where L is a positive parameter. We consider solutions which decay to 0 as x→ ±∞.
The system conserves the squared norm N =

∫∞
−∞ |u(x, t)|2 dx which is known as the

optical power in the nonlinear optics context, or the number of atoms in Bose-Einstein
condensates.

Standing waves of (1) satisfy

(3) uxx − ωu+ u3 − V (x)u = 0,

The stationary equation (3) is equivalent to system uxx = ωu − u3 for x 6= ±L with
matching conditions:

u(±L+) = u(±L−), ux(±L+)− ux(±L−) = −Ṽ±u(±L),(4)

with Ṽ− = 1 and Ṽ+ = ε.
Our aim is to study the ground states of (1), which are localised solutions of (3) and

determine their stability. We will apply a dynamical systems approach by analysing
the solutions in the phase plane. However, before proceeding with the nonlinear
bound states, we will present the linear states of the system in the following section.
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3. Linear states

In the limit u→ 0, Eq. (3) is reduced to the linear system

(5) uxx − ωu− V (x)u = 0,

which is equivalent to the system uxx = ωu for x 6= ±L with the matching conditions
(4).

The general solution of (5) is given by

(6) u(x) =


e−
√
ω(x+L), x < −L,

Ae−
√
ω(x+L) +Be

√
ω(x+L), −L < x < L,

Ce−
√
ω(x−L), x > L.

Using the matching conditions, the function (6) will be a solution of the linear system
when A = 1−1/2

√
ω,B = 1/2

√
ω, and C = (e−2L

√
ω
(
2
√
ωe4L

√
ω − e4L

√
ω + 1

)
)/2
√
ω,

and ω satisfies the transcendental relation

(7) L =
1

4
√
ω

ln

(
− ε

(2
√
ω − 1) (ε− 2

√
ω)

)
.

This equation determines two bifurcation points of the linear states ω0 and ω1. We
obtain that the eigenfunction with eigenvalue ω0 exists for any L, while the other one
only for L ≥ (1 + ε)/2ε. As L → ∞, ω0 → 1/4 and ω1 → ε2/4. We illustrate Eq.
(7) in Fig. 1. Positive solutions that are non-trivial ground state of the system will
bifurcate from ω0, while from ω1, we should obtain a bifurcation of ’twisted’ mode
which is not addressed in the present work.
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Fig. 1. The eigenvalues ω as a function of L from (7) for ε = 0.95.
The upper curve is ω0.
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4. Nonlinear bound states

To study nonlinear standing waves (bound states), we convert the second order
differential equation (3) into the following first order equations, for x 6= ±L,

ux = y,

yx = ωu− u3,
(8)

with the matching conditions

u(±L+) = u(±L−), y(±L+)− y(±L−) = −Ṽ±u(±L).(9)

We consider only solutions where u > 0. The evolution away from the defects
is determined by the autonomous system (8) and at each defect there is a jump
according to the matching conditions (9).

4.1. Phase plane analysis. System (8) has equilibrium solutions (0, 0) and (
√
ω, 0)

and the trajectories in the phase plane are given by

(10) y2 − ωu2 +
1

2
u4 = E.

In the following we will discuss how to obtain bound states of (1) which decay at
infinity. In the phase plane, a prospective standing wave must begin along the global
unstable manifold W u of (0, 0) because it must decay as x → −∞. The unstable
manifold W u is given by

W u =

{
(u, y)|y =

√
ωu2 − 1

2
u4, 0 ≤ u ≤

√
2ω

}
.

The potential (2) will imply two defects in the solutions. After some time evolving
in the unstable manifold (in the first quadrant), the solution will jump vertically at
the first defect at x = −L according to matching condition (9). For a particular value
of ω, the landing curve for the first jump follows

J(W u) =

{
(u, y)|y =

√
ωu2 − 1

2
u4 − u

}
.

At the first defect, the solution will jump from the homoclinic orbit to an inner
orbit as the transient orbit. Let the value of E for the orbit be Ê ∈

(
−1

2
ω2, 0

)
. If we

denote the maximum of u of the inner orbit as a, then the value for a in this orbit is

â =

√
ω +

√
ω2 + 2Ê.

Denote the value of the solution at the first defect as u1, then it satisfies

(11) u21 − 2u1

√
ωu21 −

1

2
u41 = Ê,

which can be re-written as a cubic polynomial in u21,

(u21)
3 +

(
1

2
− 2ω

)
(u21)

2 − Êu21 +
Ê2

2
= 0.
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Using Cardan’s method [20] to solve the polynomial, we obtain u1 as function of Ê,
i.e., for ω < 1/4, there is no real solution, while for ω > 1/4, there are 2 real valued
u1 given by

u
(1)
1 =

1

3

(
2ω − 1

2

)
+

2

3

√
3Ê +

(
1

2
− 2ω

)2

cos θ

1/2

,

u
(2)
1 =

1

3

(
2ω − 1

2

)
− 2

3

√
3Ê +

(
1

2
− 2ω

)2

sin
(π

6
− θ
)1/2

,

(12)

where

θ =
1

3
cos−1

−54Ê2 + 18Ê(4ω − 1) + (4ω − 1)3(
12Ê + (1− 4ω)2

)3/2
 .

For a given ω > 1/4, the landing curve of the first jump is tangent to the transient

orbit, i.e., u
(1)
1 = u

(2)
1 , for Ê = Ē1, with

Ē1 =
1

27

(
36ω −

√
(12ω + 1)3 − 1

)
.

After completing the first jump, the solution will then evolve for ‘time’ 2L according
to system (8). The ‘time’ 2L is the length of the independent variable x that is needed
for a solution to flow from the first defect until it reaches the second defect and it
will satisfy

(13) 2L =

∫ u2

u1

1

±
√
ωu2 − u4/2 + Ê

du,

where 2L = L1 + L2, with L1 is the time from x = −L to x = 0 and L2 is the time
from x = 0 to x = L. For ε = 1, L1 = L2 = L. The result of the integration of the
right hand side of (13) will be in terms of the elliptic integral of the first kind.

When the solution approaches x = L, the solution again jumps vertically in the
phase plane according to the matching condition (9). The set of points that jump to
the stable manifold is

(14) J−1(W s) =

{
(u, y)|y = −

(√
ωu2 − 1

2
u4 − εu

)}
.

Let u2 be the value of the solution at the second defect. The matching condition
(9) gives

(15) ε2u22 − 2εu2

√
ωu22 −

1

2
u42 = Ê,

which can also be re-written as a cubic polynomial in u22,

(16) u62 +

(
ε2

2
− 2ω

)
u42 − Êu22 +

Ê2

2ε2
= 0.
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Using a similar argument, the solution exists only for ω > ε2/4, where in that case
the solutions are given by

u
(1)
2 =

(
1

3

(
2ω − ε2

2

)
+

1

3

√
12Ê + (ε2 − 4ω)2 cos θ

)1/2

,

u
(2)
2 =

(
1

3

(
2ω − ε2

2

)
− 1

3

√
12Ê + (ε2 − 4ω)2 sin

(π
6
− θ
))1/2

,

(17)

with

θ =
1

3
cos−1

−54Ê2 + 18Ê (ε4 − 4ωε2) + ε2 (ε2 − 4ω)
3

ε2
(

12Ê + (ε2 − 4ω)2
)3/2

 .

Similar to the case of the first jump, the landing curve of the second jump is tangent

to the transient orbit, i.e., u
(1)
2 = u

(2)
2 , for Ê = Ē2, with

Ē2 =
1

27

(
36ε2ω −

√
ε2(12ω + ε2)3 − ε4

)
.

For a given value of Ē1 and Ē2, they correspond to certain values of L, say L̄1 and
L̄2. These values will be used in determining the stability of the solution which will
be discussed later in Section 5. For fixed L and ε, we can obtain Ê upon substitution
of (12) and (17) to (13) as function of ω, and therefore we can obtain positive-valued
bound states for varying ω.

We present in Figs. 2–3 nonlinear bound states of our system for L = 1 for ε = 1
and ε = 0.95, respectively. We show the solution profiles in the physical space and in
the phase plane on the left and right panels, respectively. We also calculate squared
norms N of the solutions for varying ω. We plot them in Fig. 4. The solid and dashed
lines represent the stable and unstable solutions respectively which will be discussed
in Section 5.

As mentioned at the end of Section 3, indeed standing waves of positive solutions
bifurcate from the linear mode ω0. For ε = 1, as ω increases, there is a threshold value
of the parameter where a pitchfork bifurcation appears. This is a symmetry breaking
bifurcation. Beyond the critical value, we have two types of standing waves, i.e.,
symmetric and asymmetric states. There are two asymmetric solutions that mirror
each other.

When we consider ε = 0.95, it is interesting to note that the pitchfork bifurcation
becomes broken. The branch of asymmetric solutions splits into two branches and
that of symmetric ones breaks into two parts. The upper part of the symmetric
branch gets connected to one of the asymmetric branches through a turning point.

Using our phase plane analysis, we can determine the critical value of ω where the
bifurcation occurs. The critical value ωc as function of Ê can be determined implicitly
from the condition when the two roots of u1 (12) merge, i.e.,

(18) Ê =
1

27

(
36ε2ω −

√
ε2(12ω + ε2)3 − ε4

)
.
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Fig. 2. Localised standing waves of the system for L = ε = 1 with

various values of ω with u1 and u2 given by (a) u
(2)
1 and u

(2)
2 , (b) u

(1)
1

and u
(1)
2 , (c) u

(2)
1 and u

(1)
2 , (d) u

(1)
1 and u

(2)
2 , respectively.

Substituting this expression into the integral equation (13), we can solve it numerically
to give us the critical ω for fixed L and ε. For ε = 1, we obtain that ωc ≈ 0.8186 and
for ε = 0.95 we have ωc ≈ 0.945 which agree with the plot in Fig. 4.

4.2. Explicit expression of solutions. The solutions we plotted in Figs. 2 and
3 can also be expressed explicitly as piecewise continuous functions in terms of the
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Fig. 2. (Continued)

Jacobi Elliptic function, dn(rx, k). The autonomous system (8) has solution

h(x) = a dn(rx, k)

with r(a, ω) = a√
2

and k(a, ω) =
2(a2−ω)

a2
(for details, see [21]). Note that for a =√

2ω we have the homoclinic orbit h(x) =
√

2ω sech(
√
ωx). Therefore, an analytical

solution of (3) is
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Fig. 3. The same as Fig. 2, but for ε = 0.95 with u1 and u2 given by

(a) u
(1)
1 and u

(2)
2 , (b) u

(1)
1 and u

(1)
2 , (c) u

(2)
1 and u

(1)
2 , (d) u

(1)
1 and u

(2)
2 ,

respectively.

(19) u(x) =


√

2ω sech(
√
ω(x+ ξ1)), for x < −L,

a dn(r(x+ ξ2), k), for − L < x < L,√
2ω sech(

√
ω(x+ ξ3)), for x > L,
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Fig. 3. (Continued)

where the constants ξ1, ξ2, and ξ3 can be obtained from

ξ1 =
1√
ω

sech−1
(

u1√
2ω

)
+ L,

ξ2 =
1

r
dn−1

(u1
a
, k
)

+ L,

ξ3 =
1√
ω

sech−1
(

u2√
2ω

)
− L.

(20)
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Fig. 4. Bifurcation diagrams of the standing waves. Plotted are the
squared norms as a function of ω for L = 1, and (a) ε = 1, (b) ε = 0.95.

The value of u1 and u2 are the same as those discussed in Section 4.1 above. Note
that the Jacobi Elliptic function is doubly-periodic. We therefore need to choose the
constants ξ2 carefully such that the solution satisfies the boundary conditions (4).

5. Stability

After we obtain standing waves, we will now discuss their stability by solving the
corresponding linear eigenvalue problem. We linearise (1) about a standing wave
solution ũ(x) that has been obtained previously using the linearisation ansatz u =
ũ+ δ(peλt + q∗eλ

∗t), with δ � 1. Considering terms linear in δ leads to the eigenvalue
problem

(21) λ

(
p
q

)
=

(
0 −L−
L+ 0

)(
p
q

)
= N

(
p
q

)
where

(22)
L− =

d2

dx2
− ω + ũ2 − V (x),

L+ =
d2

dx2
− ω + 3ũ2 − V (x).

A solution is unstable when Re(λ) > 0 for some λ and is linearly stable otherwise.
We will use dynamical systems methods and geometric analysis of the phase plane

of (19) to determine the stability of the standing waves. Let P be the number of
positive eigenvalues of L+ and Q be the number of positive eigenvalues of L−, then
we have the following theorem [17].

Theorem 1. If P −Q 6= 0, 1, there is a real positive eigenvalue of the operator N .

The quantities P and Q can be determined by considering solutions of L+p = 0
and L−q = 0, respectively and using Sturm-Liouville theory. The system L−q = 0 is
satisfied by the standing wave u(x), and Q is the number of zeros of standing wave
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u(x). Since we only consider positive solutions, Q = 0. By Theorem 1, to prove that
the standing wave is unstable, we only need to prove that P ≥ 2. The operator L+

acts as the variational equation of (8). As such, P is the number of zeros of a solution
to the variational equation along u(x) which is ‘initially’ (i.e. at x = −∞) tangent
to the orbit of u(x) in the phase plane. Thus P can be interpreted as the number of
times initial tangent vector at the origin crosses the vertical as it is evolved under the
variational flow.

Let p(u, y) be a tangent vector to the outer orbit of the solution at point (u, y)
in the phase portrait, and let q(u, y) be a tangent vector to inner orbit at the point
(u, y). That is

p =

(
y

ωu− u3
)

=

(
±
√
ωu2 − 1

2
u4

ωu− u3

)
,

and

q =

(
ŷ

ωu− u3
)

=

(
±
√
ωu2 − 1

2
u4 + Ê

ωu− u3

)
.

Let F denote the flow, so F (p) is the image of p under the flow (together with
the matching conditions at the defects). We count the number of times the tangent
vector initialised at the origin, say b(u, y), crosses the vertical as its base point moves
along the orbit as x increases. Since the variational flow preserves the orientation
of the tangent vector [18], we will use each of the corresponding tangent vectors as
the bound of the solution as it evolves after the vector b is no longer tangent to the
orbit due to the defects. We will break the orbit into five regions. Let A1, A2, A3,
and A4 denote the point (u1, y1), (u1, y1−u1), (u2, εu2 +y2), and (u2, y2), respectively

with y1 =
√
ωu1 − 1

2
u41 and y2 = −

√
ωu2 − 1

2
u42. The first region is for x < −L. On

the phase plane it starts from the origin until point A1. The second region is when
x = −L, i.e., when the solution jumps the first time from A1 to A2. The third region
is when −L < x < L where the differential equation (8) takes the tangent vector from
A2 to point A3. The fourth region is when x = L, where the solution jumps for the
second time, it jumps from A3 to A4, and last region is for x > L where the vector
will be brought back to the origin.

Let ni, i = 1, 2, . . . , 5, denote the number of times b passes through the verticality
in the ith region. In the following, we will count ni in each region. The tangent vector
solves the variational flow

q1,x = q2,

q2,x = q1 − 3ũ2q1,
(23)

where ũ is the stationary solution.

5.1. when x < −L. At the first region, we will count n1. It is the region when b
starts from the origin and moves along the homoclinic orbit until it reaches the first
defect at A1. At this region, the direction of b at (u, y) is

tan θ =
ωu− u3

y
=

ω − u2√
1− 1

2
u2
.
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The sign of tan θ depends on the sign of ω − u2. For u <
√
ω, tan θ > 0, and

for u >
√
ω, tan θ < 0. Since y > 0, b points up right in the first quadrant of the

plane for the first case, and it points down right in the fourth quadrant for the latter.
Therefore, for both cases, the angle must be acute, 0 < |θ| < π

2
. In this part, n1 = 0.

In what follows we will refer to θ as the angle of b.

5.2. when x = −L. Next, we will count how many times b passes through the
vertical when it jumps from A1 to A2. The vector b at A2 is

b(A2) =

(
y1

ωu1 − u31 − y1

)
and its direction is tan θ2 = tan θ1 − 1 with θi the direction of b in region i. This
implies that at the first defect, the vector b jumps through a smaller angle and larger
angle for L1 < L̄1 and L1 > L̄1, respectively. After the jump, b is tangent to the
landing curve J(W u) but no longer tangent to the orbit of the solution. For L1 = L̄1,
after the jump b will be tangent to the transient orbit but in opposite direction. For
all cases, b does not pass through the vertical. So, up to this stage, P = n1 +n2 = 0.

5.3. when −L < x < L. Vector b(A2) is now flowed by the equation (8) to point
b(A3). The variational flow (23) will preserve the orientation of vector b with respect
to the tangent vector of the inner orbit, so q gives a bound for b as it evolves. After
the first jumping, vector b points towards into the center (or the concave side) of the
inner orbit for L1 < L̄1, and it will point down and out the inner orbit for L1 > L̄1.
On the other hand, for L1 = L̄1, the landing curve J(W u) is tangent to the inner
orbit to which b jumps, so b is still tangent to the orbit but now pointing backward.
Comparing vector b with the vector q(A3), then up to this point n3 = 0 or 1.

5.4. when x = L. In this region, we will count how many times b cross the vertical
when it jumps from A3 to A4, i.e., when b(A3) is mapped to b(A4). In this region,
the tangent vector at A3, q(A3) will be mapped to F (q(A3) which has smaller angle,
and the jump does not give any additional crossing of the verticality, therefore n4 = 0

5.5. when x > L. In this region the base point of the vector b will be carried
under the flow to the origin. We will determine whether the landing curve J−1(W s),
intersecting the inner orbit, yields an additional vertical crossing or not. First, we
look at the case L1 < L̄1.Here the second defect the vector b still points to the
transient orbit. We can see that b is lower than the vector that is taken to the curve
W s which is tangent to J−1(W s) (i.e. b has a larger angle). Comparing these two
vectors, in this region, there will be no additional crossing to the vertical.

Now, for the case L1 ≥ L̄1. If L2 > L̄2 at the second defect, the vector b is pointing
out from the transient orbit relative to the vector that is tangent to J−1(W s). So b
has a smaller angle. After the jump, the flow pushes it across the vertical, so in this
case P ≥ 2. If L2 ≤ L̄2, b has a larger angle, and there are no additional crossings of
the vertical.

To summarise, we have the following
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Fig. 5. Spectrum in the complex plane of the solutions in Fig. 2 in the
same order. Panels (c) and (d) are identical because the solutions are
mirror symmetries of each other.

Theorem 2. Positive definite homoclinic solutions of (3)-(4) with L1 < L̄1 will have
P ≤ 1. If they have L1 ≥ L̄1, then there are two possible cases, i.e., either L2 < L̄2

or L2 ≥ L̄2. The former case gives P ≤ 1, while the latter yields P ≥ 2.

Using Theorem 1, the last case will give an unstable solution through a real eigen-
value. Solutions in Figs. 2a, 3c, and 4c correspond to L1 < L̄1. Solutions in Figs. 3d,
3a and 4d correspond to L1 > L̄1, but L2 < L̄2. In those cases, we cannot determine
their stability. Using numerics, our results in the next section show that they are
stable. On the other hand, for the solutions in Fig. 2b and 3b, L1 > L̄1 and at the
same time L2 > L̄2. Hence, they are unstable.

6. Numerical results

We solved Eqs. (3) and (4) as well as Eq. (21) numerically to study the localised
standing waves and their stability. A central finite difference was used to approximate
the Laplacian with a relatively fine discretisation. Here we present the spectrum of
the solutions from 5 obtained from solving the eigenvalue problem numerically.
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Fig. 6. The same as Fig. 5, but for the solitons in Fig. 3.

We plot the spectrum of solutions in Figs. 2 and 3 in Figs. 5 and 6, respectively.
We confirm the result of Section 5 that solutions plotted in panel (b) of Figs. 2 and
3 are unstable. The instability is due to the presence of a pair of real eigenvalues.

When a solution is unstable, it is interesting to see its typical dynamics. To do so,
we solve the governing equation (1) numerically where the Dirac delta potential is
incorporated through the boundaries. While the spatial discretisation is still the same
as before, the time derivative is integrated using the classic fourth-order Runge-Kutta
method.

In Fig. 7 we plot time dynamic of the unstable solution shown in panel (b) of Fig.
3. The time evolution is typical where the instability manifests in the form of periodic
oscillations. The norm tends to be localised in one of the wells, which is one of the
characteristics of the presence of symmetry breaking solutions [6, 12, 14, 15, 16].

7. Conclusion

In this paper, we have considered broken symmetry breaking bifurcations in the
NLS on the real line with an asymmetric double Dirac delta potential. By using
a dynamical system approach, we presented the ground state solutions in the phase
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Fig. 7. Time dynamics of the unstable solution in Fig. 3b. Plotted is
the squared magnitude |ψ|2. Initially the standing wave is perturbed
randomly.

plane and their explicit expressions. We have shown that different from the symmetric
case where the bifurcation is of a pitchfork type, when the potential is asymmetric,
the bifurcation is of a saddle-centre type. The linear instability of the corresponding
solutions has been derived as well using a geometrical approach developed by Jones
[17]. Numerical computations have been presented illustrating the analytical results
and simulations showing the typical dynamics of unstable solutions have also been
discussed.
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