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Impact of discontinuous deformation upon the rate of chaotic mixing
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Mixing in smoothly deforming systems is achieved by repeated stretching and folding of material, and has
been widely studied. However, for the classes of materials that also admit discontinuous deformation, the theory
of mixing based on the assumption of smooth deformation does not apply. Discontinuous deformation provides
additional topological freedom for material transport and results in different Lagrangian coherent structures
forbidden in smoothly deforming systems. We uncover the impact of discontinuous deformation on mixing rates,
showing that mixing can be either enhanced or impeded depending on the local stability of the underlying smooth
map.
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I. INTRODUCTION

Efficient mixing is essential to many physical processes
and engineering applications, from the microscale [1] to the
geological and oceanic scales [2–4]. In smooth fluid flows,
mixing is achieved via chaotic advection [5,6], driven by
repeated stretching and folding (SF) of fluid. Sampling a
periodic incompressible flow after each period results in a
smooth volume-preserving map. Therefore, the dynamics of
smooth flows can be studied using the theory of volume-
preserving maps, which have been studied extensively.

While the majority of flows involve only smooth defor-
mations (stretching, folding, shear, etc.), there also exist fluid
flows and materials that exhibit discontinuous deformations
(cutting, rearranging), termed Lagrangian discontinuities. For
instance, fluid flows with valves [7,8] and granular flows
[9–14] can generate discontinuous deformations, while shear-
banding materials such as colloidal suspensions, plastics,
polymers, and alloys [15–17] naturally produce discontinuous
deformations in smooth underlying velocity fields due to
localized failure. In these systems, mixing can also be
generated via cutting and shuffling (CS) actions, like shuffling
a deck of cards. Even though CS cannot generate chaos, it can
still achieve complete mixing under appropriate conditions
[14,18,19].

However, not all complete mixing is equal: For practical
applications, the rate of mixing is also important, and we
need to organize the different types of mixing that form
the ergodic hierarchy [14]. Strong mixing, characterized by
a positive Lyapunov exponent (the rate of elongation of
material lines), is typical of chaotic SF systems. In contrast,
CS systems have an identically zero Lyapunov exponent
and are only able to achieve weak mixing characterized by
much slower algebraic mixing rates. Therefore, in systems
with CS and equal Lyapunov exponent, other measures are

*lachlan.smith@northwestern.edu

needed to distinguish between the rates of mixing achieved.
An alternative measure is the mix-norm [20], a multiscale
measure for mixing that is able to quantify the rate of mixing
for both SF and CS mechanisms.

While purely discontinuous deformation rarely occurs
in practice, most studies on mixing in the presence of
discontinuous deformation have focused on cases where
only cutting and rearranging are allowed, where the mixing
phenomena is couched in terms of piecewise isometries
[21–26]. Few studies have considered mixing in systems
with combined SF and CS actions. It has been shown that
the Lagrangian coherent structures inherit characteristics of
both SF and CS systems, but the nature of these structures
and their governing mechanics are not well understood [8].
The presence of discontinuous deformations invalidates the
Hamiltonian framework, destroys impenetrable barriers to
transport, and creates pseudoperiodic points, which can be
thought of as classical periodic points that are seemingly
destroyed by discontinuous deformation, inheriting some of
their properties. Like regular periodic points, the character of
pseudoperiodic points influences the deformation dynamics in
the local neighbourhood around them. Like elliptic periodic
points in smooth systems, particles rotate about pseudoelliptic
points; however, there are no KAM-tori that form impenetrable
barriers to transport surrounding them. Instead, pseudoelliptic
points are surrounded by leaky regions where particles are
loosely confined. Pseudohyperbolic points play a similar role
to hyperbolic periodic points, generating mixing. However,
mixing is confined to the closure of the measure zero set of all
images or preimages of the cutting line, termed the “web of
images or preimages” of the Lagrangian discontinuity [8], or
the “exceptional set” in the theory of piecewise isometries [23].
Like the chaotic sea generated by hyperbolic points, the web of
preimages can have positive area, though in many cases it has
measure zero. It is unknown what impact these structures have
on the rate of mixing and transport. By adding a discontinuous
slip deformation to a linear volume-preserving map, we show
that the existence of pseudoelliptic points decreases the rate of
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FIG. 1. Parameters (γ1,γ2) of the map �1 such that the period 1
point at the origin is elliptic (gray) and hyperbolic (white). The curves
γ1 = 0,γ2 = 0,4 + γ1γ2 = 0 separate regions of different stabilities.

mixing compared to the linear map, whereas pseudohyperbolic
points improve mixing rates, and we discuss the governing
mechanisms for each case.

II. DISCONTINUOUS DEFORMATION ADDED TO
A LINEAR MAP

A. A simple linear map

To study the impact of combined smooth and discontinuous
deformations on mixing, we consider a simple linear (smooth)
two-dimensional (2D) map with discontinuous deformation
added. The smooth map is composed of concatenated hori-
zontal and vertical shears, given by

�1(x,y) = SvSh

[
x

y

]
= A

[
x

y

]
, (1)

where

Sv =
[

1 0
γ2 1

]
, Sh =

[
1 γ1

0 1

]
(2)

are horizontal and vertical shear matrices and

A =
[

1 γ1

γ2 1 + γ1γ2

]
(3)

is their product. This map has a period 1 point at the origin
(�1(0) = 0), with stability dependent on the eigenvalues of A,
given by

λ1,2 = 1
2 [2 + γ1γ2 ±

√
γ1γ2(4 + γ1γ2)]. (4)

These form a complex conjugate pair, λ1,2 = exp(±iθ ), when
γ1γ2 < 0 and 4 + γ1γ2 > 0, i.e., the gray regions of Fig. 1. In
these cases the period-1 point is elliptic, with particle orbits
oscillating around the origin as demonstrated in Fig. 2(a), with
angle of rotation

cos(θ ) = 1
2 (2 + γ1γ2). (5)

Outside of the gray region the real eigenvalues λ1 = 1/λ2

correspond to a hyperbolic periodic point, with contraction
in the direction of the eigenvector corresponding to λi < 1
and expansion in the direction of the other eigenvector, as
demonstrated in Fig. 2(c).

B. The cut-shear-shear map

While linear maps such as �1 are well understood, the addi-
tion of discontinuous deformation opens up new possibilities
for Lagrangian transport, including pseudoperiodic points. We
defined the modified map �2 as that composed of a cut-and-slip
deformation followed by the shears that define the map
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FIG. 2. Orbits of sets of differently colored particles under (a, c) the linear map �1 and (b, d) the discontinuous map �2. In all cases
γ1 = −a = 0.04. (a, b) γ2 = −1. (c, d) γ2 = 1. (e) The web of preimages of the Lagrangian discontinuity for the case in panel (b).
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�1 [8], i.e.,

�2(x,y) = SvShC(x,y), (6)

where

C(x,y) = [x + a sgn(y),y] (7)

and periodic boundary conditions are imposed at y = ±2a/γ1.
Explicitly, the map �2 is given by

�2(x,y) = (x ′,y ′),

x ′ = x + γ1y + a sgn(y), (8)

y ′ =
(

γ2x
′ + y + 2

|γ ′
1|

mod
4

|γ ′
1|

)
− 2

|γ ′
1|

,

where γ ′
i = γi/a are the relative magnitudes of the shear-and-

cut deformations. Both the cutting map C and periodic bound-
aries produce discontinuous deformations that significantly
alter the organization of particle transport, as evidenced by
the stark contrast between Figs. 2(a) and 2(c) and Figs. 2(b)
and 2(d). This map was used to approximate and elucidate
the phenomena observed in a model fluid flow [8], where it
was found that discontinuous deformations can be produced
by fluid flows even when the base flow is Hamiltonian.

For the map �2 the dynamics in the regions γ1 > 0 and
γ1 < 0 are the same (with γ2 replaced by −γ2); therefore,
we only consider the dynamics in the region γ1 > 0. Also, it
has been shown that the map �2 only has period-1 points
when a < 0 [8], as this results in a balancing between
the horizontal shear and cutting deformations at the points
[4na/(γ1γ2), ± a/γ1] for n ∈ Z. The dynamics for a > 0 are
considered briefly in Ref. [8]; however, we do not consider this
case here because we are interested in the interplay between
classical periodic points and pseudoperiodic points. While the
horizontal width of the domain is infinite, the Lagrangian
coherent structures repeat themselves with horizontal period
4/|γ ′

1γ2|. Therefore, keeping |γ ′
1| = 1 (γ1 = −a) and |γ2| = 1

fixed, the periodic height and periodic width are both equal
to 4, and the square domain [−2,2) × [−2,2) completely
characterizes the transport and mixing properties of the map.
Changing |γ ′

1| and |γ2| only serves to change the vertical and
horizontal scales of the domain, and does not affect the gross
arrangement of particle motion or mixing characteristics.

Since the smooth deformations that comprise the map �2

are identical to the linear map �1, it follows that material that
is not affected by the cut or periodic boundary experiences
identical motion under both maps. This is represented mathe-
matically by the fact that the Jacobian of �2, i.e., the matrix
(∂�i

2/∂xj ), is equal to A at all points where it is defined.
Therefore the period 1 points located at [4na/(γ1γ2), ± a/γ1],
n ∈ Z, share the same stability properties as the period 1 point
at the origin for the linear map �1, elliptic in the gray region
of Fig. 1 and hyperbolic in the white region. Having the same
Jacobian also means that the Lyapunov exponent is identical
for both maps (in regions where it is defined). Therefore, if the
discontinuous deformations were ignored, both maps would
be expected to have similar mixing characteristics under the
classical theory of mixing by smooth deformations.

Consider, however, the impact of the addition of cutting
on particle orbits; Fig. 2 shows that there are fundamental
differences to the Lagrangian topology when cutting is
included. In Fig. 2(a) the parameters of the map �1 are such
that the period-1 points are elliptic, and particles orbit around
the origin under the linear map. However, when cutting is
added in Fig. 2(b), higher periodicity elliptic point chains are
created, forming a fractal tiling of nonmixing islands. In this
case, the map is conjugate to a piecewise isometry; i.e., after an
appropriate change of coordinates the entire fluid deformation
field comprises solely solid body rotations, and patterns such
as this have been found in many contexts [23,26–32]. Under
smooth deformation theory (specifically the Poincaré-Birkhoff
theorem) these chains of elliptic periodic points should be
interleaved with chains of hyperbolic periodic points. We have
shown previously that when the cut map is approximated by a
highly localized smooth shear that is the case [8]. However, a
discontinuous cut destroys these hyperbolic points, leaving
pseudohyperbolic points that play a similar role to their
classical hyperbolic counterparts in generating mixing in the
ergodic set among the nonmixing islands. The ergodic set is
shown in Fig. 2(e) for this case and is found by considering all
locations where the discontinuous deformation will eventually
occur, which is equivalent to the closure of the set of preimages
of the Lagrangian discontinuities, i.e.,

Ds = {
Ds

n = �−n
2

(
Ds

1

)
, n > 0

}
, (9)

where Ds
1 are the Lagrangian discontinuities given by the

curves y = 0, ± 2a/γ1, straight lines for this map but in
general codimension 1 structures of arbitrary geometric
complexity; see [33] for a three-dimensional (3D) example.
Evidence suggests that the closure of the ergodic set, Ds , for
the map �2 is a fat fractal for almost all sets of parameters
[27], i.e., the set has positive Lebesgue measure (area) and
fractal boundary.

Changing the sign of the vertical shear in the linear map
�1, i.e., γ2 to +1, results in hyperbolic period 1 points that
create directions of expansion and contraction [Fig. 2(c)].
The same contraction and expansion is experienced by all
material under the map �2; however, the cutting creates
many more hyperbolic periodic points whose positions and
periodicity match those of the elliptic periodic points in
Fig. 2(b). As for the case with negative vertical shear,
smooth deformation theory predicts elliptic periodic points
that interleave each chain of hyperbolic points, and these exist
when the cut is approximated as a highly localized shear.
However, these are again destroyed by the discontinuous cut,
leaving pseudoelliptic points that create leaky regions where
particles are trapped for long periods of time [Fig. 2(d)].
However, unlike the nonmixing regions created by elliptic
periodic points, particles are able to enter and exit the leaky
regions created by pseudoelliptic points.

III. THE IMPACT OF CUTTING ON MIXING RATES

To study the impact of discontinuous deformation on
mixing quality and mixing rates, the mix-norm [20] is used
to measure the mixing achieved by the maps �1 and �2. The
mix-norm provides a measure of how well mixed a scalar
field is, and its rate of decay quantifies the rate of mixing.
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As opposed to the Lyapunov exponent, the mix-norm is able
to quantify the effect of discontinuous deformation. The mix-
norm is similar to Danckwert’s intensity of segregation [34],
except the mixing quality at every length scale is considered
simultaneously, rather than at a single fixed length scale.
Exponential decay of the mix-norm indicates strong mixing,
whereas subexponential decay indicates only weak mixing or
ergodicity. In particular, when the map is linear, such as �1,
the decay rate of the mix-norm can be predicted as half the
magnitude of the Lyapunov exponent [20], i.e.,

�(cN ) = �(c0) exp
(
−σ

2
N

)
, (10)

where σ = max(ln |λ1,2|) is the Lyapunov exponent.
Starting with some initial scalar field c(x,y)—representing

concentration, heat, etc.—the mix-norm �(cN ) after N itera-
tions of a map � is given by

d(cN, p,s) = 1

vol[B( p,s)]

∫
x∈B( p,s)

cN (x)dx, (11)

φ(cN,s) =
[∫

p∈D

d2(cN, p,s)d p
]1/2

, (12)

�(cN ) =
[∫ w

s=0
φ2(cN,s)ds

]1/2

, (13)

where d(cN, p,s) is the average of cN over the ball B( p,s) =
{|x − p| < s/2}, φ(cN,s) is the L2-norm of d over all points
in the domain D, and �(cN ) is the L2-norm of φ over length
scales in the range 0 to the size of the domain w. As the
domain used here is the square [−2,2)2, the size w = 4. While
the numerical method proposed by Mathew et al. [20] based
on computation of the Fourier power spectrum of the scalar
fields cN is both fast and accurate for smoothly deforming
systems, the presence of discontinuous deformations results
in discontinuous interfaces within the concentration fields cN

and hence Fourier power spectra are not reliable. Instead, the
mix-norm � is computed by numerical approximations of the
integrals in Eqs. (11)–(13); for full details, see Ref. [33].

The initial scalar field used to test the mixing efficiency of
the maps �1,�2 is c0(x,y) = cos(πy/2) (Fig. 3), which has
mix-norm �(c0) = 4.0923.

A. The elliptic case: Mixing enhancement

Considering the cases when the period 1 points are elliptic,
i.e., γ1,γ2 are in the gray region of Fig. 1 and the eigenvalues
are of the form λ1,2 = exp(±iθ ): The nature of θ/π (rational
or irrational) dictates different mixing behavior for the maps
�1,�2.

1. Rational rotation

When θ/π is a rational number of the form m/n, every
point in the domain becomes periodic under the linear map
�1 (with periodicity 2n), and so no mixing can occur. This
is demonstrated for θ = π/3, π/4 by the return of the scalar
fields cN in the top rows of Figs. 4(a) and 4(b) to the initial
scalar field c0. Therefore, the mix-norm �(cN ) always evolves
periodically in these cases, as demonstrated by the open
squares and open triangles in Fig. 5, with period 3 evolution
for θ = π/3 and period 4 evolution for θ = π/4 [35].

-1

0

1

22-
-2

2

FIG. 3. The initial scalar field c0(x,y) = cos(πy/2) in the square
domain [−2,2)2 that is used to demonstrate the impact of cutting on
mixing using the maps �1,�2.

On the other hand, for the map �2 under these conditions the
measure-zero ergodic set interleaves a dense tiling of polygons,
as demonstrated in thick black in Fig. 6. For θ = π/3 the
tiling of polygons is simple [Fig. 6(a)], comprised of hexagons
and triangles; however, for other rational values of θ/π it is
complex and fractal [36]. When θ = π/3, particles that are not
in the measure-zero chaotic set all have low-period orbits with
periodicities that are factors of 12 (period 6 inside the hexagons
and period 12 inside the triangles), and the scalar field returns
to its initial configuration almost everywhere after 12 iterations
(the lowest common multiple of all the periodicities), as
shown in the bottom row of Fig. 4(a). While the evolution
of the scalar field and hence the mix-norm is periodic under
both the linear map �1 and discontinuous map �2 [open
and solid squares in Fig. 5], with the cut included (solid
squares) the scalar field reaches a lower minimum mix-norm,
and hence a more well-mixed state. This temporary mixing
enhancement is produced by the creation of discontinuous
interfaces within the scalar fields, whose positions coincide
with the web of preimages of the Lagrangian discontinuity.
When diffusion is included, these discontinuous interfaces
create infinite gradients in the scalar field and hence strong
diffusion. For 1D interval exchange transformations (IETs) it
has been shown that with diffusion included, the discontinuous
interfaces created by CS actions can significantly enhance
the rate of mixing, even when the underlying CS process is
periodic [14]. Similar phenomena will occur when chemical
reactions are included, where the discontinuous interfaces
provide new sites for reaction.

Considering another relatively simple case with θ = π/4,
the web of preimages of the Lagrangian discontinuity forms a
fractal tiling of octagons [Fig. 6(b)]. Since the periodicity of the
octagons scale inversely with their size, there exist arbitrarily
small octagons with arbitrarily long periods. Therefore, the
range of periodicities is infinite, and a lowest common multiple
does not exist. This means that while a large portion of the
domain returns to its initial configuration after 16 iterations
[bottom row of Fig. 4(b)], the scalar field never fully unmixes.
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(c)

(a)

(b)

FIG. 4. Iterates of the scalar field c0 (Fig. 3) under the maps �1,�2. Videos of each sequence can be found in the Supplemental
Material [37]. (a) (γ1,γ2,a) = (1, − 1, − 1) corresponding to θ = π/3. (b) (γ1,γ2,a) = (2 − √

2, − 1,
√

2 − 2) corresponding to θ = π/4.
(c) (γ1,γ2,a) = (0.04, − 1, − 0.04) corresponding to θ/π ≈ 0.0638.

The cases θ = π/3,π/4 are the simplest examples of
a rational rotation angle, and for other values of m and
n the tiling of polygons is more complex and always
fractal [36]. This means that polygons with arbitrarily

long periods can always be found, and hence a low-
est common multiple of periods never exists. Therefore,
the scalar field will never fully unmix, like the θ = π/4
case.
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0 5 10 15
1.0

2.0

3.0

1.5

No. of iterations

FIG. 5. Log-linear plot of the evolution of the mix-norm of the
initial scalar field c0 (Fig. 3) under the maps �1 (open symbols
connected by dashed lines) and �2 (closed symbols connected by
solid lines). Blue squares: (γ1,γ2,a) = (1, − 1, − 1) corresponding
to Fig. 4(a). Red triangles: (γ1,γ2,a) = (2 − √

2, − 1,
√

2 − 2) corre-
sponding to Fig. 4(b). Black circles: (γ1,γ2,a) = (0.04, − 1, − 0.04)
corresponding to Fig. 4(c).

2. Irrational rotation

Conversely, when θ/π is irrational, each point in the domain
is quasiperiodic under the linear map �1 and particle orbits
densely fill an ellipse. In this case there is still no net mixing
and the mix-norm evolves quasiperiodically, as demonstrated
by the open circles in Fig. 5 that correspond to the scalar fields
in the top row of Fig. 4(c). In this example the scalar fields
cN never exactly return to their initial configuration c0, though
there is qualitative similarity after 16 iterations.

When cutting is introduced, the tiling of polygons formed
by the web of preimages of the Lagrangian discontinuity
in the rational case becomes a tiling of ellipses in the
irrational case, whose complement forms a fat fractal, as
demonstrated in Fig. 6(c) for (γ1,γ2,a) = (0.04, − 1, − 0.04),
corresponding to an irrational rotation angle θ/π ≈ 0.0638.
For such irrational cases, none of the orbit periodicities within
the nonmixing islands are rational, so the scalar fields cN

can never return to their initial state [bottom row of Fig.
4(c)]. While the mix-norm decreases monotonically for the
first 16 iterations [closed circles in Fig. 5], this will not
continue indefinitely. Eventually many of the ellipses will
reorient (approximately) to their initial configuration, yielding
a mix-norm close to the initial value.

In general, when the period 1 points are elliptic the addition
of discontinuous cutting deformations enhances mixing com-
pared to the linear map, although the map may still be periodic
almost everywhere, resulting in periodic cycles of mixing and
unmixing. This enhancement is achieved by the creation of
discontinuous interfaces within the scalar field that coincide
with the web of preimages of the Lagrangian discontinuity.
When additional physics such as diffusion and reaction
are included, these discontinuous interfaces create infinite
concentration gradients that promote diffusion and reaction.

B. The hyperbolic case: Mixing impediment

In contrast to the elliptic case, when the period 1 points
are hyperbolic (the white region in Fig. 1) mixing is impeded

(b)

44- 0

-2

0

2

(a)

-2

0

2

(c)

-2

0

2

FIG. 6. Particle orbits (colored arrows or points) and web of
preimages of the Lagrangian discontinuities (thick black) for (a)
θ = π/3, (b) θ = π/4, and (c) θ/π irrational corresponding to
(γ1,γ2) = (0.04, − 1). (a) The blue, green, and brown orbits are
period 6, and the red orbit is period 12. (b) The blue, green, and
brown orbits are period 8, and the red orbit is period 1944, though
only the first nine iterates are shown. (c) The blue, brown, and red
orbits all have infinite period and fill an ellipse (blue, brown) or a pair
of ellipses (red).

when cutting is added. Under the linear map the bands in
the concentration fields cN align along the unstable manifold
of the hyperbolic period 1 point and decrease in width by a
factor of max(λ1,2) after each iteration [demonstrated in the
top rows of Figs. 7(a) and 7(b)]. This results in exponential
decay of the mix-norm, as shown by the linear trends for the
open symbols in Fig. 8. Moreover, the mix-norm decays at the
rate predicted by the Lyapunov exponent according to Eq. (10),
shown as the dashed lines in Fig. 8. Note that the initially faster
decay than predicted is caused by the initial reorientation of
the bands in the scalar fields cN along the unstable manifold
of the hyperbolic period 1 point (Fig. 7).

In contrast, when cutting is introduced there are obvious
light and dark regions in the scalar fields cN that indicate
a lack of mixing, and these are not present for the linear
map (Fig. 7). These regions are created by the pseudoelliptic
points that interleave the chains of hyperbolic points, loosely
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(a)

(b)

FIG. 7. Iterates of the scalar field c0 (Fig. 3) under the maps �1 and �2. Videos of each sequence can be found in the Supplemental Material
[37]. (a) (γ1,γ2,a) = (0.04,1,−0.04). (b) (γ1,γ2,a) = (0.16,1,−0.16).

0 5 10 15

1.0

2.0

3.0

1.5

No. of iterations

FIG. 8. Log-linear plot of the evolution of the mix-norm of the
initial scalar field c0 (Fig. 3) under the maps �1 (open symbols) and
�2 (closed symbols). Blue squares: (γ1,γ2,a) = (0.04,1, − 0.04).
Red triangles: (γ1,γ2,a) = (0.16,1, − 0.16). In each case the decay
rate predicted by Eq. (10) is shown dashed.

confining particles in a leaky region. In both cases considered,
this results in a reduced rate of mixing compared to the linear
map, shown by the subexponential decay of the mix-norm
(the closed symbols in Fig. 8). Therefore, the addition of
cutting results in a shift from strong mixing to weak mixing
on the ergodic hierarchy, even though the underlying smooth
deformation, and hence Lyapunov exponent, is the same for
both maps.

Comparing the two cases shown in Figs. 7 and 8, the
case with larger magnitude horizontal shear and cut, γ1 =
−a = 0.16 [Fig. 7(b) and triangles in Fig. 8], results in
better and more rapid mixing for both the linear map �1

and the discontinuous map �2. For the linear map �1, this
is predicted by the higher Lyapunov exponent according to
Eq. (10), and indicates that for the discontinuous map �2 the
mixing rate is still linked to the Lyapunov exponent, even
though the decay rate of the mix-norm cannot be directly
predicted by the Lyapunov exponent. This correlation between
the relative decay rate of the mix-norm and Lyapunov exponent
is expected because regions that are not affected by the
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discontinuous deformation experience the same expansion
and compression deformation as the linear map �1, creating
exponential decrease in the widths of the bands observed in
the scalar fields cN (Fig. 7).

It is not clear whether reduced mixing rates should be
expected in general systems that combine smooth deformation
with a positive Lyapunov exponent and discontinuous defor-
mations The question is whether hyperbolic and pseudoelliptic
points form the complete set of buiding blocks in those cases,
like hyperbolic and elliptic points in linear stability analysis. If
that is the case, then the decay rate of the mix-norm predicted
by the Lyapunov exponent can only be used as a lower
bound for the decay rate when discontinuous deformations
are present, although the Lyapunov exponent can still be used
to predict differences in mixing quality for two systems with
similar discontinuous deformations.

IV. CONCLUSIONS

The presence of discontinuous deformation can
significantly affect mixing processes. Escaping the paradigm
of smooth deformations opens up new possibilities for
Lagrangian coherent structures such as pseudoperiodic
points that play important roles for mixing. The presence
of pseudohyperbolic points among a tiling of elliptic points
creates an ergodic set and mixing enhancement in cases where
the Lyapunov exponent is zero everywhere it is defined,
although in some periodic cases the system periodically
mixes and unmixes. Conversely, pseudoelliptic points in
hyperbolic flow create leaky regions that loosely trap particles
and impede the rate of mixing, reducing the mixing rate from
exponential to polynomial.

We have also shown that in systems with discontinuous
deformations, such as valved flows, granular flows, and shear-
banding materials, traditional measures of mixing, such as
the Lyapunov exponent, do not reveal the full picture. These
measures only capture the impact of smooth deformations, and

other measures, such as the mix-norm, are required to capture
the impact of both smooth and discontinuous deformation.

Future work should focus on generalizations of the CSS
map to form a complete classification of the new Lagrangian
structures that can be produced when discontinuous deforma-
tion is added to linear systems. This would create a set of
building blocks to understand the mixing and transport phe-
nomena in systems where discontinuous deformation is added
to nonlinear systems, like elliptic and hyperbolic points in the
linear stability analysis of conservative dynamical systems. If
it can be shown that elliptic, hyperbolic, pseudoelliptic, and
pseudohyperbolic points form the complete set of building
blocks, then more general statements regarding mixing en-
hancement and impediment could be made. Furthermore, the
CSS map should be extended to three dimensions, where the
extra topological freedom opens up yet more possibilities for
new transport structures and is more physically relevant. In
particular, due to the connection between the CSS map and the
2D reoriented potential mixing (RPM) flow [8], it is expected
that a 3D analog of the CSS map will help to understand the
mixing phenomena in its 3D analog, the 3D RPM flow [33,38].

Another future direction is to study the effect of com-
bined smooth and discontinuous deformation when additional
physics such as diffusion and chemical reaction are considered.
Like for IETs [14], it is expected that in the elliptic and
pseudohyperbolic cases, the pseudohyperbolic points will
create significant mixing enhancement when diffusion is
included due to the creation of discontinuous interfaces in
the scalar field. This includes cases such as Fig. 4(a), where
the discontinuous map is periodic almost everywhere. In the
hyperbolic and pseudoelliptic cases, the inclusion of diffusion
should enhance mixing, but it will likely still be impeded when
compared to the linear map �1.
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[24] M. Viana, Revista Matemática Complutense 19, 7 (2006).
[25] A. Ávila and G. Forni, Ann. Math. 165, 637 (2007).
[26] P. P. Park, P. B. Umbanhowar, J. M. Ottino, and R. M. Lueptow,

Chaos 26, 073115 (2016).
[27] P. Ashwin, Phys. Lett. A 232, 409 (1997).
[28] A. Scott, C. Holmes, and G. Milburn, Phys. D (Amsterdam,

Neth.) 155, 34 (2001).
[29] A. Scott, Phys. D (Amsterdam, Neth.) 181, 45 (2003).
[30] P. Ashwin and A. Goetz, SIAM J. Appl. Dyn. Syst. 4, 437

(2005).
[31] X.-C. Fu and J. Duan, Phys. D (Amsterdam, Neth.) 237, 3369

(2008).

[32] G. Hughes, arXiv:1206.5223.
[33] L. D. Smith, Ph.D. thesis, Monash University, Clayton, Victoria,

Australia, 2016.
[34] P. V. Danckwerts, Appl. Sci. Res. Sec. A 3, 279 (1952).
[35] Note that for the scalar field c0 only n iterations are

required and not 2n, as c0 has rotational symmetry
(through a rotation of π ). For more general initial scalar
fields, 2n iterations are required to return to the initial
configuration.

[36] G. Hughes, arXiv:1311.6763.
[37] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.95.022213 for each full video sequence.
[38] L. D. Smith, M. Rudman, D. R. Lester, and G. Metcalfe, Chaos

26, 053106 (2016).

022213-9

https://doi.org/10.4007/annals.2007.165.637
https://doi.org/10.4007/annals.2007.165.637
https://doi.org/10.4007/annals.2007.165.637
https://doi.org/10.4007/annals.2007.165.637
https://doi.org/10.1063/1.4955082
https://doi.org/10.1063/1.4955082
https://doi.org/10.1063/1.4955082
https://doi.org/10.1063/1.4955082
https://doi.org/10.1016/S0375-9601(97)00455-6
https://doi.org/10.1016/S0375-9601(97)00455-6
https://doi.org/10.1016/S0375-9601(97)00455-6
https://doi.org/10.1016/S0375-9601(97)00455-6
https://doi.org/10.1016/S0167-2789(01)00263-9
https://doi.org/10.1016/S0167-2789(01)00263-9
https://doi.org/10.1016/S0167-2789(01)00263-9
https://doi.org/10.1016/S0167-2789(01)00263-9
https://doi.org/10.1016/S0167-2789(03)00095-2
https://doi.org/10.1016/S0167-2789(03)00095-2
https://doi.org/10.1016/S0167-2789(03)00095-2
https://doi.org/10.1016/S0167-2789(03)00095-2
https://doi.org/10.1137/040605394
https://doi.org/10.1137/040605394
https://doi.org/10.1137/040605394
https://doi.org/10.1137/040605394
https://doi.org/10.1016/j.physd.2008.07.012
https://doi.org/10.1016/j.physd.2008.07.012
https://doi.org/10.1016/j.physd.2008.07.012
https://doi.org/10.1016/j.physd.2008.07.012
http://arxiv.org/abs/arXiv:1206.5223
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
https://doi.org/10.1007/BF03184936
http://arxiv.org/abs/arXiv:1311.6763
http://link.aps.org/supplemental/10.1103/PhysRevE.95.022213
https://doi.org/10.1063/1.4950763
https://doi.org/10.1063/1.4950763
https://doi.org/10.1063/1.4950763
https://doi.org/10.1063/1.4950763



