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Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic

kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While

elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic)

points also play an important role. These points represent a bifurcation in local stability and

Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate

periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the

local rotation angle associated with elliptic points is reversed, creating a reversal in the orientation

of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation

in local stability has a large influence on local transport and the global arrangement of manifolds as

the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic

points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-

tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each

depending on the nature of the associated manifold intersections. (2) The second type of bifurcation

occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation cre-

ates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-

doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for

the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on

the possible types of tangent bifurcation that can occur based on topological considerations.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4950763]

Periodic points play a pivotal role in the organisation of

transport and mixing in periodic fluid flows. Locally stable

(elliptic) periodic points indicate regions of non-mixing,

whereas locally unstable (hyperbolic) periodic points are

necessary for chaos and mixing. There is a third type of

periodic point, known as a degenerate (parabolic) point,

for which the only local deformation of fluid elements is

shear. These points are often overlooked but also play an

important role as they are on the brink of the stable/unsta-

ble classification and indicate abrupt changes in local sta-

bility. We demonstrate the impact of these degenerate

points on transport in a model 3D fluid flow. In particular,

we discuss period-tripling bifurcations that occur when

the rotation of elliptic points reverses direction, and tan-

gent bifurcations that occur when periodic lines become

tangent to invariant surfaces.

I. INTRODUCTION

Despite their ubiquity, the properties and organization

of passive tracer transport in 3D time-periodic flows has

received less attention than 2D flows,1 largely because the

correspondence between 2D incompressible flows and one

degree-of-freedom Hamiltonian systems breaks down for 3D

systems. The correspondence between 2D incompressible

flow and Hamiltonian mechanics means that for such sys-

tems, the tools and techniques of over a century of research

into Hamiltonian chaos can be directly applied to under-

standing fluid mixing. Moreover, the additional spatial

dimension results in an explosion of geometric complexity,

creating more possibilities for transport and mixing struc-

tures. The combination of these factors means that transport

and mixing in 3D incompressible flows is a rich source of

ongoing research.

Central to the dynamical systems approach for conserva-

tive periodic systems is the analysis of periodic points, i.e.,

those that return to their initial position after some number of

flow periods. In both 2D and 3D, these provide the backbone

of the kinematic template which governs transport and mixing.

Elliptic points indicate a region of local stability and are gen-

erally associated with non-mixing regions, whereas hyperbolic

points generate the stretching and folding motions, which lead

to chaos.2 In 2D systems, bifurcations of periodic points play

a significant role in transport organization, corresponding toa)Electronic mail: lachlan.smith@monash.edu
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abrupt changes in the topology of coherent structures. These

bifurcations are typically controlled by a single perturbation

parameter. In contrast, periodic points in 3D flows may be

found as periodic lines,3–5 a curve of periodic points, and the

bifurcations exhibited by 2D systems can arise in 3D systems

with the spatial dimension normal to locally 2D transport act-

ing as the perturbation parameter. This is made clearer in 3D

flows which admit a single invariant, such that transport is

confined to a nested set of 2D invariant surfaces. In these

cases, the direction normal to the invariant surfaces can act as

a perturbation parameter for the nested set of 2D systems.6

Bifurcation points on periodic lines are necessarily of

degenerate type (also known as parabolic type), where only

shearing of local fluid can occur. While often overlooked,

these points can have a significant effect on global transport,3

representing points of bifurcation in local stability and trans-

port topology.

To probe the influence of degenerate points on transport

and mixing, we study the bifurcations that occur on periodic

lines in a 3D model flow, the 3D Reoriented Potential

Mixing (3DRPM) flow, which is driven by a periodically

reoriented dipole flow. We demonstrate a type of period-

tripling bifurcation that is seen in some 2D systems7–9 and

has been observed in a 3D model flow,4 but its implications

for transport have not been fully explored. In 2D systems,

the period-tripling bifurcation occurs as the merging of three

period-3 hyperbolic points at a degenerate period-1 point.

Unlike period-doubling bifurcations where the period-2

points appear after the bifurcation, the period-3 points exist

both before and after the period-tripling bifurcations, such

that there is only a single value of the bifurcation parameter

where the period-3 points do not exist. It is for this reason

the bifurcation has been described as a “touch-and-go” bifur-

cation.9 In 2D, this bifurcation results in a reversal orienta-

tion of local Lagrangian structures, but the bifurcation itself

has a little impact on global transport properties. On the

other hand, for 3D systems, the third spatial direction can act

as the bifurcation parameter for locally 2D transport, and

period-tripling bifurcations occur where three period-3

hyperbolic lines intersect a period-1 line. These period-1 and

period-3 lines are extensive, and their manifolds are even

more extensive, forming the kinematic template for a large

portion of the flow domain. This entire transport structure is

organized by the single bifurcation point and is observed to

destroy invariant tori, create “sticky” regions where particles

are loosely trapped, create chaotic regions, and affects trans-

port in a region of the domain that is vastly more extensive

that is just the “neighborhood” of the bifurcation point.

In a standard periodic point analysis, the eigenvalues of

the Jacobian determine whether periodic points are elliptic,

hyperbolic, or degenerate. The corresponding eigenvectors

have been used to determine the direction of continuation of

periodic lines as well as the directions of contraction and

expansion. We demonstrate an additional property of the

eigenvectors in 3D conservative systems, showing that points

where the eigenvectors become linearly dependent (coplanar)

correspond to bifurcation points. The bifurcations at these

points are constrained by the “Poincar�e index,” a conserved

topological quantity. We detail two of the possible bifurcations

that can occur: saddle–centre and period-doubling bifurcations,

with emphasis on the transport barriers and chaotic regions

that can be created by saddle–centre bifurcations. In systems

which admit an invariant, these types of bifurcations occur

when the periodic line becomes tangent to the invariant surfa-

ces, providing a simple tool for their detection and analysis. In

the absence of an invariant, such as in the 3DRPM flow, the

system still admits local invariants based on local 2D approxi-

mation and these bifurcations occur at points where the peri-

odic line becomes tangent to the iso-surfaces of the local

invariant. We call this type of bifurcation a tangent bifurca-

tion,10 since they occur at points where periodic lines meet

local/global invariants tangentially.

II. THE 3DRPM FLOW

As a model for transport and mixing in 3D fluid flows,

in particular, porous media flows, we consider a periodically

reoriented 3D dipole flow, the 3D Reoriented Potential

Mixing (3DRPM) flow.11–13 It is a natural three-dimensional

extension of the 2D Reoriented Potential Mixing (RPM)

flow which has been studied in the context of contaminant

remediation and heat extraction/injection in groundwater

flows.14–17 A sink/source pair is used to model the extrac-

tion/injection of fluid produced by valved well-bores used in

groundwater applications.18

A. Steady dipole flow

A steady dipole flow forms the basis for the time-

dependent reoriented flow. It is driven by a source/sink pair

located at z6 ¼ ð0; 0;61Þ. While the open dipole flow in an

infinite 2D domain possesses a separating streamline coin-

ciding with the unit circle, the corresponding stream-surface

in 3D does not coincide with the unit sphere. We therefore

confine the flow to the unit sphere X, using a free-slip bound-

ary condition. This flow is axisymmetric about the z-axis,

admitting an axisymmetric Stokes stream-function W, such

that v ¼ r� ðW=qÞêh, where ðq; h; zÞ denote cylindrical

coordinates. Combining incompressibility with the boundary

conditions yields the equations governing the flow potential

U, where v ¼ rU,

r2U ¼ 0; and n � rUj@X ¼ dðz� 1Þ � dðzþ 1Þ; (1)

where n is the outward normal to the boundary @X and d is

the Dirac delta function. We solved these equations using the

method of images19 to find an analytic expression for the

flow potential U. In turn, analytic expressions can be found

for the velocity field and the axisymmetric Stokes stream-

function W

U q; h; zð Þ ¼ 1

4p
2

d�
� 2

dþ
þ log

dþ � zþ 1

d� þ zþ 1

� �� �
; (2)

W q; h; zð Þ ¼ 1� q2 � z2

4p
1

d�
þ 1

dþ

� �
; (3)

where d6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz71Þ2

q
are the distances from the poles

z6. Contours of U and W are shown in Fig. 1 together with

the velocity field v. Both the stream-function W and
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azimuthal angle h are invariants of the steady flow, and fluid

particles follow streamlines given by intersections of these

two isosurfaces. These streamlines are illustrated in Fig. 1(b)

as solid lines on the surfaces.

As the steady dipole flow is a potential flow, it is also a

Darcy flow,20,21 i.e., it can be expressed in the form

v xð Þ ¼ �K

l
rP xð Þ; (4)

where l is the fluid viscosity, K is the permeability of the

porous media, and the pressure gradient rP is obtained by

scaling the flow potential U. Therefore, the steady dipole

flow also serves as a model for homogeneous porous media

flow, with the dipole mimicking the action of injection and

extraction of fluid.

In this study, we create a closed flow by enforcing a

reinjection protocol at the source/sink. We specify that par-

ticles that reach the sink are immediately reinjected at the

source along the same streamline. This is an arbitrary choice

and other valid reinjection protocols exist (see Lester et al.14

for examples of several choices), but this reinjection choice

has the advantage of preserving Lagrangian structures during

the reinjection process.

Here, we denote by Ŷ t the solution of the advection

equation

_x ¼ vðx; tÞ (5)

in the Lagrangian frame, describing streamlines as functions

of time from an initial condition X. The map Ŷ t satisfies

Ŷ0 Xð Þ ¼ X; and
d

dt
Ŷ t Xð Þ ¼ v Ŷ t Xð Þ

� �
; (6)

where X denotes Lagrangian coordinates. Since the velocity

v is incompressible, it follows that the advection map Ŷ t is

volume-preserving for each value of t. We use the explicitly

volume-preserving integration method of Finn and Chac�on22

to numerically solve the advection equation (5).

B. The time-dependent flow

In the steady dipole flow, passive particles are confined

to streamlines of constant azimuth h and constant Stokes

stream-function W, and thus, the flow cannot become cha-

otic. To create the crossings of streamlines required for cha-

otic motion, we create a time-dependent flow by periodically

reorienting the dipole. This allows fluid stretching at the

dipoles to persist given appropriate flow parameters. Here,

we only consider the simplest reorientation protocol involv-

ing rotation of the dipole about the y-axis, providing the clos-

est resemblance to the 2D RPM flow. The dipole is switched

on for a time period s, then switched off, instantaneously

rotated by H about the y-axis, and switched back on. We

non-dimensionalize the reorientation period s such that s¼ 1

corresponds to the emptying time of the sphere under the

steady dipole flow, i.e., the time it takes for all fluid in the

sphere to pass through the sink. In this study, we exclusively

use a rotation angle of H ¼ 2p=3, the dipole positions for

this case are shown in Fig. 2 by the blue (sink) and red

(source) points. The results in this study are generic to all

rotation angles of the form 2pm=n with n odd, except period-

n structures replace the period-3 structures that we observe.

The velocity field in the time-dependent flow can be

approximated11,12 by the inertialess piecewise-steady velocity

v̂ x; tð Þ ¼ v Ry
bt
scH

x; t
� �

; (7)

where Ry
b is the rotation matrix corresponding to rotation

through the angle b about the y-axis and bac is the largest in-

teger less than a.

For convenience, we track particles in the rotating

dipole frame. Rather than rotating the dipole at the end of

each reorientation period s, we counter-rotate the particles

about the y-axis. Each step of the advection-reorientation

cycle can therefore be expressed as

Y�H
s ðxÞ ¼ Ry

�HŶ sðxÞ: (8)

This map is the main object of our study and has identical

Lagrangian dynamics to the 3DRPM flow in the (fixed)

Eulerian frame.

C. Symmetries

Flow symmetries play an important role in the overall

organisation of transport structures, including those associated

with periodic points and lines. Symmetries of the time-dependent

FIG. 1. Steady dipole flow. (a) Contours of the axisymmetric potential func-

tion U and velocity field v. (b) Isosurfaces of the axisymmetric stream func-

tion W.

FIG. 2. The 3DRPM flow. (a) Reorientation protocol for H ¼ 2p=3. Dipole

pairs are labelled according to the number of reorientations of the base

flow modulo 3. (b) A typical particle trajectory for the protocol ðs; HÞ
¼ ð0:3; 2p=3Þ.
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flow can be derived from underlying symmetries of the steady

flow and the reorientation protocol.

The steady dipole flow possesses two basic symmetries:

axisymmetry about the z-axis and a reflection reversal sym-

metry in the xy-plane. Algebraically these can be written,

respectively, as

Ŷ t ¼ Rz
cŶ tR

z
�c; (9)

Ŷ t ¼ SxyŶ
�1

t S�1
xy ; (10)

where Sxy is reflection in the xy-plane. These symmetries

yield three symmetries for the map YH
s . First, as a special

case of the axisymmetry property (9), the dipole flow is sym-

metric in the xz-plane, i.e.,

Ŷ t ¼ SxzŶ tS
�1
xz : (11)

As a result, YH
s satisfies

YH
s ¼ Ry

HŶ s ¼ Ry
HSxzŶ sS

�1
xz ¼ SxzR

y
HŶ sS

�1
xz ¼ SxzY

H
s S�1

xz

(12)

and is therefore also symmetric in the xz-plane. The xz-plane

Pxz is an invariant surface of the map YH
s , i.e., YH

s ðPxzÞ
¼ Pxz; therefore, this symmetry guarantees that the dynamics

in the yþ and y� hemispheres mirror each other. As the xz-

plane acts as an impenetrable barrier, dividing X in two, we

need to only consider transport in the yþ hemisphere.

Similarly, as another case of the axisymmetry property

(9), the steady dipole flow is symmetric about the yz-plane

Ŷ t ¼ SyzŶ tSyz: (13)

This translates to the map YH
s as

YH
s ¼ Ry

HŶ s ¼ Ry
HSyzŶ sSyz ¼ SyzR

y
�HŶ sSyz ¼ SyzY

�H
s Syz

(14)

since Ry
HSyz ¼ SyzR

y
�H. Therefore, changing H to �H results

in a reflection through the yz-plane but does not alter trans-

port dynamics. This is the 3D extension of the 2D result that

for periodically reoriented flows where the base flow has two

symmetries that þH and �H are equivalent.23

The map YH
s also possesses a reflection reversal symme-

try, inherited from the reflection reversal symmetry of the

dipole flow (10) as follows:

YH
s ¼ Ry

HŶ s ¼ Ry
HSxyŶ sSxy;

¼ Ry
HSxyðYH

s Þ
�1Ry

HSxy ¼ S1ðYH
s Þ
�1S1; (15)

where S1 ¼ Ry
HSxy. Direct computation shows that S1 is the

map that reflects a point through the plane z ¼ tanð�H=2Þx.

Therefore, structures in the orbit topology must also evolve

symmetrically about this plane. This has a significant impact

on the locations of periodic points, since it constrains all

chains of periodic points to be distributed symmetrically

about the symmetry plane.

D. Approximately 2D transport

Based on the similarity between the 3DRPM flow and

the 2D RPM flow14–16 and the presence of two invariant

surfaces—the xz-plane and the spherical boundary—one

might expect that particle transport in general would be con-

fined to 2D surfaces. However, the 3DRPM flow does not

admit a global invariant. At low values of s (including those

considered in this paper), particle motion is approximately

2D, as shown in Figs. 3(a) and 3(b), by the approximately

hemispherical shape of the Poincar�e sections. However, for

all values of s, there is transport transverse to these surfaces

creating 3D motion, as is clearly illustrated in Fig. 3(c). This

transverse transport has implications for the organization of

coherent structures that we explore.

III. PERIODIC POINTS AND LINES

Periodic points play a central role in the organization of

fluid transport in periodic flows, determining mixing and

non-mixing regions. A period-n point of a map K satisfies

KnðxÞ ¼ x, and the local stability near the periodic point is

determined by the eigenvalues of the Jacobian

DK ¼ @Ki

@xj

� �
(16)

evaluated at the periodic point.2 For a volume-preserving

map, the product of the eigenvalues, k1k2k3, is equal to 1. If

one of the eigenvalues, say k3, is equal to 1, and the others

are not, then the Jacobian is diagonalizable, and in an infini-

tesimally small region near the periodic point, there is no

transport in the direction of the corresponding eigenvector

v3, called the null direction. Therefore, in this infinitesimally

small region, the map x0 ¼ Ys
HðxÞ can be written as

n01 ¼ f1ðn1; n2; n3Þ;
n02 ¼ f2ðn1; n2; n3Þ;
n03 ¼ n3;

(17)

where ni corresponds to the coordinate in the direction of the

eigenvector vi,
24 resulting in a 2D system contained in the

plane spanned by the two transverse directions v1;2. In this

case, the periodic point forms part of a continuous line of

periodic points, with the line continuing in the null direction.

At each point on the periodic line, the null direction provides

a local invariant (valid in an infinitesimally small region)

according to Equation (17); and conversely, if there exists a

local invariant in a region containing a periodic point, then

there is no transport transverse to the local invariant surfaces,

providing a null direction. While it is sufficient, it is not nec-

essary for a system to admit a global invariant for there to

exist periodic lines, as we see for the 3DRPM flow.

There are three possible cases for the eigenvalues if

there is a null direction. First, if k1 ¼ 1=k2 are both real,

then the periodic point is locally unstable and called hyper-

bolic, fluid contracts along the direction corresponding to

ki < 1 and expands along the direction corresponding to

ki > 1. In 2D, the stable manifold associated with a hyper-

bolic point x0; Wsðx0Þ, consists of all points that converge to

x0 as the number of iterations of the map K approaches infin-

ity, i.e.,

053106-4 Smith et al. Chaos 26, 053106 (2016)
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Wsðx0Þ ¼ x : lim
N!1

KNðxÞ ¼ x0

n o
: (18)

Similarly, the unstable manifold consists of points that con-

verge under the map K�1

Wuðx0Þ ¼ x : lim
N!1

K�NðxÞ ¼ x0

n o
: (19)

These structures naturally extend to 3D systems with peri-

odic lines since they can be thought of as a nested set of

locally 2D systems according to Equation (17). The 1D

manifolds of the nested 2D systems combine to create 2D

manifold surfaces2

Ws;u
2D ¼ t

x02S
Ws;uðx0Þ; (20)

where t is the disjoint union and S is a hyperbolic segment of

a periodic line. An example of this for the 3DRPM flow is

shown in Fig. 13 (Multimedia view) where each curve (white

to dark red) is the 1D unstable manifold for a single point

Wuðx0Þ on the hyperbolic segment of a period-3 line, the

union of which form the 2D unstable manifold surface.

Similar to 1D manifolds in 2D systems, the manifolds Ws;u
2D

are invariant, and form barriers to fluid transport as they are

co-dimension 1. The geometry of these manifolds, and their

intersections, plays a significant role for the overall transport

dynamics. If the intersecting manifolds belong to the same

hyperbolic point, then it is called a homoclinic connection;

otherwise, it is called a heteroclinic connection. If the intersec-

tion is transverse, then they must intersect infinitely many

times, creating the stretching and folding of fluid elements

necessary for chaos. Conversely, tangent intersections form

transport barriers that can confine fluid. It is possible that a

single 2D manifold will have a combination of transverse, tan-

gent, homoclinic, and heteroclinic connections, as is the case

in Fig. 13 (Multimedia view), where it is seen that for greater

y-values (closer to white), the 1D curves loop back to their ini-

tial position, forming tangent homoclinic connections; how-

ever, at a critical value of y, the 1D manifolds develop a wavy

pattern that indicates the presence of transverse connections.

The second type of periodic point is those that are

locally stable, called elliptic points. In this case, particles

are rotated about the periodic point, and the non-null eigen-

values of the Jacobian form a complex conjugate pair with

k1 ¼ �k2 and jk1j ¼ jk2j ¼ 1. They must therefore be of the

form k1;2 ¼ cos a6i sin a, where a is the angle of local rota-

tion about the periodic point. Since there is a null direction,

the local rotation occurs in the plane spanned by the vectors

<ðv1Þ; =ðv1Þ, where < and = denote the real and imaginary

parts, respectively. Enclosing elliptic segments of periodic

lines is an invariant tube that creates a non-mixing region

that is topologically distinct to mixing regions, i.e., particles

can neither enter nor escape the tube.

The last type of periodic point—called degenerate or

parabolic—is locally unstable with the eigenvalues of the

Jacobian all equal to 61. In this case, there is local shearing

of fluid, but no net rotation or stretching. These points can

come in a number of different forms, resulting in different

types of bifurcations of local transport dynamics.

When analysing periodic points in 2D systems, a useful

quantity is the “Poincar�e index,”25 which relates the number

and type of periodic points to the topology of the manifold

within which they are hosted. This index can be computed by

forming a closed curve around the periodic point and calculat-

ing the number of counter-clockwise rotations of the velocity

vector in one counter-clockwise traverse of the loop. Under

this measure, hyperbolic points have Poincar�e index �1 and

elliptic points have Poincar�e index þ1. The sum of Poincar�e
indices is preserved under continuous deformation of a flow

and furthermore is related to the topological genus of the flow

domain as per the Poincar�e–Hopf theorem. This provides a

constraint on the number and type of periodic points created

or annihilated during bifurcation. When considering subdo-

mains of the flow domain, the sum of the Poincar�e indices

within the subdomain also remains constant under continuous

deformations of the flow, unless a periodic point crosses the

boundary of the subdomain. The Poincar�e index can also be

applied to 3D systems with periodic lines, since the existence

of a null direction means the system is essentially 2D in an in-

finitesimal region. Therefore, the Poincar�e index of the essen-

tially 2D systems must remain constant as the periodic line is

traversed, which can be loosely thought of as a requirement of

topological continuity.

We use a numerical approach to find and classify peri-

odic points in the 3DRPM flow, with the reorientation angle

H ¼ 2p=3, the focus is on period-1 and period-3 points since

they have a dominant influence on the resulting Lagrangian

dynamics. For rotation angles of the form H ¼ 2pm=n with

n odd, the period-1 and period-n points will play a dominant

role, while for even n or rotation angles H that are incom-

mensurate with p (i.e., H=p is irrational), fundamentally dif-

ferent phenomena occur due to the difference in the nature

of the degenerate point at the origin of the flow in the limit

as s! 0.14 The reflection reversal symmetry (15) means all

period-1 points must be distributed symmetrically about the

symmetry plane z ¼ tanð�H=2Þx. Furthermore, as the map

YH
s is the composition of a map Ŷ s that preserves the azimuth

FIG. 3. Poincar�e sections in the

3DRPM flow with s ¼ 0:328 � 1:12s0

(s0 is defined in the text) and

H ¼ 2p=3. Colors correspond to six

different initial particle locations, cor-

responding to different colors. (a) 3D

view in the yþ hemisphere after 2000

iterations. (b) and (c) Azimuthal pro-

jections of the Poincar�e section into

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

; yÞ coordinates after (b)

1000 and (c) 10 000 iterations.
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h ¼ arctanðy=xÞ, and a rotation Ry
H, it follows that period-1

points satisfy x ¼ ðYH
s Þ
�1ðxÞ ¼ ðŶ sÞ�1Ry

�HðxÞ, and the azi-

muthal angle of Ry
�HðxÞ must equal the azimuthal angle of

x ¼ ðx; y; zÞ. This can be expressed as

arctan
y

x cos H� z sin H

� �
¼ arctan

y

x

� �
(21)

and implies that either z ¼ tanð�H=2Þx (i.e., the point is on

the symmetry plane) or y¼ 0 and the point is on the xz-plane.

Since the xz-plane is invariant and contains all the dipole loca-

tions, it is qualitatively similar to the 2D RPM flow, for which

it can be shown that period-1 points must lie on the symmetry

plane by essentially the same argument as above except using

the streamfunction W instead of the azimuthal angle h.14 This

also applies to the 3DRPM flow, as the streamfunction W is

conserved by the steady dipole advection Ŷ s, and so, a period-

1 point must satisfy WðRy
�HxÞ ¼ WðxÞ. Therefore, all period-

1 points must lie on the symmetry plane z ¼ tanð�H=2Þx.

We also observe that all periodic points in the 3DRPM flow

with period occur as smooth curves, each intersecting the xz-

plane, i.e., we have not found any isolated odd periodic

points. Therefore, we may restrict our initial search for

period-1 points to the line given by the intersection of the

symmetry plane and the xz-plane, which significantly reduces

the search space. Once solutions to ðYH
s Þ

NðxÞ ¼ x have been

found, we compute the Jacobian to find the null direction and

search for new periodic points at a fixed distance d away in

the neighbourhood of the null direction. Once the full line has

been found, we again use the Jacobian to classify periodic

points using the associated eigenvalues.

The typical nature of period-1 lines in the 3DRPM flow

is shown in Fig. 4. We only show points in the yþ hemi-

sphere, since those in the y� hemisphere can be obtained by

reflection through the xz-plane. At degenerate points, there

are three types of bifurcation that occur in the 3DRPM flow:

period-tripling bifurcations (open circles), saddle–centre

bifurcations (closed circles), and period-doubling bifurca-

tions (squares). In Sections IV and V, we explore their

behaviour and implications for transport.

IV. PERIOD-TRIPLING BIFURCATIONS

A. 2D model

Period-tripling bifurcations have been observed in a

number of studies4,7,8 in 2D and 3D systems, but their

transport characteristics in 3D systems have not been stud-

ied. In 3D systems, these bifurcations occur at points on

periodic lines where the rotation angle a (from the eigen-

values k1;2 ¼ e6ia) around an elliptic segment as it is trav-

ersed reverses direction, and a chain of period-3 lines

intersect at the degenerate point. Due to the complexity of

the period-tripling bifurcations in the 3DRPM flow, we

shall first illustrate the basic structure with a simple model

flow derived from an expansion of the flow about a degen-

erate point with a Poincar�e index of �2. This model is

a perturbation of the steady 2D six-roll mill flow,7 with

Hamiltonian

F x; y; xð Þ ¼
x3

3
� xy3 þ x x2 þ y2

� �
; (22)

which is related to the elliptic umbilic catastrophe26 and

the Henon–Heiles potential.27 A period-tripling bifurcation

occurs when the vorticity x is varied as a control parameter,

as shown in Fig. 5. At x¼ 0, there is no vorticity, and there

is a degenerate fixed point at the origin, with three stable and

three unstable directions, yielding a Poincar�e index of �2.

For positive or negative x, the vorticity creates an elliptic

fixed point at the origin, and for the Poincar�e index to remain

constant, three hyperbolic fixed points are created whose het-

eroclinic manifold connections form the outer barrier for the

invariant tori. When transitioning from positive to negative

x, or vice versa, the vorticity changes direction, resulting in

a reversal in the orientation of the triangular structure shown

in Fig. 5. A similar phenomenon occurs if vorticity is added

to the streamfunction of a 2n-roll mill for odd n. Instead of

three stable and unstable directions, there will be n, and for

x 6¼ 0, there will be n hyperbolic points arranged in an

n-gon around an elliptic point, with a Poincar�e index of 1� n.

B. 3DRPM flow

Period-tripling bifurcations are present in the 3DRPM

flow with rotation angle H ¼ 2p=3 for all values of s. They

manifest at points on periodic lines where the elliptic rota-

tion angle becomes 2p=3, shown in Fig. 6(a) as open circles.

At these points, the map Ŷ
H
s experiences a 1/3 resonance,

FIG. 4. Periodic lines in the 3DRPM flow. (a) Period-1 lines shown in the

symmetry plane for ðH; sÞ ¼ ð2p=3; 1:3Þ. Elliptic and hyperbolic segments

are coloured blue and red, respectively. Bifurcation points are illustrated as

open squares (period-doubling), open circles (period-tripling), and closed

circles (saddle–centre). (b) The period-1 and period-3 lines for ðH; sÞ
¼ ð2p=3; 1:1s0Þ, s0 is defined in the text.
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i.e., particles in the vicinity of the elliptic periodic point will

approximately return to their initial position after three itera-

tions. If we track particles in the non-rotating (laboratory)

frame, then the local rotation angle becomes � ¼ a� 2p=3.

The parameter � varies along the period-1 line, and becomes

0 at points where a ¼ 2p=3, indicating the presence of

degenerate points. At these 1/3 resonant degenerate points,

period-tripling bifurcations are generic,8 with the rotation

angle � playing the role of x in Equation (22).

As for the model system given by Equation (22), there

are three hyperbolic lines (period-3 in the rotating dipole

frame but period-1 in the non-rotating laboratory frame) that

intersect the elliptic period-1 line, resulting in a reversal of tri-

angular invariant tori on each side of the bifurcation point, as

per Fig. 7 (Multimedia view). These invariant tori join to form

pyramidal invariant tubes that connect at the bifurcation point.

To provide additional evidence of this behaviour, Fig. 6(b)

shows that period-3 lines (coloured) intersect the period-1

lines (grey) at every location where the rotation angle is 2p=3

(the open circles). Furthermore, the magnitude of stretching

along the hyperbolic sections of the period-3 lines is charac-

terised by the magnitude of the logarithm of the transverse

eigenvalues k1;2 of the Jacobian, which become zero (purple)

at the period-tripling bifurcations. This means that although

the period-1 rotation angle is not zero, these bifurcation points

can be considered as period-3 degenerate points.

C. Creation and annihilation

Considering the creation and annihilation of period-

tripling bifurcation points, we consider integer multiples of a

critical value of the reorientation period, s0 � 0:29344,

which corresponds to the return time of a particle initially

located at the origin under the steady dipole flow. At the val-

ues s ¼ Ns0, the origin is invariant under both the steady

dipole advection and rotation that comprise the combined

map YH
s ¼ Ry

HŶ s; hence, the origin is a period-1 point, as

shown in Fig. 8(a). Moreover, after three iterations of the

map YH
s , there is no net local deformation of fluid near the

origin, and so, this point is a period-3 degenerate point, in

particular, a period-tripling bifurcation point. In the 3DRPM

flow, this occurs at any point where a period-1 line intersects

the y-axis, not just at the origin. For a particle initially

located on the y-axis to return to its initial position, it must

return after the steady dipole advection step, as the rotation

cannot move a point that is off the y-axis onto the y-axis.

During the steady dipole advection, fluid at these period-1

points experiences a shear of the form

FIG. 5. A period-tripling bifurcation in the elliptic-umbilic catastrophe,

Equation (22), occurs at x¼ 0. Three hyperbolic fixed points (red) and one

elliptic fixed point (blue) coalesce at the bifurcation point.

FIG. 6. (a) As per Fig. 4(a) except hyperbolic points are shown as grey and elliptic points are coloured according to local rotation angle a, from 0 (purple) to p
(red). Points with a ¼ 2p=3 are marked as open circles and correspond to period-tripling bifurcations. (b) In order to show the intersection of period-1 and

period-3 lines in the symmetry plane, the period-1 lines of panel (a) are redrawn in panel (b) as solid gray lines. The coloured lines of panel (b) are period-3

lines. Elliptic segments are coloured blue and hyperbolic segments are coloured according to the local transverse stretching/contraction factor, with purple

(red) corresponding to zero (maximum) stretching/contracting.
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DŶ s ¼
1 0 0

0 1 0

0 Nc1 1

0
@

1
A; (23)

where N is the number of times the particle is reinjected during

the steady dipole advection, and c1 is the value of the shear expe-

rienced during a single reinjection, which depends on the loca-

tion y� of the periodic point on the y-axis according to Fig. 8(b).

Therefore, for a reorientation angle H, the Jacobian is given by

DYH
s ¼ Ry

HDŶ s (24)

with eigenvalues 1; expð6iHÞ, and can be diagonalized as

DYH
s ¼ PDP�1 where D is the diagonal matrix

D ¼
1 0 0

0 eiH 0

0 0 e�iH

0
@

1
A: (25)

Hence, for H ¼ 2pm=n, the Jacobian satisfies ðDYH
s Þ

n ¼ I,
making it a period-n degenerate point. In particular, for

H ¼ 2p=3, the periodic points on the y-axis are period-3

degenerate points, and thus period-tripling bifurcations.

Tracking the individual period-1 lines with increasing s,

they initially appear as isolated degenerate points resulting

from saddle–centre bifurcations in the xz-plane, which then

form closed loops with a pair of saddle–centre bifurcation

points separating elliptic and hyperbolic segments, shown as

the solid black circles in Fig. 4(a). These loops expand out-

ward as s increases, and eventually collide with the spherical

boundary, as shown in Fig. 9. Therefore, each new period-

1 line intersects the y-axis at a value s ¼ Ns0, which also

corresponds to the creation of a period-tripling bifurcation.

At these values of s, a period-1 line intersects the y-axis tan-

gentially, creating a single degenerate point at the origin.

This degenerate point is unique because the period-3 lines

also intersect the period-1 line and y-axis tangentially, mean-

ing there is no reversal in the orientation of the triangular

structures. The local rotation still reaches zero, but does not

reverse in direction. For a small perturbation � away from

s ¼ Ns0, the tangent intersections become transverse, creat-

ing two period-tripling bifurcations that are symmetric about

the xz-plane, and are orientation reversing. This is depicted

in Fig. 10 for N¼ 1, showing the rotation angle a as a func-

tion of arc-length along the period-1 line starting from the

xz-plane. Period-tripling bifurcations occur where the rota-

tion angle a reaches 2p=3. For s < s0, there are no intersec-

tions of this period-1 line with the y-axis and therefore no

period-tripling bifurcations, whereas for s ¼ s0, there is one

intersection, and for s > s0, there are two intersections. The

reorientation periods Ns0 therefore correspond to local flow

bifurcations.

The trajectory of the period-tripling bifurcation point on

the first new period-1 line (N¼ 1) as s is increased is shown

in Fig. 9 by the orange curve. After appearing at the origin

when s ¼ Ns0, it moves up the y-axis, to the point where it

reaches the spherical boundary. This occurs when s is equal

to the return time of the streamline on the spherical bound-

ary, which we have scaled to be equal to 1, multiplied by the

number of reinjections N, i.e., at s ¼ N as shown in Fig. 8(a)

by the values of s at y� ¼ 1. The period-tripling bifurcation

point then moves off the y-axis, moving towards the xz-plane

where it is annihilated. This path is traced out for each

period-1 line that is created. We find that the period-tripling

bifurcation point is annihilated at approximately the same

value of s as when the period-1 line itself is annihilated,

FIG. 7. Period-tripling bifurcation in the 3DRPM flow with s ¼ 1:1s0.

Period-1 and period-3 lines meet at a degenerate point on the y-axis (red—

hyperbolic and blue—elliptic). Green and orange points correspond to

Poincar�e sections at y-levels above and below the bifurcation point y0.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4950763.1]

FIG. 8. (a), The values of s for which

there is a periodic point on the y-axis

at ð0; y�; 0Þ. N is the number of times

the particle is reinjected. (b) The mag-

nitude of the corresponding shear ma-

trix DŶ s in Eq. (23).

053106-8 Smith et al. Chaos 26, 053106 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.194.129.221 On: Thu, 19 May

2016 01:34:20

http://dx.doi.org/10.1063/1.4950763.1


which occurs when the line reaches the point A at the inter-

section of the xz-plane, spherical boundary and symmetry

plane, shown in Fig. 9. To find the values of s such that the

point A is a period-1 point, and hence when the period-1

lines are annihilated, we consider the time TABðHÞ it takes

for a particle to travel from the point A to its reflection

through the xy-plane, the point B shown in Fig. 11. When

s ¼ TAB � 0:9333, the map YH
s takes a particle initially

located at A to the point B under the steady dipole flow, then

the particle is counter-rotated back to A, meaning the point A
is a period-1 point. Moreover, if the particle is reinjected any

number of times through the dipole but still finishes at B
then the point A will still be a period-1 point. As the stream-

lines on the spherical boundary have the longest return time,

which we have scaled to correspond to a value s¼ 1, A is a

period-1 point when s ¼ TAB þ j, where j is the number of

times that the particle is reinjected. Combining this with the

creation of period-tripling bifurcation points at values

s ¼ Ns0, the overall number of period-tripling bifurcation

points N 1=3 within the 3DRPM flow is a linear function of s

N 1=3 �
s
s0

� s� TABð Þ � 2:4s (26)

for s� 0. This shows that the number of period-tripling

bifurcation points grows linearly with s, resulting in more of

the stable pyramidal invariant tubes and more of the associ-

ated hyperbolic period-3 lines whose manifold intersections

can drive chaos. By seeding a large number of particles on

a grid in the domain, we have seen that the total volume of

the invariant tubes decreases as s increases even though the

total number of invariant tubes increases. It is likely that as

s!1 the total volume of the invariant tubes will approach

zero, meaning an approach to global chaos.

D. Impact on transport and manifolds

The structures associated with period-tripling bifurca-

tions can have a significant influence on the overall transport

properties of a fluid flow, as shown in Fig. 12, where the

period-tripling bifurcation at s ¼ 1:01s0 (Fig. 12(b)) destroys

the invariant tori surrounding the period-1 line that exist at

s ¼ 0:9s0 (Fig. 12(a)). The degenerate points associated with

the bifurcation have three stable and three unstable direc-

tions, creating transport structures similar to hyperbolic

points. These stable and unstable directions become the

manifolds of the associated period-3 hyperbolic lines away

from the bifurcation, as in Fig. 13. Also, surrounding the

elliptic segments of the period-3 lines, there exist invariant

tori that join to create impenetrable barriers to particle trans-

port. The locations of the outer-most invariant tori depend on

the nature of the manifold intersections, tangential or trans-

verse. If the stable and unstable manifolds intersect tangen-

tially, as is the case at larger y-values (closer to white) in

Fig. 13 and also in Fig. 12(b2), then the 1D manifolds form

the outermost invariant tori. Descending down the y-axis, the

manifolds become “wavy,” indicating transverse intersec-

tions of the stable and unstable manifolds and the existence

of a chaotic region. Near the values of y that this first occurs,

for example, y¼ 0.19 as in Fig. 12(b3), particles in the cha-

otic region near the period-3 invariant tori are loosely

trapped in a “sticky” region. Descending further along the

y-axis (Fig. 12(b4)), the “sticky” region is also destroyed,

giving way to wide-spread chaos. Therefore, period-tripling

bifurcations can drive global chaos via transverse manifold

FIG. 9. The path taken by the period-tripling bifurcation point with increas-

ing s (orange) shown with the corresponding period-1 line at various values

of s (grey). The point where the period-1 lines annihilate is marked as A.

FIG. 10. The local rotation angle a given by the Jacobian at points a distance

d along the period-1 line from the xz-plane. Curves are shown for

s ¼ 0:99s0; s0; 1:01s0; 1:1s0. Degenerate points are marked by large dots,

where a ¼ 2p=3.

FIG. 11. The xz-plane with the symmetry plane (dashed) and its reflection

through the x-axis (dot-dashed). The point A corresponds to that of Fig. 9,

where period-1 lines annihilate. Dipole positions are also shown (red/blue)

with the reoriented positions fainter.
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intersections or create the boundaries for confining regions if

the manifold intersections are tangent.

As well as a bifurcation in local stability, period-

tripling bifurcations also create a bifurcation in the mani-

folds associated with the hyperbolic period-3 lines, as dem-

onstrated in Fig. 14. The stable and unstable manifolds for

single points on each of the period-3 lines are shown at val-

ues y < y0 (left panel) and y > y0 (right), where y0 is the

bifurcation point. The manifold pairs Ws;u associated with

each period-3 line are coloured with two shades of the same

colour (e.g., stable—green, unstable—dark green, etc.). We

see that for y < y0 (left) the manifolds form transverse

homoclinic connections since the same colours intersect,

whereas for y > y0 (right), the connections become hetero-

clinic, and so while the orientation of the triangular island

structures are reflected across the bifurcation point, the

global arrangement of structures remains essentially the

same. This is only possible if there is a change between het-

eroclinic and homoclinic connections across the bifurcation

point. Considering the entire 2D unstable manifold Ws
2D

associated with only one of the period-3 lines, as in Fig. 13

(Multimedia view), there is a disconnection of the manifold

sheet as the period-3 point crosses the bifurcation point.

The bifurcation point can either be thought of as a point of

discontinuity for the manifold sheet, or the two segments of

the period-3 line, separated by the bifurcation point, can be

considered as separate entities with their own manifold

structures.

Therefore, the period-tripling bifurcation points them-

selves do not have a significant impact on global transport,

as they occur as an isolated unstable point along an otherwise

elliptic periodic line, but they organize vast transport struc-

tures that generate chaos and form barriers to transport.

For other values H ¼ 2pm=n with n odd we see similar

behaviour. Rather than period-tripling bifurcations, they are

n-tupling. Instead of three period-3 hyperbolic lines, there

are n period-n lines, and the degenerate point has a Poincar�e
index of 1� n. These cases are analogous to the 2n-roll mill,

with the arc-length along the period-1 line acting as the con-

trol parameter x.

V. TANGENT BIFURCATIONS

Tangent bifurcations occur in 3D systems when the null

direction (v3) of the Jacobian becomes tangent to the plane

spanned by the other two eigenvectors (v1;2). Formally, a

point x0 is a tangent bifurcation point if the vectors w1;2;3 are

linearly dependent, where

wi ¼ lim
x! x0

x 2 P1 line

viðxÞ: (27)

There are infinitely many possibilities for the different types

of tangent bifurcations, based on the periodicity of the peri-

odic line that becomes tangent, for instance, saddle–centre

bifurcations occur when a period-1 line becomes tangent

and period-doubling bifurcations occur when a period-2 line

becomes tangent.28 By plotting the eigenvectors with the

periodic line, tangent bifurcations can be identified as points

where the span of the non-null eigenvectors becomes tangent

to the periodic line, as per Fig. 15. Alternatively, in systems

which admit a global invariant, tangent bifurcations occur at

points where periodic lines become tangent to an invariant

surface. When the null direction becomes tangent to an

invariant surface, the three eigenvectors are linearly depend-

ent, and hence no longer distinct. For incompressible flows,

the product of the eigenvalues is always equal to 1, so there

are only two possibilities for the eigenvalues: k1;2 ¼ 61 and

k3 ¼ 1. This means that these tangent points necessarily

degenerate, resulting in bifurcations of local stability. This

provides a simple diagnostic to determine the locations of

some degenerate points in systems with an invariant. In sys-

tems that do not admit a global invariant, such as the

3DRPM flow, the flow becomes essentially 2D near the peri-

odic line, according to Equation (17), and so, the variable n3

FIG. 12. Poincar�e sections generated by initially planar (parallel to the xz-
plane) clusters of particles near the y-axis at various values of y. Period-1 and

period-3 lines are colored according to stability, red—hyperbolic, blue—elliptic.

(a1)–(a4), s ¼ 0:9s0. There are no period-3 lines, and invariant tori surround

the elliptic period-1 line. (b1)–(b4) s ¼ 1:01s0. A period-tripling bifurcation

occurs on the y-axis, which destroys tori, creates sticky regions, creates chaotic

regions, alters topology, and affects transport in a region of the domain that is

vastly more extensive than just the “neighborhood” of the bifurcation point.
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is a local invariant. Like global invariants, tangent bifurca-

tions occur where a periodic line becomes tangent to isosur-

faces of the local invariant.

Conservation of the Poincar�e index constrains the pos-

sible types of bifurcation that can occur via tangent bifur-

cations. Two of the possibilities are illustrated in Fig. 16: a

saddle–centre bifurcation (left) and a period doubling

bifurcation (right), both of which occur in the 3DRPM flow

(Fig. 4). Note that saddle–centre bifurcations are some-

times also referred to as tangent bifurcations in the context

of 2D systems, but here, we use the term to refer to the

broader class of bifurcations for 3D systems that includes

saddle–centre bifurcations. In each case, the bifurcation

point must occur where the periodic lines become tangent

to the invariant surfaces n3 ¼ c; otherwise, the Poincar�e
index R would not be conserved. These constraints allow

us to make a priori deductions with limited information,

for example:

• If there is a point on a periodic line that lies tangent to an

invariant surface, and no other periodic lines intersect at

the same point, then the tangent point must be a saddle–

centre bifurcation point separating elliptic and hyperbolic

segments, as per Fig. 16(a).
• Additionally, if there exists a saddle–centre bifurcation

point on a periodic line, then the tangent to the periodic

line at that point forms one of the tangent vectors of the

local/global invariant.
• If there is a point on a periodic line that is tangent to invariant

surfaces, and the periodic line has the same stability on each

side of the tangent point, e.g., both elliptic, then there must exist

another periodic line (possibly of different periodicity) that also

intersects at the tangent point. This is the case for the period-

2 line in the period-doubling bifurcation, as in Fig. 16(b).

Considering the impact that tangent bifurcations have on

transport, we primarily focus on saddle–centre bifurcations

FIG. 14. Bifurcation of stable/unstable

manifolds caused by period-tripling

bifurcation, which occurs at y¼ y0 as in

Fig. 7 (Multimedia view) for ðH; sÞ
¼ ð2p=3; 1:01s0Þ. Manifold pairs asso-

ciated with each period-3 line are shown

as different shades of the same colour,

e.g., green and dark green. (a) y < y0,

manifolds form homoclinic connections.

(b) y > y0, manifolds form heteroclinic

connections.

FIG. 13. (a)–(d) Four views of the 2D

unstable manifold Wu
2D for one of the

period-3 lines for s ¼ 1:1s0. The mani-

fold consists of the disjoint union of 1D

manifolds for points along the hyper-

bolic segment of the periodic line, col-

ored according to the y-coordinate,

y¼ 0 (dark red) to maximum (white).

As in Fig. 7 (Multimedia view), the

point y0 on the y-axis—seen in (c)—is

a period-tripling bifurcation point, and

the 2D manifolds for y < y0 and y > y0

form disconnected sheets. The green

point marks the location of a tangent

saddle–centre bifurcation point, where

the stability changes between elliptic

and hyperbolic. In (d), it can be seen

that close to the bifurcation point the

1D manifolds form parallel homoclinic

connections, wrapping around the ellip-

tic line, but at a critical distance away

from the bifurcation point waves in the

1D manifolds begin to develop, indicat-

ing transverse intersections and chaos.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4950763.2]
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as they provide a complete picture for the bifurcation

sequence that occurs near period-tripling bifurcations in the

3DRPM flow. At a critical value y > y0, the period-3 lines

associated with the period-tripling bifurcation undergo sad-

dle–centre bifurcations, dividing them into elliptic and hyper-

bolic segments, as shown in Figs. 6(b) and 13 (Multimedia

view). While not the focus of this study, period-doubling

bifurcations are equally important for transport. Cascades of

period-doubling bifurcations are a common route to chaos in

2D systems29 and we expect similar behaviour for 3D sys-

tems, though the chaos may be restricted to approximately 2D

structures.

Saddle–centre bifurcations are commonly found in 2D

conservative systems, resulting in the creation of a pair of

periodic points, one elliptic and one hyperbolic. For 3D con-

servative systems, the third dimension can act as the control

parameter for essentially 2D transport. Thus, saddle–centre

bifurcations in 3D conservative systems create elliptic and

hyperbolic segments of periodic lines. Enclosing the elliptic

segment is an invariant tube, yielding an isolated non-mixing

region. At the saddle–centre bifurcation point, the elliptic

segment and hence the invariant tube converges to a point,

creating a “cap” for the tube. For the 3DRPM flow, the cap

is formed by the tangent connections of the 2D stable and

unstable manifolds Ws;u
2D, as shown in Fig. 13 (Multimedia

view). However, at a critical distance away from the bifurca-

tion point, the 2D manifolds intersect transversally, indicated

by the “wavy” pattern that appears at smaller y values (closer

to red) in Fig. 13(d) (Multimedia view). This transverse

intersection means that the 2D manifolds no longer form the

outer boundary of the invariant tube, but rather there is a

bounding ergodic region. We expect this phenomenon to be

generic, as the distance from the bifurcation point in the

transverse direction n3 to the essentially 2D transport can act

as a perturbation parameter.

Therefore, the framework of tangent bifurcations, in par-

ticular, the restrictions imposed by conservation of the

Poincar�e index, provides a simple diagnostic tool for the

analysis of periodic lines. For each periodicity, there exists

at least one distinct type of tangent bifurcation, e.g., saddle–

centre bifurcations occur when a period-1 line becomes

tangent, and period-doubling bifurcations occur when a

period-2 line becomes tangent. These different types of tan-

gent bifurcations can have vastly different impacts on trans-

port. For instance, saddle–centre bifurcations yield both

isolated non-mixing regions and the possibility of locally

chaotic regions, whereas period-doubling bifurcations can

create regions of chaos via period-doubling cascades, though

possibly only two-dimensional chaos.

VI. CONCLUSIONS

Degenerate points play a more important role than gen-

erally supposed in the organization of transport structures,

representing bifurcations in local stability and transport to-

pology. Typically in 2D systems, there exists a perturbation

parameter that controls bifurcations, but in 3D, the extra

dimension may act as the perturbation parameter for locally

2D transport. In 3D systems with periodic lines rather than

isolated periodic points, the null direction associated with

the periodic line acts as a local invariant producing bifurca-

tions in the essentially 2D transport.

We have studied the bifurcations that occur in a 3D

model fluid flow, the 3DRPM flow, which are generic to a

wide range of 3D conservative systems. Period-tripling

bifurcations result in a local reversal of some coherent struc-

tures and are generic to 1/3 resonances, i.e., when the local

elliptic rotation angle a is 2p=3. In the 3DRPM flow with

reorientation angle H ¼ 2p=3, these bifurcations occur at

every intersection of period-1 lines with the y-axis, and for

reorientation angles of the form 2pm=n with n odd, similar

bifurcations occur. Rather than period-tripling, they are

FIG. 16. Sketch of the periodic lines for two types of tangent bifurcation: (a) saddle–centre (b) period-doubling. In each case, the elliptic segments are coloured

blue and contribute þ1 to the Poincar�e index R, and hyperbolic segments are coloured red and contribute �1 to R. The local/global invariant n3 from Equation

(17) acts as the control parameter, with the bifurcations occurring at n3 ¼ n�. Conservation of the Poincar�e index R for each locally 2D system n3 ¼ c con-

strains the possible types of tangent bifurcation.

FIG. 15. The period-1 lines from Fig. 4 are reproduced with one of the non-

null eigenvectors also shown. The other non-null eigenvector is always nor-

mal to the symmetry plane (into the page) as a result of the reflection rever-

sal symmetry—Equation (15). Points where the null direction (tangent of the

lines) becomes tangent with the other eigenvectors are shown as black

circles. These correspond to tangent saddle–centre bifurcations.
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n-tupling bifurcations, occurring at the intersections of n
period-n hyperbolic periodic lines and an elliptic period-

1 line. Even though each period-tripling bifurcation results in

a single unstable point on an elliptic periodic line, it also

controls the associated period-3 hyperbolic lines whose

manifolds play a significant role in transport organization,

destroying tori, creating “sticky” regions, and creating wide-

spread chaos. Since the nature of the manifold intersections,

either tangential or transverse, can depend on the position

along the periodic lines, combinations of chaotic, sticky, and

confining regions can occur in a single 3D flow, leading to

complex 3D transport.

Also observed in the 3DRPM flow are saddle–centre

and period-doubling bifurcations: the former creating bar-

riers to transport and the possibility of chaos, and the latter

being a common route to chaos in 2D systems. Both of these

types of bifurcation can be categorized as tangent bifurca-

tions, which occur when periodic lines are tangent to local/

global invariant surfaces. These are particularly easy to

detect in systems with global invariants and can also be

detected by considering the eigenvectors associated with the

periodic line when there is no global invariant, such as in the

3DRPM flow. The restrictions imposed by conservation of

the Poincar�e index place constraints on the types of possible

tangent bifurcations and can also be used to determine prop-

erties such as stability and the existence of higher or lower

order periodic points.

The period-tripling bifurcations have also been studied

in 2D systems in the context of so-called “twistless-tori,”8

i.e., invariant tori surrounding elliptic periodic points where

the rotation number does not vary monotonically. These

twistless-tori produce a number of interesting bifurcation phe-

nomena that are not predicted by the KAM (Kolmogorov-

Arnold-Moser)-theorem, such as reconnection bifurcations

where chains of periodic points merge and annihilate each

other. Dullin et al.8 have shown that twistless-tori generically

appear as a result of period-tripling bifurcations in 2D sys-

tems, and our recent results suggest that similar phenomena

are observed in 3D systems featuring period-tripling bifurca-

tions, such as the 3DRPM flow. This will be the subject of a

future publication.
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