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Abstract

We introduce the notion of a bounded weight function on a language, and show that the
set of bounded weight functions on a regular language is a rational polyhedral cone. We
study the cell recognised by a bounded weight function (that is, the set of elements of the
language where the bound is attained), and show that if the language is regular then this cell
is regular. The related notion of a weight function on a finitely generated group is introduced,
and the case of Coxeter groups is studied in detail. Applications to the representation theory
of weighted Hecke algebras are given.

1 Introduction

Let £ be a language over an alphabet S. A weight function on S* is a function ¢ : §* — R
with p(u - v) = p(u) + ¢(v), and we say that ¢ is bounded on L if there exists N > 0 such that
p(w) < N for all w e L. If ¢ is bounded on £ we let

br(p) = Slélzsp(w) and Tz(p) ={w e L] p(w) =bc(p)}

be the bound of ¢ on L, and the cell recognised by ¢, respectively.

The set Wg of all weight functions on S* is an |S|-dimensional real vector space (identified
with RISI in an obvious way), and the set B(L) of all weight functions that are bounded on £
is a convex cone in Wg. Recall that a cone is polyhedral if it is the conical hull of finitely many
vectors, and rational if these vectors may be taken to be rational. Our main theorem is as
follows.

Theorem 1. Let L be a regular language.
(1) The cone B(L) of weight functions bounded on L is polyhedral and rational.
(2) There exists a finite set F C L such that bz () = max{p(w) | w € F} for all ¢ € B(L).
(3) If p € B(L) then the cell T () is a nonempty regular language over S.

Less formally, Theorem [1| says that for a regular language, the problems of determining
whether a given weight function is bounded, and computing the bound and the cell recognised
by a bounded weight function, are “finite problems”.

The proof of Theorem [I]is constructive, giving an explicit description of the walls of the cone
B(L), explicitly determining the set F, and constructing an automaton recognising I'z (). If £
is not regular, then all conclusions in Theorem [l may fail (see Examples and .

A primary motivation for studying weight functions on languages comes from the related
notion of weight functions on a finitely generated group (G, S). A weight function on (G, S) is
a function ¢ : G — R with ¢(gh) = ¢(g) + ¢(h) whenever ¢(gh) = ¢(g) + ¢(h) (with £: G - N
the natural length function). If ¢ : G — R is a bounded weight function, we write

ba s(p) = Ztelgtp(g) and Tgs(p) ={9€ G|¢(9) =bas(p)}

for the bound of ¢ and the cell recognised by .
1J. Guilhot passed away on the 27" of July 2025




A combinatorial interpretation of weight functions on groups is as follows. Let Cay(G, S) be
the (directed) Cayley graph of (G, S). A weight function ¢ on (G, .S) is equivalent to choosing
real labels on each directed edge of Cay(G,S) such that the labels are invariant under the left
action of G on Cay(G, S), and such that for all g, h € G all geodesics joining the vertex h to the
vertex g have the same weight (where the weight of a geodesic is the sum of the edge weights
along the geodesic). A weight function is bounded if and only if there is a global upper bound
for the weight of geodesics in Cay(G, S).

If there exists a bounded weight function ¢ on (G,S) with ¢(s) > 0 for some s € S then
one can deduce numerical properties of reduced expressions in the group. For example, in the
triangle group G = A(2,4,6) with Coxeter generating set S = {s,t,u} (see Example it
turns out that the weight function with ¢(s) = 1, ¢(t) = 2, and ¢(u) = —5 is bounded, with
bound bg s(¢) = 6. This implies that for any reduced expression w in this group we have
|ws| + 2|w¢| — 5lw,| < 6 where |ws| denotes the number of times the generator s appears in
w, and similarly for |w¢| and |w,|. Moreover, the set of elements for which equality holds is
Las(p) = {stst(utst)™ | n > 0} (see Corollary [2| below).

A geodesic language for (G,S) is a language £ C S* consisting of reduced expressions for
elements of (G, .S) such that each element g € G is represented by at least one word in £. Let
p:S* — G be the natural map. Theorem [1| gives the following corollary.

Corollary 2. Suppose that the finitely generated group (G,S) admits a regular geodesic lan-
guage L. There exist finite sets X, Y C G, depending only on L, such that if o : G = R is a
weight function then:

(1) ¢ is bounded if and only if p(z) <0 for all x € X;

(2) if ¢ is bounded then bg s(¢) = max{p(y) |y € Y};

(3) if ¢ is bounded then {w € L | p(w) € g s(v)} is a nonempty regular language over S.

Another motivation for studying bounded weight functions comes from the representation
theory of Hecke algebras with unequal parameters, and connections to Kazhdan-Lusztig theory
and conjectures of Bill Casselman on the regularity of Kazhdan-Lusztig cells. We now briefly
describe this motivation. Let (W, S) be a Coxeter system, and let ¢ : W — Z>o be a weight
function on (W, S) with 1(s) € Zso for all s € S. The associated weighted Hecke algebra is the
algebra H = H(W, S,v) over R = Z[q,q~!] with basis {T}, | z € W} and defining relations

Tus if {(xs) =0(x) + 1
Tsz =
Teps + (qw(s) - q_¢(5))Tx if {(zs) = 0(x) — 1.

The “equal parameter case” is when ¢ = /¢, and in this case a systematic approach to the
representation theory of H is given by Kazhdan and Lusztig in the landmark paper [19]. The
central notion that arises is that of a Kazhdan-Lusztig cell. These cells give a decomposition of
the Coxeter group, and for each cell there is naturally associated a representation of the Hecke
algebra called a cell module. The case of “unequal parameters” (where ¢ : W — Z> is a general
weight function) was introduced by Lusztig in [20] (see also [2]). In this case Kazhdan-Lusztig
theory is much less developed and many aspects remain conjectural.

In the 1990s it was conjectured by Bill Casselman that (two-sided) Kazhdan-Lusztig cells in
H are regular sets (see [0l [7, [15]). This conjecture was initially made for the equal parameter
case, however it appears equally plausible in the unequal parameter case. In [15] Gunnels
proves Casselman’s conjecture for affine Coxeter groups in the equal parameter case (making
essential use of a result of Du [9] that is not readily available for unequal parameters), and
in [I] Belolipetsky, Gunnels and Scott give conjectural descriptions of Kazhdan-Lusztig cells in
hyperbolic planar Coxeter groups that, if true, would imply Casselman’s conjecture for this class
of groups in equal parameters.



Recently, an approach to Kazhdan-Lusztig theory in the unequal parameter case has been
developed by Guilhot and Parkinson [13] [14] and Chapelier-Laget, Guilhot, Little and Parkin-
son [8], directed towards proving Lusztig’s conjectures P1-P15 and constructing Lusztig’s asymp-
totic algebra for affine Coxeter groups. At the heart of this approach is the concept of a bounded
representation of the Hecke algebra: this is an H-module with a fixed choice of basis, such that
the matrix entries for the action of the elements T, x € W, on the module with respect to the
fixed basis have globally bounded degree in q. If 7 is a bounded representation, the bound of
7 is the least upper bound b(7) of the degree of the entries in the matrices 7(7,) with x € W,
and the cell recognised by the representation is the set I'(7) consisting of those = € W for which
the matrix = (7, ) attains the degree bound b(7) in some entry.

In [I3, 14] an explicit family of finite dimensional bounded representations is constructed
for affine types Gy and Cy (for all choices of parameters) such that each member of the family
recognises a different two-sided Kazhdan-Lusztig cell. Similarly, in [§] a family of bounded
representations is constructed recognising the two-sided Kazhdan-Lusztig cells in type A, for
n > 1. In each case, the bound b(7) turns out to be the value of Lusztig’s a-function on the cell
(see [13, Theorem 2.6] for an explanation of this fact).

In light of the above discussion, and motivated by Casselman’s conjecture on regularity of
Kazhdan-Lusztig cells, it is natural to ask whether the cell recognised by a bounded represen-
tation of the Hecke algebra is necessarily a regular set. Theorem [I] resolves this question for
bounded 1-dimensional representations, giving the following Corollary.

Corollary 3. Let m be a bounded 1-dimensional representation of a weighted Hecke algebra.
Then the language of reduced expressions for elements in T'(7) is a regular language over S.

We now outline the structure of the paper. In Section [2] we give background on regular
languages and prove Theorem In Section |3| we study weight functions on groups, proving
Corollary 2l In Section [4] we specialise to the case of Coxeter groups. We briefly sketch the
construction of the minimal automaton recognising the language of lexicographically minimal
reduced words in a Coxeter group, and provide examples where Theorem [I] and Corollary [2]
can be made completely explicit. Moreover we give explicit formulae for the bound bg s(p) for
spherical Coxeter groups, and for the walls of the cone B(L) for the language of reduced words
in an affine Coxeter group. Finally, in Section [4.6] we prove Corollary

2 Proof of Theorem [1]

In this section we prove Theorem

2.1 Languages and automata theory

We begin with some brief background on languages and automata theory (primary references
include [I0] and [I7]). Let S be a nonempty finite set, and let S* denote the free monoid over S
consisting of finite strings of elements of S, with @ denoting the empty string. The elements of
S* are called words. For u,v € S* we write u-v € S* for concatenation of words. We say that
v € §* is a prefiz of w € S*, denoted v < w, if w = v-v’ for some v/ € S*. For w € S* and s € S
we write |ws| for the number of times the letter s appears in the word w. Any subset £ C S* is
called a language over the alphabet S.

An automaton is a 5-tuple A = (X, S, 0,7, F') where
X is the set of states;
S is a finite set (the alphabet);
o € X is the start state;
7: X x S — 2% is a function (the transition function);

e [ C X is the set of accept states.
A word (s1,...,8,) € S* is accepted by A if and only if there exists a sequence of states
xo,...,Tn € X such that xg = o, z, € F, and z; € 7(z;-1,$;) for all 1 <i < n. The language



recognised by A is the set Acc(A) C S* of all accepted words. A language £ over S is called
regular if there exists an automaton A = (X, S,0,7, F) with |X| < oo recognising £ (that is,
there exists a finite state automaton A with £ = Acc(A)).

It is helpful to visualise A as a directed graph G(A) with edges labelled by S, as follows.
The vertex set of A is taken to be X, and for z,y € X there is a directed edge from z to y with
label s € S if and only if y € 7(x,s). Then a word (si,...,s,) € S* is accepted if and only if it
forms the edge labels on a path in G(.A) from the start state o to an accept state.

An automaton A = (X, S,0,7, F) is called deterministic if |7(z,s)| < 1 for all x € X and
s € S, and non-deterministic otherwise. If A is deterministic and w € Acc(A) then there is
a unique path in (the graph of) A starting at o with edge labels w. Both deterministic and
non-deterministic automata arise in this work, however we note that given a non-deterministic
finite state automaton there is a standard procedure to construct a deterministic finite state
automaton recognising the same language (see [17, Proposition 2.5.2]). By the Myhill-Nerode
Theorem [I7, Theorem 2.5.4], given a regular language £ there is a unique minimal deterministic
finite state automaton recognising £ (that is, with the fewest states, and unique up to a natural
notion of equivalence).

2.2  Weight functions on a language

A weight function on S* is a function ¢ : S* — R such that p(u-v) = p(u)+¢(v) for all u,v € S*
(in particular p(2) = 0). It is clear that a weight function ¢ on S* is completely determined by
the real numbers a; = ¢(s), s € S, and conversely every |S|-tuple of real numbers (as)ses gives
rise to a weight function with ¢(s) = as. Thus the set Wg of all weight functions on S* is an
|S|-dimensional real vector space. We identify Wg with RI®! in the obvious way, via o, <+ e, for
s €8, were ps(s) =1 and ps(t) = 0 for t € S\{s}.

Let £ be a language over the alphabet S. A weight function ¢ : S* — R is bounded on L
if there exists N > 0 such that p(w) < N for all w € L. Let B(L) € Wg denote the set of all
weight functions bounded on L. If ¢, ¢’ € B(L) then Ap + N¢' € B(L) for all A, \ > 0, and so
B(L) is a convex cone in Wg. For ¢ € B(L) we define the bound b (¢) of ¢ and the cell T'z(p)
recognised by ¢ as in the introduction.

Before proving Theorem [l we give some examples of (necessarily non-regular) languages
where the conclusion of Theorem [I]fails. In particular, these examples demonstrate the following
possibilities. Firstly, the cone B(L£) may be either non-polyhedral, or polyhedral yet non-rational.
Secondly, the cell recognised by a bounded weight function may be a non-regular language.
Thirdly, the bound of a bounded weight function may not be attained (and so the cell is empty).

Example 2.1. Let S = {s,t,u} and let £ be the language over S given by
L = {sImoosflyInsindlyn 0 e N, 6 € [0,7/2]}.
Identifying ¢ € Wg with (o(s), o(t), p(u)) € R? we have
B(L) = {(z,y,2) € R® | cosfx +sinfy+ 2z <0 for all § € [0,7/2]},
a non-polyhedral cone in R3.

Example 2.2. Let S = {s,t} and let £ = {s"t" | n € N}. The weight function ¢ with p(s) =1
and p(t) = —1 is bounded on £, and I'z(¢) = L, a non-regular language (for example, by the
Pumping Lemma).
Example 2.3. Let S = {s,t} and let £ be the language over S given by

L={we S| |ws| — V2w < V3}.

Identifying ¢ € Wg with (p(s),¢(t)) € R2, the cone B(L) is the conical hull of the vectors
(1, —\/i) and (—1,0), and hence is polyhedral yet non-rational. Moreover, the weight function
¢ S* = R with p(w) = |ws| — v/2|wy| is bounded on £, and since N — Nv/2 is dense in R we
have b () = V3, yet p(w) # /3 for any w € L, giving T'z(p) = @.



2.3 Proof of Theorem [

Suppose that £ is a regular language over an alphabet S, and fix a deterministic finite state
automaton A = (X, S, 0,7, F') recognising L. If v € S* is a prefix of some element w € £ then
there exists a unique path path(v) in A starting at o with edge labels v, and we let state(v) € X
denote the end state of this path (note that v € £ if and only if state(v) € F').

Definition 2.4. Let £ be a regular language recognised by the deterministic finite state au-
tomaton A as above. Let w = (s1,...,s,) € £ and let w; = (s1,...,8) € S* for 1 <i <n.

(1) The word w € L is circuit free if state(w;) # state(w;) whenever 1 < i < j < n. Let
CircFree(£) C L be the set of circuit free elements of £, and let CircFree4(L) C S* be the
set of all prefixes of circuit free words.

(2) If 1 <i < j <n are such that state(w;) = state(w;) then the word v = (s;41,...,5;) € S*
is called a circuit subword of w. Moreover if state(wy) # state(w;) for all i < k <1 < j
then v is called a simple circuit subword of w. Let SimpCircWord(L) C S* denote the set
of all simple circuit subwords, for all w € L.

Note that both SimpCircWord (L) and CircFree(L) depend on the particular choice of automa-
ton A recognising £, however since we fix a choice of A throughout, we omit this dependence
from the notation.

Remark 2.5. The reason for the terminology is as follows. A word w € L is circuit free if
and only if the path p = path(w) in A visits no state more than once (that is, it contains no
circuits). On the other hand, if v is a circuit subword of w then the part of the path path(w)
corresponding to the subword v is a circuit based at the state state(w;), and if v is a simple
circuit subword then this circuit is a simple circuit.

Proposition 2.6. The sets SimpCircWord(L) and CircFree(L) are finite.

Proof. If v € SimpCircWord(L) then v is the sequence of labels on a simple circuit in A based at
some state z (see Remark [2.5)). Since A has finitely many states, the number of simple circuits
in A is finite, and hence SimpCircWord(L) C S* is finite.

If w € CircFree(L) then the path path(w) visits no state of A more than once, and w is the
sequence of edge labels on this path. Since A is finite there are finitely many paths visiting no
state more than once, and hence CircFree(£) is finite. O

Lemma 2.7. Let w € L. If w is not circuit free there is v € CircFreex(L), y € S* and
v € SimpCircWord (L) with w = x-v-y such that state(x-v) = state(x) and state(x-v') # state(z)
for any prefix v of v with v' ¢ {@,v}. Moreover, the word w' = x -y is in L with state(w’) =
state(w).

Proof. Write w = (s1,...,8,) and let w; = (s1,...,8;) for 1 < i < n. If w is not circuit
free then there is 4,7 with 1 < i < j < n such that state(w;) = state(w;) with state(wy) #
state(w;) for all i < k < [ < j, and taking ¢ minimal we have that w; is circuit free. Then
w = w; - v -y where v = (Sj41,...,s;) is a simple circuit subword of w and y = (sj41,...,5n).
Since state(w;) = state(w;) the word w’ = z - y is the sequence of edge labels on a path in A
starting at o and ending at state(w). Since state(w) is an accept state (as w € L) we have w’ € L
with state(w’) = state(w). O

Theorem [I] will follow easily from Theorem [2.8] below.

Theorem 2.8. Let L be a regular language over the alphabet S and let p € Wg.
(1) We have v € B(L) if and only if p(v) <0 for all v € SimpCircWord(L).
(2) If p(v) <0 for all v € SimpCircWord(L) then T'z(¢) C CircFree(L) is finite.
(3) If p € B(L) then br(yp) = max{p(w) | w € CircFree(L)}.
(4) If p € B(L) then the cell T'r(p) recognised by ¢ is a regular language over S.



Proof. Let A be the fixed choice of deterministic finite state automata recognising £, as above.

(1) Suppose that ¢ is bounded, and let v € SimpCircWord(L). Thus thereis w = (s1,...,sp) €
L with v = (Si41,...,5;) such that state(w;) = state(w;), where w; = (s1,...,5;). Since
state(w;) = state(w;) the word y = w; - vV - v/, where v/ = (sj41,...,5,) and N > 0, is
the sequence of edge labels on a path in A starting at o and ending at state(w), and hence is an
element of £. Since p(y) = ¢(w;) + Np(v) + p(v") boundedness forces ¢(v) < 0.

Conversely, suppose that ¢(v) < 0 for all v € SimpCircWord(L£). Let w € L. If w is not
circuit free then by Lemma there is z € CircFreec(L), y € S*, and v € SimpCircWord(L)
such that w =z -v-y and w' =z -y € L. Then

p(w) = () + o) + (y) < o) +e(y) = ew’).

Repeating this process (using w’ in place of w) we eventually obtain wc € CircFree(£) with
o(w) < p(we). Since CircFree(L) is a finite set (see Proposition it follows that ¢ is
bounded, hence (1). Moreover, if ¢(v) < 0 for all v € SimpCircWord(L) and w ¢ CircFree(L)
then the inequality above gives p(w) < p(wcr) and so w ¢ I'z(p), hence (2).

(3) Suppose that ¢ is bounded. Then by (1) we have p(v) < 0 for all v € SimpCircWord(L),
and the argument in the previous paragraph shows that for each w € £ we have p(w) < ¢(wef)
for some wer € CircFree(L), and so the bound b, () is attained at an element of CircFree(L).

(4) Let ¢ be bounded. A simple circuit p in A is called a simple @-circuit if the sequence of
edge labels w € S* on p (defined up to cyclic shifts) satisfies ¢(w) = 0.

We construct a graph G, as follows (see Example for an explicit example). To begin
with, each element v of CircFree(L£) is a vertex of G, and there is an s-labelled edge from v to
v" if and only if v' = v -s. We add new vertices as follows. For each v € CircFree<(£) and each
simple p-circuit p in A based at state(v), we append to v a corresponding simple circuit of new
vertices with the same edge labels as p. The resulting directed S-labelled graph G, is considered
as a (typically non-deterministic) automaton A, with the vertex set X, of G, being the set of
states, @ the start state, transition function given by the directed edges, and accept states

F, = {w € CircFree(L) | ¢(w) = be(p)}.

Since A has finitely many simple circuits, and since CircFree(£) is finite, the automaton A, has
finitely many states.

We claim that Acc(Ay,) = I'z(p). Suppose that w € Acc(Ay,). We must show that w € £
and p(w) = bz(p). Since w is accepted by A, there is a path p in A, starting at @ with edge
labels w, and the final state of this path is an element z € CircFree(£) with ¢(z) = be(p). By
construction of A, this path decomposes as p = py-c1-p2-ca---pp - ¢, Where:

(a) p1,p2,...,pn are paths in the subgraph of G, with vertex set CircFree4 (L) with the start
vertex of p;41 being the end vertex of p; for all 1 <i <n — 1, and
(b) c1,c,...,cpn are bouquets of simple circuits with ¢; based at the end vertex x; of p1-pa - - - p;
for each 1 <14 < n such that the only vertex of ¢; in CircFree<(£) is ;.
This is illustrated below.

C1 C2 C3 Cn—1 Cn
QO on 0O oy QO
é b1 * p2 * b3 * o Pn ;

For each i let u; € S* be the sequence of labels on p;, and let v; € S* be the sequence of
labels on ¢;. By construction of A, we have p(v;) = 0 for all i. The path p; -p2---p, is a
path in the subgraph CircFree(L£) with edge labels uy - ug - - - uy, and so z = uy - ug - - - u,. Then
p(w) =2 (0(ui) + (i) = 3225 p(ui) = ¢(2) = be(e).

We now show that w is accepted by A. Since z € CircFree(£) in particular we have z € £, and
hence z is accepted by A. Thus there is a path gy in A with edge labels z = uj -ug - - - uy,. Assume
for the moment that ¢; is a single circuit (as illustrated above). By construction of Ay, there is



a simple p-circuit with labels v; based at the state state(u;) of A. If ¢; is a bouquet of simple
circuits (as illustrated for co above) then there is a bouquet of simple ¢-circuits based at state(u;)
with combined edge labels v1. Thus there is a path ¢; in A with edge labels w1 - v1 - uo - ug - - - up,
and continuing inductively we obtain a path ¢, in A with edge labels uy-vy-ug-vs -+ - up - vy = w,
and so w is accepted by A.

Conversely, suppose that w € I'z(¢). Write w = 2 - v -y with 2 € CircFree4(£), y € S*, and
v € SimpCircWord(L), and let w' = z - y as in Lemma Since ¢ is bounded part (1) of the
theorem gives ¢(v) < 0 and since w’ € L we have p(w') < bz(p), and so

b(p) = p(w) = @(x) + ©(v) + ©(y) < o(@) + @(y) = p(w') < be(p).

Thus ¢(v) = 0 and w’ € I'z(p). We claim that if w’ is accepted by A, then so too is w. To see
this, note that since x € CircFree4 (L) there is a path in G, from @ to x remaining in the subset
CircFree4 (L) of the vertex set. Since state(z - v) = state(x) and state(z - v) # state(z) for all
prefixes v’ # &, v of v there is a simple circuit in A based at state(z) with edge labels v. Thus
since p(v) = 0 there is, by construction, a simple circuit in A, with edge labels v based at the
state . Assuming that w’ is accepted by Ay, there is also a path in A, starting at = with edge
labels y, and thus there is a path in A, with edge labels x - v - y, hence the claim.

Continuing the process (replacing w with w’ and decomposing w’ = 2’ - v' - y/) we eventually
arrive at a circuit free element we € £ with p(wer) = bz(g). Since this element is accepted
by A,, the inductive argument of the previous paragraph gives that w is also accepted by A,
completing the proof. O

We now give the proof of Theorem
Proof of Theorem/[1. (1) By Theorem [2.8(1) we have

B(L) ={p € Wg | ¢(v) <0 for all v € SimpCircWord(L)},

and by Proposition the set SimpCircWord (L) is finite. We have ¢(v) = > g |vs|e(s), where
|vs| denotes the number of times the letter s appears in v, and so B(L) is described by finitely
many inequalities of the form ) _gasp(s) <0, where as € Z>g. Thus by the Minkowski-Weyl
Theorem (see [25, Theorem 1.3]) B(L) is a rational polyhedral cone.
(2) This follows from Theorem [2.8)(3), noting that CircFree(£) is finite by Proposition
(3) This is Theorem [2.8(4). O

Example 2.9. To illustrate Theorem (and hence Theorem in a simple example, let
S = {s,t} and let L be the language accepted by the following automata A (with start state 0,
all states accept states, and black, red arrows indicating s, ¢ transitions respectively).

o

Then CircFree(L) = {&, (s), (t), (s,t), (t,s)} and SimpCircWord(L) = {(s, 1), (t,s)}. Let ¢ be the
weight function with ¢(s) = a and ¢(t) = b for a,b € R. By Theorem we have that ¢ is
bounded if and only if a + b < 0, and if ¢ is bounded then

br(p) = max{p(w) | w € CircFree(£)} = max{0,a,b,a + b}.

To illustrate the construction of the automaton A, from the proof of Theorem consider the
case a > 0 with a+b = 0. The automaton A, is illustrated on the left in Figure (the start state
is @, and there is only one accept state s, shaded grey). We have CircFreec(L) = CircFree(L),
and the nodes labelled @, s,t, st,ts correspond to these elements. The nodes with e are those
circuits added corresponding to the simple @-circuits in A.
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Figure 1: Automata recognising I'z(¢)

There is some redundancy in A, as any path passing through ¢ or st can never result in an accept
state. Thus the reduced automaton on the right in Figure|l|recognises the same language I'z(¢).
Explicitly we have I'z(¢) = {(s), (s,t, ), (s,t,8,t,8),...}.

Example 2.10. Let S = {s, ¢, u} and consider the language £ over S accepted by the automata
in Figure [2 (with start state 0, all states accept states, and black, blue, red arrows indicating s,

t, u transitions respectively).
Figure 2: The automaton A for the triangle group A(3,3,3) (see Example

The language £ turns out to be the language of lexicographically minimal reduced words in
the Coxeter group W = (s, t,u | 2 = 12 = u? = (st)> = (su)® = (tu)® = 1) of type Ay, with
lexicographic order s < ¢t < u (see Section . The set SimpCircWord(L) consists of the words
(s,t,u), (s,t,s,u) and all cyclic permutations of these words, and so a weight function ¢ with
o(s) = a, p(t) = b, and p(u) = c is bounded if and only if a +b+ ¢ <0 and 2a +b+ ¢ < 0. It
follows that the cone B(L) is generated by the bounded weight functions 1, w2, ©3, @4 with

(e1(8),1(t), p1(u)) = (0,1, 1) (w2(s), p2(t), p2(u)) = (0, —1,1)
(803(3)7903@)7903(”)) = (_1707 1) (804(5)7904@)7904(7”) = (1707 _2)'

Note that B(L) is not strictly convex in this example (as it contains the line generated by ¢1).
There are 64 elements in CircFree(L£), and it follows that b, (¢) = max{0, a, b, ¢,2a + ¢, 2a +
b,2b + c}. For example, if (a,b,c) = (1,—1,—1) then ¢ is bounded, and b.(p) = 1.

3 Weight functions on groups
In this section we consider the related notion of weight functions on finitely generated groups.

3.1 Definitions

Let G be a group generated by a finite set S (we do not assume that S = S~!). Let /: G — N
denote the associated length function, where

l(g) =min{k > 0] g=s1- 55 with 51,...,s; € S},

and so d(g, h) = £(g~1h) is the graph distance from g to h in the directed Cayley graph of (G, S).
Let p : S* — G be the natural map p(si,s2,...) = s1s2---. A word w = (s1,...,5;) € S* is
reduced if ¢(p(w)) = k. Let L(G,S) C S* denote the language of all reduced words in (G, 5).



Definition 3.1. A weight function on (G, S) is a function ¢ : G — R with p(gh) = ¢(g) + ¢(h)
whenever £(gh) = £(g) + ¢(h). A weight function ¢ on G is bounded if there exists N > 0 such
that ¢(g) < N for all g € G. If ¢ is bounded we define the bound bg s(p) of ¢ and the cell
I'c,s(p) recognised by ¢ as in the introduction.

It is clear that the set Wq g of all weight functions on (G, S) is a real vector space, and
since a weight function ¢ on (G, S) is completely determined by the real numbers ¢(s), s € S,
we have dimW¢ g < |S|. However, unlike the case of weight functions on languages, not all
choices of real numbers as, s € S, necessarily extend to a weight function ¢ with ¢(s) = as (as
illustrated in the following example), and so dim W¢ g may be strictly smaller than |S|. Since
the map p(g) = M(g) is always a weight function for all A € R, we have dimWg g > 1. Note
also that the set B(G, S) of all bounded weight functions on (G, .S) is a convex cone in Wg .

Example 3.2. The set of weight functions on (G, S) depends on the generating set S chosen.
The modular group G = PSL2(Z) has the following presentations:

G=(st]|s*=t3=1)=(s,u|s®=(su)>=1).

Taking S = {s,t} each element g € G has a unique reduced expression (indeed G = C3 * C3),
and thus each assignment ¢(s) = a and ¢(t) = b with a,b € R extends to a weight function
on (G, S). Moreover the explicit form of reduced expressions implies that ¢ is bounded if and
only if a+b <0 and a+2b < 0. If S’ = {s,¢,t71} we again have unique reduced expressions,
and this time each assignment ¢(s) = a, ¢(t) = b, and p(t~!) = ¢ with a,b,c € R extends to a
weight function on (G, S’), with ¢ bounded if and only if a+b < 0 and a+ ¢ < 0. Finally, taking
S" = {s,u,u"'} we have the relations sus = u~!lsu™! and usu = su~'s (with each expression
reduced) and it follows that every weight function ¢ on (G,S”) has ¢(s) = ¢(u) = @(u™1).
Thus the only weight functions on (G, S”) are the functions ¢(g) = M(g) for some A € R, and
such a weight function is bounded if and only if A < 0.

The connection between weight functions on (G, S) and weight functions on S* is given in the
following proposition. A weight function ¢g : S* — R is compatible with (G, S) if po(w) = po(w')
whenever w,w’ € L(G,S) with p(w) = p(w').

Proposition 3.3. A function ¢ : G — R is a weight function on (G,S) if and only if there
exists a weight function @g : S* — R compatible with (G, S) such that @o(w) = p(p(w)) for all
w € L(G,S).

Proof. Let ¢ : G — R be a weight function on (G,S). If w = (s1,...,5,) € L(G,S) with
p(w) = g then p(g) = @(s1---8n) = @(s1) + -+ + @©(sn) = @o(w) where g : S* — R is the
weight function with ¢g(s) = ¢(s) for all s € 5, and it follows that ¢g is compatible with
(G, S). Conversely, if ¢y : S* — R is compatible with (G,S) then setting ¢(g) = ¢o(w) for
any w € L(G,S) with p(w) = g is well defined, and if g = g1g2 with £(g192) = (g1) + £(92)
then choosing wi,wy € L(G,S) with p(w;) = g1 and p(ws2) = g2 we have p(w; - wg) = g and
©(9) = po(wi-w2) = po(w1)+p(w2) = p(g1) +¢(g2) and so ¢ is a weight function on (G, S). O

In other words, Proposition @ says that Wg g is naturally isomorphic to the subspace of
Wy consisting of all weight functions on S* compatible with (G, S).

3.2 Geodesic languages

Definition 3.4. A geodesic language for (G, S) is a language £ C L(G, S) such that p: L - G
is surjective. A geodesic language L is ezact if p : £ — G is a bijection (that is, each element of
G is represented by a unique word in £).

For example, £L(G,S) is a geodesic language, and the lexicographically minimal reduced
expressions L (G, S), defined below, is an exact geodesic language. To define L (G, S), fix an
arbitrary total order < on S and extend to the shortlex total order < on S* (with words ordered



by length, with words of the same length ordered lexicographically). For each g € G there exists
a unique word lex(g) € L(G, S) representing g minimal in the shortlex order, and we set

Elex(G> S) = {Iex(g) | g€ G}

We are particularly interested in the case where (G, S) admits a geodesic language that is
regular. For example if (G, S) admits a geodesic automatic structure in the sense of [17), §5.3]
then there exists a regular geodesic language for (G, S) (however note that by [10, Section 3.5]
not all automatic groups admit a geodesic automatic structure for a fixed generating set).

We now prove Corollary

Proof of Corollary[3 Taking X = {p(w) | w € SimpCircWord(£L)} and ¥ = {p(w) | w €
CircFree(L£)} the corollary follows immediately from Theorem and Proposition O

4 Coxeter groups

In this section we specialise to the case of Coxeter groups. Let S be a finite set, and
W = (S| (st)"=t =1 for s,t € 5),

where ms s =1 for all s € S, and mgt = my s € Z>o U {oo} for s,t € S with s # t (if mg; = 00
it is understood that the relation (st)™st = 1 is omitted).

A Coxeter system is irreducible if there exists no nontrivial partition S = S; L Sy with
ms, = 2 for all s € Sy and t € Sy. If (W, S) is spherical (that is, |IW| < 00) there exists a unique
element wg € W of maximal length. For J C S we write W; = (J) for the associated parabolic
subgroup, and if (W}, J) is spherical write w; for the longest element of W;.

It was shown by Brink and Howlett [5] that both Liex(W,S) and L£(W,S) are regular lan-
guages. There are various explicit constructions of automata recognising these languages (see
[0, 6 [7] for Liex(W,S), and [16, 22 23, 18] for £(W,S)). For computational purposes it is
usually more efficient to work with Liex = Liex(W, S) as it typically admits an automaton with
a smaller number of states, and for our purposes this leads to smaller sets CircFree(Ljex) and
SimpCircWord(Ljex)-

In this section we make Theorem [1] explicit for various classes of Coxeter groups (via Theo-
rem [2.8] and Corollary [2)).

4.1 The minimal automata recognising L. (W, 5)

Let Ajex = Ajex (W, S) denote the minimal deterministic automaton recognising Liex = Liex (W, S).
We describe Ajex briefly below (following [6l [7]). The shortlex cone type of x € W is

T(x)={y € W |lex(zy) = lex(x) - lex(y)}.

Let 7 = {T'(z) | x € W} denote the set of all shortlex cone types. Since Lie is regular, the
proof of the Myhill-Nerode Theorem (see [I7, Theorem 2.5.4] and [23, Theorem 1.23]) implies
that |7 < oo.

The following proposition (with elementary proof omitted) gives an inductive procedure for
calculation of T'(x) (see [I1, Appendix], [18], and [23] for details on cone types in the language
L(W,8)).

Proposition 4.1. Let s € S and T € T.
(1) We have T(s) ={x € W | l(sz) ={(x)+1 and {(tsx) = £(x)+2 for allt € S with t < s}.
(2) Suppose that s € T. Then T" = sTNT(s) is a cone type, and for allz € W with T = T(x)
we have lex(xs) = lex(z) - s and T' = T(xs).
Theorem 4.2. We have Aiex = (T,5,T(e),7,T) where for T € T and s € S the transition
function 7(T,s) is defined if and only if s € T, and in this case 7(T,s) = sT NT(s).

Proof. This follows from Proposition and the standard proof of the Myhill-Nerode Theorem
(see [23, Theorem 1.23] for a proof in a similar context). O
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4.2 Weight functions on Coxeter groups

It is easy to describe the set of all weight functions on a Coxeter group.

Proposition 4.3 (see [20, §3]). Let (W, S) be a Cozeter system, and let (as)scs be an |S|-tuple
of real numbers. There exists a weight function ¢ : W — R with ¢(s) = as if and only if as = a;
whenever mg; is odd.

For example, in a Coxeter group of type C,, with n > 2 (with standard Bourbaki [4] labelling)
the weight functions are given by the choices ¢(sg) = a, ¢(s1) = @(s2) =+ = p(sp—1) = b and
©(sp) = ¢, with a,b,c € R, while for a simply laced irreducible Coxeter system the only weight
functions are the functions ¢(g) = M(g) with A € R.

If ¢ is a weight function on (W, S) we write

S;r:{seS]go(s)>O}, S, ={s€ S |p(s) <0}, Sg:{seSlgo(s):O},

and let W} = (S}) and similarly for W and W. In particular, note that these subgroups are
standard parabolic subgroups of (W, S).

Proposition 4.4. If ¢ is a bounded weight function on a Coxeter system (W,S) then every
element of Tw,s(p) is both a mazimal length (W, W)-double coset representative, and a min-
imal length (W, W )-double coset representative, and the cell T'w,s() is a union of (Wg, W(g)—
double cosets.

Proof. Let g € Tw,s(p). If s € ST with £(sg) = £(g) + 1 then ¢(sg) = ¢(g) +p(s) > ¢(g) =
bw,s(p), a contradiction. Thus £(sg) = £(g) — 1 and similarly £(gs) = £(g) — 1 for all s € S,
showing that ¢ is maximal length in its (VV;r , WJ )-double coset. The remaining statements are
similar. O

4.3 Triangle groups

The triangle group W = A(p,q,r) is the Coxeter group with generating set S = {s,¢,u} and
presentation

Alp,g,r) = (s, t,u| s° =12 = u? = (su)? = (st)? = (tu)" = 1),

where p,q,7 > 2. This group is spherical (respectively affine, hyperbolic) if p~! + ¢~ + r~!
is greater than 1 (respectively equal to 1, less than 1). While it would be possible to make
Theorem [1] explicit for all triangle groups, the analysis would be rather complicated with case
distinctions and parity considerations. Therefore we content ourselves here to some illustrative
examples.

Example 4.5 (The group A(2,4,6)). Consider the hyperbolic triangle group A(2,4,6). By
Proposition each assignment ¢(s) = a, ¢(t) = b, and p(u) = ¢ with a,b,c € R extends to a
weight function.

The minimal shortlex automaton Ay (using the order s < ¢t < u) can be computed using
Proposition and Theorem (or using Derek Holt’s KBMAG algorithms [I7] which are
implemented in MAGMA [3]). The automaton is illustrated in Figure [3| where black, blue, and
red arrows indicate s, t, and u transitions respectively, 0 is the start state, and all states are
accept states.

11



Figure 3: The automata Ajey for the triangle group A(2,4,6)

By inspection of Figure [3] there are 5 simple circuits in Ajex, given by 3 —4 — 10 — 3, 3 —
4-510—-51-3,3—-4—->5—-6—-27—211—-23,324—-5—-6—->7T—-8—=>9—11— 3,
and 5 — 6 — 7 — 8 — 9 — 5. Thus by Theorem [2.§] the weight function ¢ is bounded if and
only if

a+b+c<0, a+2b4+c¢<0, a+3b+2c<0, and a+2b+2c<0

(note that the inequality 2a + 3b + 3¢ < 0 arising from the simple circuit 3 - 4 -5 — 6 —
7—8 =9 — 11 — 3 is redundant). It follows that the rational cone B(Lie) is generated by
the bounded weight functions 1, w2, 3, 4 With

((,01(8), Spl(wv (,01(U>) = (1707 _1) (@2(3)7 (pg(t), gpg(l[,)) = (07 -1, 1)
(903(8)7 903(t>7 (pg(U)) - (_17 L, _1) (@4(3% 904(t)7 904<’U,)) = (_27 0, 1)

(unlike Example here the cone B(Liex) is strictly convex).

By Theorem the bound of a bounded weight function is attained on CircFree(Ljex). De-
termining this set is a straightforward but somewhat tedious exercise (there are 92 circuit free
words). By directly considering the values of a bounded weight function ¢ on this finite set of
words (and making use of the inequalities a + b+ ¢ <0, a+2b+¢ <0, a4+ 3b+ 2¢ < 0, and
a+2b+ 2c < 0) we see that

bw,s(¢) = max{0,a,b, c,a + 2b,2a + b, 2a + 2b,2b + 3¢, 3b + 2¢,3b + 3¢, a + c}.

In particular, the weight function ¢ = 3 listed above is bounded, with by, g(¢) = 1. In this
case two of the above inequalities determining boundedness become equalities: a + 2b+ ¢ =0
and a + 3b + 2c = 0. This gives rise to two simple @-circuits in Ajey, given by 3 — 4 — 10 —
11—3and3—4—5— 6+ 7 11 — 3. The subset of words w € CircFree(Ljex) with
e(p(w)) = bws(p) = 11is Ly = {t,tst, tut, tstut, tutut, tstutut, tututst} (these give the accept
states of the automaton A, constructed in the proof of Theorem . From the construction
of A, it is clear that we can ignore the states from CircFree(Lex) that are not prefixes of one of
the above accept states. Therefore we must consider the the following subset of CircFree(Lex):

Xo = {e, t,ts, tu, tst, tut, tstu, tstut, tutu, tutut, tstutu, tstutut, tututs, tututst}.

After appending circuits to each states x € Xy such that there is a simple @-circuit in A
based at the corresponding state state(x) of Ajex, we arrive at the automaton A, illustrated in
Figure The labelled states correspond to the subset X of CircFree(Liex), and we have used
the notation Statﬁ(m) to denote the states (where z € X and state(x) is the corresponding state
of Ajex). The accept states are shaded.

12
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Figure 4: An automaton recognising 'y s(¢3)

Some simplifications are possible in the automaton (c.f. Example[2.9). For example, the circuits
based at the non-accept states can be removed (without altering the accepted language).

Example 4.6 (The group A(2,3,2m)). Let 3 < m < oo and consider the triangle group
A(2,3,2m). By Proposition the weight functions on A(2,3,2m) are determined by the
choices ¢(s) = ¢(t) = a and ¢(u) = b with a,b € R. The minimal shortlex automaton Aje
(using the order s < ¢ < u) can be computed using Proposition and Theorem The
automaton is illustrated in Figure |5, where black, blue, and red arrows indicate s, t, and u
transitions respectively, 0 is the start state, and all states are accept states (the states are denoted
0,1,...,2m + 1,z,y,z,w, and in this example we do not encircle the states for typesetting
reasons).

x

¢ w
W 1

— > 2 —» 3 —» 4 —» 5 —» 66— 7T —» 8 —» +++ —p 2m —4 —» 2m —3 — 2m — 2

[ 2m + 1 <« <t 2m — 1

< 2m <

Figure 5: The minimal shortlex automata for A(2,3,2m), m > 3

By inspection the simple circuits are 1 -2 -3 — -+ - 2j - — 1 (with 2 < 2j < 2m —4)
and3 -4 — -+ —=2m—1—=2m — 2m+ 1 — 3, and it follows from Corollary |2 that ¢ is
bounded if and only if (i+1)a+ib < 0 for all 1 < ¢ < m—1. The inequalities with 1 <7 <m—1
are redundant, and therefore ¢ is bounded if and only if

2a+b<0 and ma+ (m—1)b<0.
By inspection, CircFree(Ljex) consists of the words of the form

{2,s,t,st,sts} - [ut]; with 0 < j <2m —1, or
{@,s,t,st} - [ut]s - s with 1 <i<m—2, or
{2, s,t,st,sts} - [ut]am—2 - {s, su, sut}
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where [ut]; = wutut--- with j terms. By directly considering the values of a bounded weight
function ¢ on this finite set we obtain by s(¢) = max{0,a,2a,3a,a +b,ia + (i +1)b | 0 < i <
m — 1}. Since 2a + b < 0 and ma + (m — 1)b < 0 there is some redundancy, and it follows that

An example of calculating A, is given in Example and we omit such an example here.

Example 4.7. Consider the triangle group W = A(3,3,3) (an affine Coxeter group of type Ay).
The automaton Aje is given in Example[2.10] By Proposition[4.3|the only weight functions on W
are the functions ¢(g) = M(g) (and such a function is bounded if and only if A < 0). Therefore
Corollary [2] gives no information. However we note that working with weight functions on the
exact geodesic language Liex (rather than weight functions on the group) gives richer information
as weight functions then have 3 degrees of freedom. For example, following from Example
the weight function ¢ : S* — R with ¢(s) = 0, ¢(t) = 1 and ¢(u) = —1 is bounded with
bound 1. It follows that for every w € Ljex we have |w;| < 1+ |w,| (note that this bound does
not hold in the language £(W, S) of all reduced expressions, for example consider tutst).

A striking feature of Examples and is that for the triangle groups A(2,3,2m) and
A(2,4,6) the bound by g(p) of a bounded weight function is always attained on an element of
a spherical parabolic subgroup. We ask the following question.

Question 4.8. Let ¢ be a bounded weight function on a Coxeter system (W, .S). Let Sph(W)
denote the union of all spherical parabolic subgroups W, with J C §. Is it true that there
exists € Sph(W) such that ¢(x) = by,s(¢)?

If the answer to Question is affirmative, then the possible values of by s(p) are severely
restricted (see the following section).

4.4 Spherical Coxeter groups

All weight functions on a spherical Coxeter group are bounded, and the statements in Corollary 2]
are trivial (for example, every finite set is regular). However in the spherical case one can ask
more precise questions. In this section we explicitly determine the bound by, s(¢) and the cell
I'w s(p) of a (necessarily bounded) weight function on a spherical Coxeter system.

It is clear that if ¢(s) < 0 for all s € S then by g(¢) = 0 and I'y,s(p) = Wg (see Proposi-
tion [4.4). Thus we can assume that ¢(s) > 0 for some s € S. The following lemma deals with
the case p(s) > 0 for all s € S (in the spherical case).

Lemma 4.9. If (W,S) is spherical and ¢(s) > 0 for all s € S then bw,s(p) = ¢(wy) and
Tw,s() = woW.

Proof. For all x € W we have wo = x(x~'wp) with £(wg) = £(z) + £(x~*wp), and hence p(z) =
o(wo) — (@ twp) < p(wp) (because p(z~twg) > 0). Thus bw.s(p) = p(wp). If 2 € Tws(p)
then o(x) = ¢(wp) and so ¢(z~'wg) = 0. Thus 27 lwg € Wg, and hence x € WOW£. Conversely,
if z € W()Wg then © = woy with y € Wg and £(z) = {(wp) — £(y), and so zy~! = wy with
{(x) + €(yt) = £(wp). Thus ¢(z) = p(wp), and so = € T'w,s(¢). O

Thus it remains to consider the case ¢(s) < 0 and ¢(t) > 0 for some s,t € S. By Proposi-
tion[4.3] in the cases A, Dy, Eg, E7, Es, H3, Hy and I5(2m+ 1), every weight function is constant
on the generators, and so it remains to consider types B, F4, and l2(2m).

The case of dihedral groups l2(2m) is elementary, and we omit the simple proof of the
following theorem.
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Theorem 4.10. Let W = (s,t | s> = t2 = (st)?*™ = 1) be a dihedral group of order 4m and let
@ be a weight function. Let o(s) = a and p(t) = b, and assume that a <0 and b > 0. Then

b ifa+b<0

byw.s(p) = .
(m—1)a+mb ifa+b>0
{t} ifa+b<0

Tws(p) = 4 {t(s)" [0<k<m—1} ifa+b=0
{wps} if a+b>0.

We now turn attention to the B,, case. We label the generators s1, ..., s, with (s,_15,)* =1
(Bourbaki [4] conventions). Let ¢(s1) = -+ = ¢(sp—1) = a and ¢(sy,) = b.

Theorem 4.11. Let ¢ be a weight function on B, and let p(s1) = a and p(s,) =b. Then

bi.s(p) = max{i(i > Yot <n(n— 1y = i)(z_i_ U) a+ib

0<i<n},

and if a,b# 0 then I'w s(p) = {x € X | ¢(z) = bw,s(¢)} where X = {x;,y; | 0 < i < n}, where

7
Ty = H(Snsnfl te 5n7i+j) and Yi = W3S\ {s,} H(Snsnfl s Sj)-
Jj=1 J=1

Proof. Let J = S\{sp}. From Proposition if b > 0 and a < 0 (respectively b < 0 and
a > 0) then the bound occurs on a minimal (respectively maximal) length (W, W;)-double
coset representative. These minimal (respectively maximal) length (W , W;)-double coset rep-
resentatives are x; (respectively y;) for 0 < i < n. To see this, it is clear that z; (respectively
y;) is of minimal (respectively maximal) length in its (W, W;)-double coset, and to check that
we have found all minimal/maximal length representatives one can compute the cardinalities of
the double cosets and verify that they cover W; we omit the details. The result follows (note
that ¢ = e and y,, = wp, dealing with the cases a,b < 0 and a,b > 0). O

We now turn to the group F4, with labelling

.—.i.—.

S1 S2 83 S84
By Proposition every weight function ¢ has ¢(s1) = p(s2) and ¢(s3) = ¢(s4).

Lemma 4.12. The elements of W that are both mazximal length (W, 5,3, Wis, s,3)-double coset
representatives, and minimal length (W, o1, Wis, 5,1)-double coset representatives are 121,
121321, 12132132, 1213214321, 121321432132, 121323432132, 121321324321, 12132132432132,
1213214321324321, 121321324321324321, and 121321324321323432132.

Proof. This is easily verified with the help of a computer [3]. O

Let A be the set consisting of the 11 elements in Lemma Let o be the nontrivial
diagram automorphism of F4, and let X = AU A% U {e,wo} (thus |X| = 24).

Proposition 4.13. Let ¢ be a weight function on Fq with ¢(s1) = ¢(s2) = a and ¢(s3) =
©(s4) =b. Then

bw,s(¢) = max{0, 3a, 3b, 5a + b, a + 5b,11a + 7b,7a + 11b,12a + 9b, 9a + 12b,12a + 12b},

and if a,b# 0 then I'ws(p) = {x € X | p(z) = bws(p)} with X as above.
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Proof. Suppose that ¢(s1) = ¢(s2) = a > 0 and ¢(s3) = ¢(s4) = b < 0. By Proposition
if * € T'w,s(¢) then z is both a maximal length (Wi, 4,3, W{s, s,})-double coset representative,
and a minimal length (W{53,s 0 Wisss 4})—double coset, representative. Thus the bound occurs
on the set A (and only on the set A). The values of ¢(x) with € A are 3a, 5a + b, 6a + 2b,
Ta + 3b, 8a + 4b, Ta + 5b, 8a + 4b, 9a + 5b, 10a + 6b, 11a + 7b, 12a 4+ 9b. Since a > 0 and b < 0
the maximum is attained on one of the elements 3a, 5a + b, 11a + 7b, 12a + 9b. Thus

bw,s(¢) = max{p(z) | z € A} = max{3a,5a + b,11a + 7b,12a + 9b},

and I'ws(p) = {z € A | ¢(z) = bws(e)}. If a < 0 and b > 0 there is a dual argument
(interchanging the roles of a and b). Combining this with the cases a < 0 and b < 0 (where the
bound is 0, attained at e only), and a > 0 and b > 0 (where the bound is ¢(wg), attained only
at wp), the result follows. O

4.5 Affine Coxeter groups

In this section we explicitly describe the cone of bounded weight functions on an irreducible
affine Coxeter system (W, S). We do not use Theorem 1| (or Corollary [2)) directly — instead we
make use of the affine structure, thus avoiding the need to explicitly compute an automaton
recognising L(W, S).

It is convenient to index the irreducible affine Coxeter systems as A, (n>2), B, (n>3), C,
(n>1), D, (n>4), E, (n=6,7,8), Fy, and Gy (in particular, the dimension 1 affine group is
denoted C; rather than A;). We associate a root system ® to (W, S) as follows. If W is of type
X,, with X = C then let ® be an irreducible root system of type X,,, while if X = C let ® be the
(non-reduced) root system of type BC,,. Let {aq,...,a,} be a fixed set of simple roots of &, and
let ®T be the associated positive roots. Let Q be the coroot lattice, and P the coweight lattice,
associated to ®. Let wi,...,w, € P be the fundamental coweights (defined by (w;, oj) = d; ),
and let PT = Nwy + - - + Nw,.

There is a standard realisation of W as a semidirect product W = @ x Wy where W is
the associated spherical Weyl group (see [12, §1.1, §1.2], and in particular [12, Remark 1.1] for
conventions on the BC,, root system). Let V' be the underlying vector space of ®, and let Cy be
the fundamental (closed) alcove.

It is convenient to work with the extended affine Weyl group W="r X Woy. Write t) € w
for the translation by A € P (thus t\(v) = v+ X for v € V). We have W = W x Q, where
Q = P/Q. We extend weight functions ¢ : W — R to functions ¢ : W — R be setting v(g) =0
for all g € Q (we call such an extension a weight function on W, however note that it may not
be a weight function in the strict sense of Section .

Let ¢ : W — R be a weight function. We define (), for o € ®, as follows. If ® is reduced
we set p(a;) = @(s;) for all 1 < ¢ < n, and if ¢ is of type BC,, we define p(a;) = ¢(s;) for
1<i<n—1, ¢2ay) = ¢(s0), and p(a,) = ©(sn) — ©(so). In all cases extend the definition to
® by declaring p(a) = ¢(8) whenever 5 € Wya, and it is convenient to set ¢(3) = 0 if 5 ¢ ®.

Let

acdt
For z € Wy let ®(z) = {a € &7 |27 la € —®T}.

Lemma 4.14. For A € PT and x € Wy we have

p(t) = (\20(9) and p(x) = Y ¢(a).

acd(x)

Proof. The formula for ¢(z) with x € W, follows by considering hyperplanes separating the
alcove Cy from the alcove zCp (in the non-reduced case, note that if & € ®(x) and 2a € ¢ then
2a € ®(x) and () + ¢(2a) = @(sp,)). Similarly, the formula for ¢(t)) follows by considering
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the hyperplanes separating Cy from t5(Cp). Since A € PT, these hyperplanes are H, j with
1<k <(\a)fora€ ®'. In the reduced case, there is no double counting, and all hyperplanes
in a parallelism class have the same weight ¢(«). Thus, in the reduced case,

p(ta) = Y (hadp(a) = (A, 2p(0)).

acdt

In the non-reduced case there is some double counting of the hyperplanes corresponding to the
long and short roots (but not the middle length roots), but the definition of ¢ ensures that after
cancellation each hyperplane is counted with the appropriate weight (see [24, Appendix A] for
similar calculations in a related context). O

Let Vo ={v eV |0< (v,ay) <1foralli=1,...,n} be Lusztig’s box, and let
By ={weW |wCyC Vp}.
The following theorem gives an explicit version of Corollary [2| for extended affine Weyl groups.

Theorem 4.15. Let W be an extended affine Weyl group, and let ¢ : W — R be a weight
function. Then ¢ is bounded if and only if (X, p(p)) <0 for all X\ € PT.
If ¢ is bounded, then setting b(¢) = maxgzew, ¢(z) and b(p)”" = maxyecp, ¢(y) we have

bw.s(¢) = b(p)" + b(p)", and
Pw.s(p) = {wtry | € Wo, y € By, A € PT with () = b(p)', ¢(y) =b(#)", (A p(p)) = 0}.
Moreover, the bound by s(p) is attained on an element of the finite set {xy | x € Wy, y € By}.

Proof. If ¢ is bounded, then for A € P* and k > 0 Lemmam gives @(trpy) = k(X, 2p(¢)), and
hence (A, p(p)) < 0 for all A € P*. For the converse, it is well known and easy to prove that

each w € W can be written, in a unique way, as w = zt\y with x € Wy, A € P*, and y € By.
Moreover, for all z € Wy, A € P, and y € By we have {(xt\y) = l(x) + £(t)) + £(y). Thus

p(w) = o(x) + (A, 2p(0)) + ¢(y), (4.1)
and since Wy and By are finite sets it follows that if (X, 2p(p)) < 0 for all A € PT then ¢ is
bounded. The remaining statements now easily follow from (4.1)). O

The irreducible affine Coxeter groups admitting non-constant weight functions are the B,
(n>3), C, (n>1), F., and Go cases. Since Gy is a special case of the triangle group A(2,3,2m)
(with m = 3, see Example we will not consider it further here. We consider the remaining
cases below.

Example 4.16 (The group F4). Consider the group F4. Using Bourbaki conventions the roots
a1 and ao are long in ®, and the affine generator sq satisfies (sps1)% = 1. Let ¢(s0) = ¢(s1) =
©(s2) = a and ¢(s3) = p(s4) = b. Direct calculation gives

2p(p) = (10a + 6b)ay + (18a + 12b)ave + (24a + 18b)as + (12a + 10b) g

and so by Theorem [£.15] the weight function ¢ is bounded if and only if 5a+3b < 0, 3a+2b < 0,
4a 4+ 3b < 0, and 6a + 5b < 0 (these inequalities arise by considering (w;,2p(¢)) < 0 for
1 =1,2,3,4). The inequalities 3a + 2b < 0 and 4a + 3b < 0 are redundant, and so we see that a
weight function on Fy4 is bounded if and only if 5a + 3b < 0 and 6a + 5b < 0.

Example 4.17 (The group Bn) Consider the group B, n > 3. If o is a weight function then

o(so) = p(s1) = -+ = @(sp—1) = a and ¢(s,) = b. Using standard Bourbaki conventions, the
short roots are e;, k = 1,...,n, and the long roots are e; — ej,e; +¢e; with 1 <14 < j <n. Thus
we have

n

2p(p) = Z[2(n —i)a + ble;.

i=1
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Since w; = e +- - - +¢e; Theorem m gives that ¢ is bounded if and only if (2n—j—1)a+b <0
for all j = 1,...,n. It follows that a weight function is bounded if and only if 2(n — 1)a+b < 0
and (n — 1)a+b <0.

Example 4.18 (The group C,). Consider the group C,. Let n > 2. If ¢ is a weight function
we write p(s1) = -+ = @(sn—1) = b, ¢(sn) = a, and ¢(sp) = c. In the standard setup of the
BC,, root system (see [12, Remark 1.1]) we compute

1 :
plp) = 5 z;(a +c+2(n—1i)be;.
1=
Since w; = e; + --- +¢; for 1 < i < n Theorem gives that ¢ is bounded if and only if
a+c+ (2n—i—1)b<0forall 1 <i<n. It follows that a weight function ¢ on C,, is bounded

ifand only ifa+c+2(n—1)b<0and a+c+ (n—1)b <0.

4.6 Bounded representations of Hecke algebras

Let (W, S) be a Coxeter system, and let ¢ : W — Zx>( be a non-negative integer valued weight
function on (W, S) with ¢(s) > 0 for all s € S. Recall the definition of the associated weighted
Hecke algebra H = H(W, S, 1) from the introduction. We now give the proof of Corollary

Proof of Corollary[3. Let m be a 1-dimensional representation. For s € S the quadratic relation
T? = 1+ (q¥®) — q=¥O) T, implies that 7(Ty) € {q¥(*), —q~ %)}, and if my; is odd then the
relation TsT3Ts - - - = TyTTy - - - (Mg terms on each side) forces w(Ts) = 7(T}). Conversely, each
choice 7(T) € {q¥®), —q~¥()} with 7(Ts) = (T;) whenever my; is odd extends uniquely to a
1-dimensional representation by Matsumoto’s Theorem [21]. It follows that the map ¢ : W — Z
with ¢(z) = degn(T}) is a Z-valued weight function on W, and that ¢ is bounded if and only
if the representation 7 is bounded. Moreover, I'(7) = 'y, s(¢), and the result now follows from
Corollary O

Example 4.19. Let W = A(2,4,6) be the hyperbolic triangle group generated by S = {s,t,u}
(see Example [L.B]). Let ¢ : W — Z>q be the weight function with 1(s) = ¢ (t) = ¢(u) = 1, and
let H = H(W,S,1) (the equal parameter Hecke algebra). By the proof of Corollary |3 there is
a 1-dimensional representation 7 of H with 7(T,) = —q~!, 7(T}) = q, and 7(T,) = —q~'. The
weight function ¢(z) = degw(T,) for x € W is the weight function ¢ = @3 from Example
and by the proof of Corollary |3 the bound of 7 is b(7) = by,s(¢3) = 1 and the cell recognised
by 7 is I'(m) = I'wy,s(p3) (the regular set recognised by the automaton in Figure {4)).
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