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Abstract

We introduce the notion of a bounded weight function on a language, and show that the
set of bounded weight functions on a regular language is a rational polyhedral cone. We
study the cell recognised by a bounded weight function (that is, the set of elements of the
language where the bound is attained), and show that if the language is regular then this cell
is regular. The related notion of a weight function on a finitely generated group is introduced,
and the case of Coxeter groups is studied in detail. Applications to the representation theory
of weighted Hecke algebras are given.

1 Introduction

Let L be a language over an alphabet S. A weight function on S∗ is a function φ : S∗ → R
with φ(u · v) = φ(u) + φ(v), and we say that φ is bounded on L if there exists N > 0 such that
φ(w) ≤ N for all w ∈ L. If φ is bounded on L we let

bL(φ) = sup
w∈L

φ(w) and ΓL(φ) = {w ∈ L | φ(w) = bL(φ)}

be the bound of φ on L, and the cell recognised by φ, respectively.
The set WS of all weight functions on S∗ is an |S|-dimensional real vector space (identified

with R|S| in an obvious way), and the set B(L) of all weight functions that are bounded on L
is a convex cone in WS . Recall that a cone is polyhedral if it is the conical hull of finitely many
vectors, and rational if these vectors may be taken to be rational. Our main theorem is as
follows.

Theorem 1. Let L be a regular language.
(1) The cone B(L) of weight functions bounded on L is polyhedral and rational.
(2) There exists a finite set F ⊆ L such that bL(φ) = max{φ(w) | w ∈ F} for all φ ∈ B(L).
(3) If φ ∈ B(L) then the cell ΓL(φ) is a nonempty regular language over S.

Less formally, Theorem 1 says that for a regular language, the problems of determining
whether a given weight function is bounded, and computing the bound and the cell recognised
by a bounded weight function, are “finite problems”.

The proof of Theorem 1 is constructive, giving an explicit description of the walls of the cone
B(L), explicitly determining the set F , and constructing an automaton recognising ΓL(φ). If L
is not regular, then all conclusions in Theorem 1 may fail (see Examples 2.1, 2.2, and 2.3).

A primary motivation for studying weight functions on languages comes from the related
notion of weight functions on a finitely generated group (G,S). A weight function on (G,S) is
a function φ : G → R with φ(gh) = φ(g) + φ(h) whenever ℓ(gh) = ℓ(g) + ℓ(h) (with ℓ : G → N
the natural length function). If φ : G→ R is a bounded weight function, we write

bG,S(φ) = sup
g∈G

φ(g) and ΓG,S(φ) = {g ∈ G | φ(g) = bG,S(φ)}

for the bound of φ and the cell recognised by φ.
†J. Guilhot passed away on the 27th of July 2025
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A combinatorial interpretation of weight functions on groups is as follows. Let Cay(G,S) be
the (directed) Cayley graph of (G,S). A weight function φ on (G,S) is equivalent to choosing
real labels on each directed edge of Cay(G,S) such that the labels are invariant under the left
action of G on Cay(G,S), and such that for all g, h ∈ G all geodesics joining the vertex h to the
vertex g have the same weight (where the weight of a geodesic is the sum of the edge weights
along the geodesic). A weight function is bounded if and only if there is a global upper bound
for the weight of geodesics in Cay(G,S).

If there exists a bounded weight function φ on (G,S) with φ(s) > 0 for some s ∈ S then
one can deduce numerical properties of reduced expressions in the group. For example, in the
triangle group G = ∆(2, 4, 6) with Coxeter generating set S = {s, t, u} (see Example 4.5) it
turns out that the weight function with φ(s) = 1, φ(t) = 2, and φ(u) = −5 is bounded, with
bound bG,S(φ) = 6. This implies that for any reduced expression w in this group we have
|ws| + 2|wt| − 5|wu| ≤ 6 where |ws| denotes the number of times the generator s appears in
w, and similarly for |wt| and |wu|. Moreover, the set of elements for which equality holds is
ΓG,S(φ) = {stst(utst)n | n ≥ 0} (see Corollary 2 below).

A geodesic language for (G,S) is a language L ⊆ S∗ consisting of reduced expressions for
elements of (G,S) such that each element g ∈ G is represented by at least one word in L. Let
p : S∗ → G be the natural map. Theorem 1 gives the following corollary.

Corollary 2. Suppose that the finitely generated group (G,S) admits a regular geodesic lan-
guage L. There exist finite sets X,Y ⊆ G, depending only on L, such that if φ : G → R is a
weight function then:
(1) φ is bounded if and only if φ(x) ≤ 0 for all x ∈ X;
(2) if φ is bounded then bG,S(φ) = max{φ(y) | y ∈ Y };
(3) if φ is bounded then {w ∈ L | p(w) ∈ ΓG,S(φ)} is a nonempty regular language over S.

Another motivation for studying bounded weight functions comes from the representation
theory of Hecke algebras with unequal parameters, and connections to Kazhdan-Lusztig theory
and conjectures of Bill Casselman on the regularity of Kazhdan-Lusztig cells. We now briefly
describe this motivation. Let (W,S) be a Coxeter system, and let ψ : W → Z≥0 be a weight
function on (W,S) with ψ(s) ∈ Z>0 for all s ∈ S. The associated weighted Hecke algebra is the
algebra H = H(W,S, ψ) over R = Z[q, q−1] with basis {Tx | x ∈W} and defining relations

TxTs =

{
Txs if ℓ(xs) = ℓ(x) + 1

Txs + (qψ(s) − q−ψ(s))Tx if ℓ(xs) = ℓ(x)− 1.

The “equal parameter case” is when ψ = ℓ, and in this case a systematic approach to the
representation theory of H is given by Kazhdan and Lusztig in the landmark paper [19]. The
central notion that arises is that of a Kazhdan-Lusztig cell. These cells give a decomposition of
the Coxeter group, and for each cell there is naturally associated a representation of the Hecke
algebra called a cell module. The case of “unequal parameters” (where ψ :W → Z≥0 is a general
weight function) was introduced by Lusztig in [20] (see also [2]). In this case Kazhdan-Lusztig
theory is much less developed and many aspects remain conjectural.

In the 1990s it was conjectured by Bill Casselman that (two-sided) Kazhdan-Lusztig cells in
H are regular sets (see [6, 7, 15]). This conjecture was initially made for the equal parameter
case, however it appears equally plausible in the unequal parameter case. In [15] Gunnels
proves Casselman’s conjecture for affine Coxeter groups in the equal parameter case (making
essential use of a result of Du [9] that is not readily available for unequal parameters), and
in [1] Belolipetsky, Gunnels and Scott give conjectural descriptions of Kazhdan-Lusztig cells in
hyperbolic planar Coxeter groups that, if true, would imply Casselman’s conjecture for this class
of groups in equal parameters.
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Recently, an approach to Kazhdan-Lusztig theory in the unequal parameter case has been
developed by Guilhot and Parkinson [13, 14] and Chapelier-Laget, Guilhot, Little and Parkin-
son [8], directed towards proving Lusztig’s conjectures P1-P15 and constructing Lusztig’s asymp-
totic algebra for affine Coxeter groups. At the heart of this approach is the concept of a bounded
representation of the Hecke algebra: this is an H-module with a fixed choice of basis, such that
the matrix entries for the action of the elements Tx, x ∈ W , on the module with respect to the
fixed basis have globally bounded degree in q. If π is a bounded representation, the bound of
π is the least upper bound b(π) of the degree of the entries in the matrices π(Tx) with x ∈ W ,
and the cell recognised by the representation is the set Γ(π) consisting of those x ∈W for which
the matrix π(Tx) attains the degree bound b(π) in some entry.

In [13, 14] an explicit family of finite dimensional bounded representations is constructed
for affine types G̃2 and C̃2 (for all choices of parameters) such that each member of the family
recognises a different two-sided Kazhdan-Lusztig cell. Similarly, in [8] a family of bounded
representations is constructed recognising the two-sided Kazhdan-Lusztig cells in type Ãn for
n ≥ 1. In each case, the bound b(π) turns out to be the value of Lusztig’s a-function on the cell
(see [13, Theorem 2.6] for an explanation of this fact).

In light of the above discussion, and motivated by Casselman’s conjecture on regularity of
Kazhdan-Lusztig cells, it is natural to ask whether the cell recognised by a bounded represen-
tation of the Hecke algebra is necessarily a regular set. Theorem 1 resolves this question for
bounded 1-dimensional representations, giving the following Corollary.

Corollary 3. Let π be a bounded 1-dimensional representation of a weighted Hecke algebra.
Then the language of reduced expressions for elements in Γ(π) is a regular language over S.

We now outline the structure of the paper. In Section 2 we give background on regular
languages and prove Theorem 1. In Section 3 we study weight functions on groups, proving
Corollary 2. In Section 4 we specialise to the case of Coxeter groups. We briefly sketch the
construction of the minimal automaton recognising the language of lexicographically minimal
reduced words in a Coxeter group, and provide examples where Theorem 1 and Corollary 2
can be made completely explicit. Moreover we give explicit formulae for the bound bG,S(φ) for
spherical Coxeter groups, and for the walls of the cone B(L) for the language of reduced words
in an affine Coxeter group. Finally, in Section 4.6 we prove Corollary 3.

2 Proof of Theorem 1

In this section we prove Theorem 1.

2.1 Languages and automata theory

We begin with some brief background on languages and automata theory (primary references
include [10] and [17]). Let S be a nonempty finite set, and let S∗ denote the free monoid over S
consisting of finite strings of elements of S, with ∅ denoting the empty string. The elements of
S∗ are called words. For u, v ∈ S∗ we write u · v ∈ S∗ for concatenation of words. We say that
v ∈ S∗ is a prefix of w ∈ S∗, denoted v ≼ w, if w = v ·v′ for some v′ ∈ S∗. For w ∈ S∗ and s ∈ S
we write |ws| for the number of times the letter s appears in the word w. Any subset L ⊆ S∗ is
called a language over the alphabet S.

An automaton is a 5-tuple A = (X,S, o, τ, F ) where
• X is the set of states;
• S is a finite set (the alphabet);
• o ∈ X is the start state;
• τ : X × S → 2X is a function (the transition function);
• F ⊆ X is the set of accept states.

A word (s1, . . . , sn) ∈ S∗ is accepted by A if and only if there exists a sequence of states
x0, . . . , xn ∈ X such that x0 = o, xn ∈ F , and xi ∈ τ(xi−1, si) for all 1 ≤ i ≤ n. The language

3



recognised by A is the set Acc(A) ⊆ S∗ of all accepted words. A language L over S is called
regular if there exists an automaton A = (X,S, o, τ, F ) with |X| < ∞ recognising L (that is,
there exists a finite state automaton A with L = Acc(A)).

It is helpful to visualise A as a directed graph G(A) with edges labelled by S, as follows.
The vertex set of A is taken to be X, and for x, y ∈ X there is a directed edge from x to y with
label s ∈ S if and only if y ∈ τ(x, s). Then a word (s1, . . . , sn) ∈ S∗ is accepted if and only if it
forms the edge labels on a path in G(A) from the start state o to an accept state.

An automaton A = (X,S, o, τ, F ) is called deterministic if |τ(x, s)| ≤ 1 for all x ∈ X and
s ∈ S, and non-deterministic otherwise. If A is deterministic and w ∈ Acc(A) then there is
a unique path in (the graph of) A starting at o with edge labels w. Both deterministic and
non-deterministic automata arise in this work, however we note that given a non-deterministic
finite state automaton there is a standard procedure to construct a deterministic finite state
automaton recognising the same language (see [17, Proposition 2.5.2]). By the Myhill-Nerode
Theorem [17, Theorem 2.5.4], given a regular language L there is a unique minimal deterministic
finite state automaton recognising L (that is, with the fewest states, and unique up to a natural
notion of equivalence).

2.2 Weight functions on a language

A weight function on S∗ is a function φ : S∗ → R such that φ(u·v) = φ(u)+φ(v) for all u, v ∈ S∗

(in particular φ(∅) = 0). It is clear that a weight function φ on S∗ is completely determined by
the real numbers as = φ(s), s ∈ S, and conversely every |S|-tuple of real numbers (as)s∈S gives
rise to a weight function with φ(s) = as. Thus the set WS of all weight functions on S∗ is an
|S|-dimensional real vector space. We identify WS with R|S| in the obvious way, via φs ↔ es for
s ∈ S, were φs(s) = 1 and φs(t) = 0 for t ∈ S\{s}.

Let L be a language over the alphabet S. A weight function φ : S∗ → R is bounded on L
if there exists N > 0 such that φ(w) ≤ N for all w ∈ L. Let B(L) ⊆ WS denote the set of all
weight functions bounded on L. If φ,φ′ ∈ B(L) then λφ+ λ′φ′ ∈ B(L) for all λ, λ′ ≥ 0, and so
B(L) is a convex cone in WS . For φ ∈ B(L) we define the bound bL(φ) of φ and the cell ΓL(φ)
recognised by φ as in the introduction.

Before proving Theorem 1 we give some examples of (necessarily non-regular) languages
where the conclusion of Theorem 1 fails. In particular, these examples demonstrate the following
possibilities. Firstly, the cone B(L) may be either non-polyhedral, or polyhedral yet non-rational.
Secondly, the cell recognised by a bounded weight function may be a non-regular language.
Thirdly, the bound of a bounded weight function may not be attained (and so the cell is empty).

Example 2.1. Let S = {s, t, u} and let L be the language over S given by

L = {s⌈n cos θ⌉t⌈n sin θ⌉un | n ∈ N, θ ∈ [0, π/2]}.

Identifying φ ∈ WS with (φ(s), φ(t), φ(u)) ∈ R3 we have

B(L) = {(x, y, z) ∈ R3 | cos θ x+ sin θ y + z ≤ 0 for all θ ∈ [0, π/2]},

a non-polyhedral cone in R3.

Example 2.2. Let S = {s, t} and let L = {sntn | n ∈ N}. The weight function φ with φ(s) = 1
and φ(t) = −1 is bounded on L, and ΓL(φ) = L, a non-regular language (for example, by the
Pumping Lemma).

Example 2.3. Let S = {s, t} and let L be the language over S given by

L = {w ∈ S∗ | |ws| −
√
2|wt| <

√
3}.

Identifying φ ∈ WS with (φ(s), φ(t)) ∈ R2, the cone B(L) is the conical hull of the vectors
(1,−

√
2) and (−1, 0), and hence is polyhedral yet non-rational. Moreover, the weight function

φ : S∗ → R with φ(w) = |ws| −
√
2|wt| is bounded on L, and since N − N

√
2 is dense in R we

have bL(φ) =
√
3, yet φ(w) ̸=

√
3 for any w ∈ L, giving ΓL(φ) = ∅.
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2.3 Proof of Theorem 1

Suppose that L is a regular language over an alphabet S, and fix a deterministic finite state
automaton A = (X,S, o, τ, F ) recognising L. If v ∈ S∗ is a prefix of some element w ∈ L then
there exists a unique path path(v) in A starting at o with edge labels v, and we let state(v) ∈ X
denote the end state of this path (note that v ∈ L if and only if state(v) ∈ F ).

Definition 2.4. Let L be a regular language recognised by the deterministic finite state au-
tomaton A as above. Let w = (s1, . . . , sn) ∈ L and let wi = (s1, . . . , si) ∈ S∗ for 1 ≤ i ≤ n.
(1) The word w ∈ L is circuit free if state(wi) ̸= state(wj) whenever 1 ≤ i < j ≤ n. Let

CircFree(L) ⊆ L be the set of circuit free elements of L, and let CircFree≼(L) ⊆ S∗ be the
set of all prefixes of circuit free words.

(2) If 1 ≤ i < j ≤ n are such that state(wi) = state(wj) then the word v = (si+1, . . . , sj) ∈ S∗

is called a circuit subword of w. Moreover if state(wk) ̸= state(wl) for all i < k < l < j
then v is called a simple circuit subword of w. Let SimpCircWord(L) ⊆ S∗ denote the set
of all simple circuit subwords, for all w ∈ L.

Note that both SimpCircWord(L) and CircFree(L) depend on the particular choice of automa-
ton A recognising L, however since we fix a choice of A throughout, we omit this dependence
from the notation.

Remark 2.5. The reason for the terminology is as follows. A word w ∈ L is circuit free if
and only if the path p = path(w) in A visits no state more than once (that is, it contains no
circuits). On the other hand, if v is a circuit subword of w then the part of the path path(w)
corresponding to the subword v is a circuit based at the state state(wi), and if v is a simple
circuit subword then this circuit is a simple circuit.

Proposition 2.6. The sets SimpCircWord(L) and CircFree(L) are finite.

Proof. If v ∈ SimpCircWord(L) then v is the sequence of labels on a simple circuit in A based at
some state x (see Remark 2.5). Since A has finitely many states, the number of simple circuits
in A is finite, and hence SimpCircWord(L) ⊆ S∗ is finite.

If w ∈ CircFree(L) then the path path(w) visits no state of A more than once, and w is the
sequence of edge labels on this path. Since A is finite there are finitely many paths visiting no
state more than once, and hence CircFree(L) is finite.

Lemma 2.7. Let w ∈ L. If w is not circuit free there is x ∈ CircFree≼(L), y ∈ S∗ and
v ∈ SimpCircWord(L) with w = x ·v ·y such that state(x ·v) = state(x) and state(x ·v′) ̸= state(x)
for any prefix v′ of v with v′ /∈ {∅, v}. Moreover, the word w′ = x · y is in L with state(w′) =
state(w).

Proof. Write w = (s1, . . . , sn) and let wi = (s1, . . . , si) for 1 ≤ i ≤ n. If w is not circuit
free then there is i, j with 1 ≤ i < j ≤ n such that state(wi) = state(wj) with state(wk) ̸=
state(wl) for all i < k < l < j, and taking i minimal we have that wi is circuit free. Then
w = wi · v · y where v = (si+1, . . . , sj) is a simple circuit subword of w and y = (sj+1, . . . , sn).
Since state(wi) = state(wj) the word w′ = x · y is the sequence of edge labels on a path in A
starting at o and ending at state(w). Since state(w) is an accept state (as w ∈ L) we have w′ ∈ L
with state(w′) = state(w).

Theorem 1 will follow easily from Theorem 2.8 below.

Theorem 2.8. Let L be a regular language over the alphabet S and let φ ∈ WS.
(1) We have φ ∈ B(L) if and only if φ(v) ≤ 0 for all v ∈ SimpCircWord(L).
(2) If φ(v) < 0 for all v ∈ SimpCircWord(L) then ΓL(φ) ⊆ CircFree(L) is finite.
(3) If φ ∈ B(L) then bL(φ) = max{φ(w) | w ∈ CircFree(L)}.
(4) If φ ∈ B(L) then the cell ΓL(φ) recognised by φ is a regular language over S.
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Proof. Let A be the fixed choice of deterministic finite state automata recognising L, as above.
(1) Suppose that φ is bounded, and let v ∈ SimpCircWord(L). Thus there is w = (s1, . . . , sn) ∈

L with v = (si+1, . . . , sj) such that state(wi) = state(wj), where wi = (s1, . . . , si). Since
state(wi) = state(wj) the word y = wi · vN · v′, where v′ = (sj+1, . . . , sn) and N ≥ 0, is
the sequence of edge labels on a path in A starting at o and ending at state(w), and hence is an
element of L. Since φ(y) = φ(wi) +Nφ(v) + φ(v′) boundedness forces φ(v) ≤ 0.

Conversely, suppose that φ(v) ≤ 0 for all v ∈ SimpCircWord(L). Let w ∈ L. If w is not
circuit free then by Lemma 2.7 there is x ∈ CircFree≼(L), y ∈ S∗, and v ∈ SimpCircWord(L)
such that w = x · v · y and w′ = x · y ∈ L. Then

φ(w) = φ(x) + φ(v) + φ(y) ≤ φ(x) + φ(y) = φ(w′).

Repeating this process (using w′ in place of w) we eventually obtain wcf ∈ CircFree(L) with
φ(w) ≤ φ(wcf). Since CircFree(L) is a finite set (see Proposition 2.6) it follows that φ is
bounded, hence (1). Moreover, if φ(v) < 0 for all v ∈ SimpCircWord(L) and w /∈ CircFree(L)
then the inequality above gives φ(w) < φ(wcf) and so w /∈ ΓL(φ), hence (2).

(3) Suppose that φ is bounded. Then by (1) we have φ(v) ≤ 0 for all v ∈ SimpCircWord(L),
and the argument in the previous paragraph shows that for each w ∈ L we have φ(w) ≤ φ(wcf)
for some wcf ∈ CircFree(L), and so the bound bL(φ) is attained at an element of CircFree(L).

(4) Let φ be bounded. A simple circuit p in A is called a simple φ-circuit if the sequence of
edge labels w ∈ S∗ on p (defined up to cyclic shifts) satisfies φ(w) = 0.

We construct a graph Gφ as follows (see Example 2.9 for an explicit example). To begin
with, each element v of CircFree≼(L) is a vertex of Gφ, and there is an s-labelled edge from v to
v′ if and only if v′ = v · s. We add new vertices as follows. For each v ∈ CircFree≼(L) and each
simple φ-circuit p in A based at state(v), we append to v a corresponding simple circuit of new
vertices with the same edge labels as p. The resulting directed S-labelled graph Gφ is considered
as a (typically non-deterministic) automaton Aφ with the vertex set Xφ of Gφ being the set of
states, ∅ the start state, transition function given by the directed edges, and accept states

Fφ = {w ∈ CircFree(L) | φ(w) = bL(φ)}.

Since A has finitely many simple circuits, and since CircFree(L) is finite, the automaton Aφ has
finitely many states.

We claim that Acc(Aφ) = ΓL(φ). Suppose that w ∈ Acc(Aφ). We must show that w ∈ L
and φ(w) = bL(φ). Since w is accepted by Aφ there is a path p in Aφ starting at ∅ with edge
labels w, and the final state of this path is an element z ∈ CircFree(L) with φ(z) = bL(φ). By
construction of Aφ this path decomposes as p = p1 · c1 · p2 · c2 · · · pn · cn where:
(a) p1, p2, . . . , pn are paths in the subgraph of Gφ with vertex set CircFree≼(L) with the start

vertex of pi+1 being the end vertex of pi for all 1 ≤ i ≤ n− 1, and
(b) c1, c2, . . . , cn are bouquets of simple circuits with ci based at the end vertex xi of p1 ·p2 · · · pi

for each 1 ≤ i ≤ n such that the only vertex of ci in CircFree≼(L) is xi.
This is illustrated below.

• • • • • •
p1 p2 p3 pn z∅

c1 c2 c3 cn−1 cn

For each i let ui ∈ S∗ be the sequence of labels on pi, and let vi ∈ S∗ be the sequence of
labels on ci. By construction of Aφ we have φ(vi) = 0 for all i. The path p1 · p2 · · · pn is a
path in the subgraph CircFree≼(L) with edge labels u1 · u2 · · ·un, and so z = u1 · u2 · · ·un. Then
φ(w) =

∑
i(φ(ui) + φ(vi)) =

∑
i φ(ui) = φ(z) = bL(φ).

We now show that w is accepted by A. Since z ∈ CircFree(L) in particular we have z ∈ L, and
hence z is accepted by A. Thus there is a path q0 in A with edge labels z = u1 ·u2 · · ·un. Assume
for the moment that c1 is a single circuit (as illustrated above). By construction of Aφ there is
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a simple φ-circuit with labels v1 based at the state state(u1) of A. If c1 is a bouquet of simple
circuits (as illustrated for c2 above) then there is a bouquet of simple φ-circuits based at state(u1)
with combined edge labels v1. Thus there is a path q1 in A with edge labels u1 · v1 ·u2 ·u3 · · ·un,
and continuing inductively we obtain a path qn in A with edge labels u1 ·v1 ·u2 ·v2 · · ·un ·vn = w,
and so w is accepted by A.

Conversely, suppose that w ∈ ΓL(φ). Write w = x · v · y with x ∈ CircFree≼(L), y ∈ S∗, and
v ∈ SimpCircWord(L), and let w′ = x · y as in Lemma 2.7. Since φ is bounded part (1) of the
theorem gives φ(v) ≤ 0 and since w′ ∈ L we have φ(w′) ≤ bL(φ), and so

bL(φ) = φ(w) = φ(x) + φ(v) + φ(y) ≤ φ(x) + φ(y) = φ(w′) ≤ bL(φ).

Thus φ(v) = 0 and w′ ∈ ΓL(φ). We claim that if w′ is accepted by Aφ then so too is w. To see
this, note that since x ∈ CircFree≼(L) there is a path in Gφ from ∅ to x remaining in the subset
CircFree≼(L) of the vertex set. Since state(x · v) = state(x) and state(x · v′) ̸= state(x) for all
prefixes v′ ̸= ∅, v of v there is a simple circuit in A based at state(x) with edge labels v. Thus
since φ(v) = 0 there is, by construction, a simple circuit in Aφ with edge labels v based at the
state x. Assuming that w′ is accepted by Aφ, there is also a path in Aφ starting at x with edge
labels y, and thus there is a path in Aφ with edge labels x · v · y, hence the claim.

Continuing the process (replacing w with w′ and decomposing w′ = x′ · v′ · y′) we eventually
arrive at a circuit free element wcf ∈ L with φ(wcf) = bL(φ). Since this element is accepted
by Aφ, the inductive argument of the previous paragraph gives that w is also accepted by Aφ,
completing the proof.

We now give the proof of Theorem 1.

Proof of Theorem 1. (1) By Theorem 2.8(1) we have

B(L) = {φ ∈ WS | φ(v) ≤ 0 for all v ∈ SimpCircWord(L)},

and by Proposition 2.6 the set SimpCircWord(L) is finite. We have φ(v) =
∑

s∈S |vs|φ(s), where
|vs| denotes the number of times the letter s appears in v, and so B(L) is described by finitely
many inequalities of the form

∑
s∈S asφ(s) ≤ 0, where as ∈ Z≥0. Thus by the Minkowski-Weyl

Theorem (see [25, Theorem 1.3]) B(L) is a rational polyhedral cone.
(2) This follows from Theorem 2.8(3), noting that CircFree(L) is finite by Proposition 2.6.
(3) This is Theorem 2.8(4).

Example 2.9. To illustrate Theorem 2.8 (and hence Theorem 1) in a simple example, let
S = {s, t} and let L be the language accepted by the following automata A (with start state 0,
all states accept states, and black, red arrows indicating s, t transitions respectively).

02 1

Then CircFree(L) = {∅, (s), (t), (s, t), (t, s)} and SimpCircWord(L) = {(s, t), (t, s)}. Let φ be the
weight function with φ(s) = a and φ(t) = b for a, b ∈ R. By Theorem 2.8 we have that φ is
bounded if and only if a+ b ≤ 0, and if φ is bounded then

bL(φ) = max{φ(w) | w ∈ CircFree(L)} = max{0, a, b, a+ b}.

To illustrate the construction of the automaton Aφ from the proof of Theorem 2.8, consider the
case a > 0 with a+b = 0. The automaton Aφ is illustrated on the left in Figure 1 (the start state
is ∅, and there is only one accept state s, shaded grey). We have CircFree≼(L) = CircFree(L),
and the nodes labelled ∅, s, t, st, ts correspond to these elements. The nodes with • are those
circuits added corresponding to the simple φ-circuits in A.

7



∅tts s st

• • • •

∅ s •

Figure 1: Automata recognising ΓL(φ)

There is some redundancy inAφ, as any path passing through t or st can never result in an accept
state. Thus the reduced automaton on the right in Figure 1 recognises the same language ΓL(φ).
Explicitly we have ΓL(φ) = {(s), (s, t, s), (s, t, s, t, s), . . .}.

Example 2.10. Let S = {s, t, u} and consider the language L over S accepted by the automata
in Figure 2 (with start state 0, all states accept states, and black, blue, red arrows indicating s,
t, u transitions respectively).

0 3 5 7 9 11 12

2

1

4

6 8 10

Figure 2: The automaton Alex for the triangle group ∆(3, 3, 3) (see Example 4.7)

The language L turns out to be the language of lexicographically minimal reduced words in
the Coxeter group W = ⟨s, t, u | s2 = t2 = u2 = (st)3 = (su)3 = (tu)3 = 1⟩ of type Ã2, with
lexicographic order s < t < u (see Section 3.2). The set SimpCircWord(L) consists of the words
(s, t, u), (s, t, s, u) and all cyclic permutations of these words, and so a weight function φ with
φ(s) = a, φ(t) = b, and φ(u) = c is bounded if and only if a+ b+ c ≤ 0 and 2a+ b+ c ≤ 0. It
follows that the cone B(L) is generated by the bounded weight functions φ1, φ2, φ3, φ4 with

(φ1(s), φ1(t), φ1(u)) = (0, 1,−1) (φ2(s), φ2(t), φ2(u)) = (0,−1, 1)

(φ3(s), φ3(t), φ3(u)) = (−1, 0, 1) (φ4(s), φ4(t), φ4(u)) = (1, 0,−2).

Note that B(L) is not strictly convex in this example (as it contains the line generated by φ1).
There are 64 elements in CircFree(L), and it follows that bL(φ) = max{0, a, b, c, 2a+ c, 2a+

b, 2b+ c}. For example, if (a, b, c) = (1,−1,−1) then φ is bounded, and bL(φ) = 1.

3 Weight functions on groups

In this section we consider the related notion of weight functions on finitely generated groups.

3.1 Definitions

Let G be a group generated by a finite set S (we do not assume that S = S−1). Let ℓ : G→ N
denote the associated length function, where

ℓ(g) = min{k ≥ 0 | g = s1 · · · sk with s1, . . . , sk ∈ S},

and so d(g, h) = ℓ(g−1h) is the graph distance from g to h in the directed Cayley graph of (G,S).
Let p : S∗ → G be the natural map p(s1, s2, . . .) = s1s2 · · · . A word w = (s1, . . . , sk) ∈ S∗ is
reduced if ℓ(p(w)) = k. Let L(G,S) ⊆ S∗ denote the language of all reduced words in (G,S).
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Definition 3.1. A weight function on (G,S) is a function φ : G→ R with φ(gh) = φ(g)+φ(h)
whenever ℓ(gh) = ℓ(g) + ℓ(h). A weight function φ on G is bounded if there exists N > 0 such
that φ(g) ≤ N for all g ∈ G. If φ is bounded we define the bound bG,S(φ) of φ and the cell
ΓG,S(φ) recognised by φ as in the introduction.

It is clear that the set WG,S of all weight functions on (G,S) is a real vector space, and
since a weight function φ on (G,S) is completely determined by the real numbers φ(s), s ∈ S,
we have dimWG,S ≤ |S|. However, unlike the case of weight functions on languages, not all
choices of real numbers as, s ∈ S, necessarily extend to a weight function φ with φ(s) = as (as
illustrated in the following example), and so dimWG,S may be strictly smaller than |S|. Since
the map φ(g) = λℓ(g) is always a weight function for all λ ∈ R, we have dimWG,S ≥ 1. Note
also that the set B(G,S) of all bounded weight functions on (G,S) is a convex cone in WG,S .

Example 3.2. The set of weight functions on (G,S) depends on the generating set S chosen.
The modular group G = PSL2(Z) has the following presentations:

G = ⟨s, t | s2 = t3 = 1⟩ = ⟨s, u | s2 = (su)3 = 1⟩.

Taking S = {s, t} each element g ∈ G has a unique reduced expression (indeed G ∼= C2 ∗ C3),
and thus each assignment φ(s) = a and φ(t) = b with a, b ∈ R extends to a weight function
on (G,S). Moreover the explicit form of reduced expressions implies that φ is bounded if and
only if a + b ≤ 0 and a + 2b ≤ 0. If S′ = {s, t, t−1} we again have unique reduced expressions,
and this time each assignment φ(s) = a, φ(t) = b, and φ(t−1) = c with a, b, c ∈ R extends to a
weight function on (G,S′), with φ bounded if and only if a+b ≤ 0 and a+c ≤ 0. Finally, taking
S′′ = {s, u, u−1} we have the relations sus = u−1su−1 and usu = su−1s (with each expression
reduced) and it follows that every weight function φ on (G,S′′) has φ(s) = φ(u) = φ(u−1).
Thus the only weight functions on (G,S′′) are the functions φ(g) = λℓ(g) for some λ ∈ R, and
such a weight function is bounded if and only if λ ≤ 0.

The connection between weight functions on (G,S) and weight functions on S∗ is given in the
following proposition. A weight function φ0 : S

∗ → R is compatible with (G,S) if φ0(w) = φ0(w
′)

whenever w,w′ ∈ L(G,S) with p(w) = p(w′).

Proposition 3.3. A function φ : G → R is a weight function on (G,S) if and only if there
exists a weight function φ0 : S∗ → R compatible with (G,S) such that φ0(w) = φ(p(w)) for all
w ∈ L(G,S).

Proof. Let φ : G → R be a weight function on (G,S). If w = (s1, . . . , sn) ∈ L(G,S) with
p(w) = g then φ(g) = φ(s1 · · · sn) = φ(s1) + · · · + φ(sn) = φ0(w) where φ0 : S∗ → R is the
weight function with φ0(s) = φ(s) for all s ∈ S, and it follows that φ0 is compatible with
(G,S). Conversely, if φ0 : S∗ → R is compatible with (G,S) then setting φ(g) = φ0(w) for
any w ∈ L(G,S) with p(w) = g is well defined, and if g = g1g2 with ℓ(g1g2) = ℓ(g1) + ℓ(g2)
then choosing w1, w2 ∈ L(G,S) with p(w1) = g1 and p(w2) = g2 we have p(w1 · w2) = g and
φ(g) = φ0(w1 ·w2) = φ0(w1)+φ(w2) = φ(g1)+φ(g2) and so φ is a weight function on (G,S).

In other words, Proposition 3.3 says that WG,S is naturally isomorphic to the subspace of
WS consisting of all weight functions on S∗ compatible with (G,S).

3.2 Geodesic languages

Definition 3.4. A geodesic language for (G,S) is a language L ⊆ L(G,S) such that p : L → G
is surjective. A geodesic language L is exact if p : L → G is a bijection (that is, each element of
G is represented by a unique word in L).

For example, L(G,S) is a geodesic language, and the lexicographically minimal reduced
expressions Llex(G,S), defined below, is an exact geodesic language. To define Llex(G,S), fix an
arbitrary total order ≤ on S and extend to the shortlex total order ≤ on S∗ (with words ordered
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by length, with words of the same length ordered lexicographically). For each g ∈ G there exists
a unique word lex(g) ∈ L(G,S) representing g minimal in the shortlex order, and we set

Llex(G,S) = {lex(g) | g ∈ G}.

We are particularly interested in the case where (G,S) admits a geodesic language that is
regular. For example if (G,S) admits a geodesic automatic structure in the sense of [17, §5.3]
then there exists a regular geodesic language for (G,S) (however note that by [10, Section 3.5]
not all automatic groups admit a geodesic automatic structure for a fixed generating set).

We now prove Corollary 2.

Proof of Corollary 2. Taking X = {p(w) | w ∈ SimpCircWord(L)} and Y = {p(w) | w ∈
CircFree(L)} the corollary follows immediately from Theorem 2.8 and Proposition 3.3.

4 Coxeter groups

In this section we specialise to the case of Coxeter groups. Let S be a finite set, and

W = ⟨S | (st)ms,t = 1 for s, t ∈ S⟩,

where ms,s = 1 for all s ∈ S, and ms,t = mt,s ∈ Z≥2 ∪ {∞} for s, t ∈ S with s ̸= t (if ms,t = ∞
it is understood that the relation (st)ms,t = 1 is omitted).

A Coxeter system is irreducible if there exists no nontrivial partition S = S1 ⊔ S2 with
ms,t = 2 for all s ∈ S1 and t ∈ S2. If (W,S) is spherical (that is, |W | <∞) there exists a unique
element w0 ∈W of maximal length. For J ⊆ S we write WJ = ⟨J⟩ for the associated parabolic
subgroup, and if (WJ , J) is spherical write wJ for the longest element of WJ .

It was shown by Brink and Howlett [5] that both Llex(W,S) and L(W,S) are regular lan-
guages. There are various explicit constructions of automata recognising these languages (see
[5, 6, 7] for Llex(W,S), and [16, 22, 23, 18] for L(W,S)). For computational purposes it is
usually more efficient to work with Llex = Llex(W,S) as it typically admits an automaton with
a smaller number of states, and for our purposes this leads to smaller sets CircFree(Llex) and
SimpCircWord(Llex).

In this section we make Theorem 1 explicit for various classes of Coxeter groups (via Theo-
rem 2.8 and Corollary 2).

4.1 The minimal automata recognising Llex(W,S)

LetAlex = Alex(W,S) denote the minimal deterministic automaton recognising Llex = Llex(W,S).
We describe Alex briefly below (following [6, 7]). The shortlex cone type of x ∈W is

T (x) = {y ∈W | lex(xy) = lex(x) · lex(y)}.

Let T = {T (x) | x ∈ W} denote the set of all shortlex cone types. Since Llex is regular, the
proof of the Myhill-Nerode Theorem (see [17, Theorem 2.5.4] and [23, Theorem 1.23]) implies
that |T | <∞.

The following proposition (with elementary proof omitted) gives an inductive procedure for
calculation of T (x) (see [11, Appendix], [18], and [23] for details on cone types in the language
L(W,S)).

Proposition 4.1. Let s ∈ S and T ∈ T .
(1) We have T (s) = {x ∈W | ℓ(sx) = ℓ(x)+1 and ℓ(tsx) = ℓ(x)+2 for all t ∈ S with t < s}.
(2) Suppose that s ∈ T . Then T ′ = sT ∩T (s) is a cone type, and for all x ∈W with T = T (x)

we have lex(xs) = lex(x) · s and T ′ = T (xs).

Theorem 4.2. We have Alex = (T , S, T (e), τ, T ) where for T ∈ T and s ∈ S the transition
function τ(T, s) is defined if and only if s ∈ T , and in this case τ(T, s) = sT ∩ T (s).

Proof. This follows from Proposition 4.1 and the standard proof of the Myhill-Nerode Theorem
(see [23, Theorem 1.23] for a proof in a similar context).
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4.2 Weight functions on Coxeter groups

It is easy to describe the set of all weight functions on a Coxeter group.

Proposition 4.3 (see [20, §3]). Let (W,S) be a Coxeter system, and let (as)s∈S be an |S|-tuple
of real numbers. There exists a weight function φ :W → R with φ(s) = as if and only if as = at
whenever ms,t is odd.

For example, in a Coxeter group of type C̃n with n ≥ 2 (with standard Bourbaki [4] labelling)
the weight functions are given by the choices φ(s0) = a, φ(s1) = φ(s2) = · · · = φ(sn−1) = b and
φ(sn) = c, with a, b, c ∈ R, while for a simply laced irreducible Coxeter system the only weight
functions are the functions φ(g) = λℓ(g) with λ ∈ R.

If φ is a weight function on (W,S) we write

S+
φ = {s ∈ S | φ(s) > 0}, S−

φ = {s ∈ S | φ(s) < 0}, S0
φ = {s ∈ S | φ(s) = 0},

and let W+
φ = ⟨S+

φ ⟩ and similarly for W−
φ and W 0

φ. In particular, note that these subgroups are
standard parabolic subgroups of (W,S).

Proposition 4.4. If φ is a bounded weight function on a Coxeter system (W,S) then every
element of ΓW,S(φ) is both a maximal length (W+

φ ,W
+
φ )-double coset representative, and a min-

imal length (W−
φ ,W

−
φ )-double coset representative, and the cell ΓW,S(φ) is a union of (W 0

φ,W
0
φ)-

double cosets.

Proof. Let g ∈ ΓW,S(φ). If s ∈ S+
φ with ℓ(sg) = ℓ(g) + 1 then φ(sg) = φ(g) + φ(s) > φ(g) =

bW,S(φ), a contradiction. Thus ℓ(sg) = ℓ(g) − 1 and similarly ℓ(gs) = ℓ(g) − 1 for all s ∈ S+
φ ,

showing that g is maximal length in its (W+
φ ,W

+
φ )-double coset. The remaining statements are

similar.

4.3 Triangle groups

The triangle group W = ∆(p, q, r) is the Coxeter group with generating set S = {s, t, u} and
presentation

∆(p, q, r) = ⟨s, t, u | s2 = t2 = u2 = (su)p = (st)q = (tu)r = 1⟩,

where p, q, r ≥ 2. This group is spherical (respectively affine, hyperbolic) if p−1 + q−1 + r−1

is greater than 1 (respectively equal to 1, less than 1). While it would be possible to make
Theorem 1 explicit for all triangle groups, the analysis would be rather complicated with case
distinctions and parity considerations. Therefore we content ourselves here to some illustrative
examples.

Example 4.5 (The group ∆(2, 4, 6)). Consider the hyperbolic triangle group ∆(2, 4, 6). By
Proposition 4.3 each assignment φ(s) = a, φ(t) = b, and φ(u) = c with a, b, c ∈ R extends to a
weight function.

The minimal shortlex automaton Alex (using the order s < t < u) can be computed using
Proposition 4.1 and Theorem 4.2 (or using Derek Holt’s KBMAG algorithms [17] which are
implemented in MAGMA [3]). The automaton is illustrated in Figure 3, where black, blue, and
red arrows indicate s, t, and u transitions respectively, 0 is the start state, and all states are
accept states.
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Figure 3: The automata Alex for the triangle group ∆(2, 4, 6)

By inspection of Figure 3 there are 5 simple circuits in Alex, given by 3 → 4 → 10 → 3, 3 →
4 → 10 → 11 → 3, 3 → 4 → 5 → 6 → 7 → 11 → 3, 3 → 4 → 5 → 6 → 7 → 8 → 9 → 11 → 3,
and 5 → 6 → 7 → 8 → 9 → 5. Thus by Theorem 2.8 the weight function φ is bounded if and
only if

a+ b+ c ≤ 0, a+ 2b+ c ≤ 0, a+ 3b+ 2c ≤ 0, and a+ 2b+ 2c ≤ 0

(note that the inequality 2a + 3b + 3c ≤ 0 arising from the simple circuit 3 → 4 → 5 → 6 →
7 → 8 → 9 → 11 → 3 is redundant). It follows that the rational cone B(Llex) is generated by
the bounded weight functions φ1, φ2, φ3, φ4 with

(φ1(s), φ1(t), φ1(u)) = (1, 0,−1) (φ2(s), φ2(t), φ2(u)) = (0,−1, 1)

(φ3(s), φ3(t), φ3(u)) = (−1, 1,−1) (φ4(s), φ4(t), φ4(u)) = (−2, 0, 1)

(unlike Example 2.10, here the cone B(Llex) is strictly convex).
By Theorem 2.8 the bound of a bounded weight function is attained on CircFree(Llex). De-

termining this set is a straightforward but somewhat tedious exercise (there are 92 circuit free
words). By directly considering the values of a bounded weight function φ on this finite set of
words (and making use of the inequalities a + b + c ≤ 0, a + 2b + c ≤ 0, a + 3b + 2c ≤ 0, and
a+ 2b+ 2c ≤ 0) we see that

bW,S(φ) = max{0, a, b, c, a+ 2b, 2a+ b, 2a+ 2b, 2b+ 3c, 3b+ 2c, 3b+ 3c, a+ c}.

In particular, the weight function φ = φ3 listed above is bounded, with bW,S(φ) = 1. In this
case two of the above inequalities determining boundedness become equalities: a + 2b + c = 0
and a + 3b + 2c = 0. This gives rise to two simple φ-circuits in Alex, given by 3 7→ 4 7→ 10 7→
11 7→ 3 and 3 7→ 4 7→ 5 7→ 6 7→ 7 7→ 11 7→ 3. The subset of words w ∈ CircFree(Llex) with
φ(p(w)) = bW,S(φ) = 1 is L1 = {t, tst, tut, tstut, tutut, tstutut, tututst} (these give the accept
states of the automaton Aφ constructed in the proof of Theorem 2.8). From the construction
of Aφ it is clear that we can ignore the states from CircFree(Llex) that are not prefixes of one of
the above accept states. Therefore we must consider the the following subset of CircFree(Llex):

X0 = {e, t, ts, tu, tst, tut, tstu, tstut, tutu, tutut, tstutu, tstutut, tututs, tututst}.

After appending circuits to each states x ∈ X0 such that there is a simple φ-circuit in Alex

based at the corresponding state state(x) of Alex, we arrive at the automaton Aφ illustrated in
Figure 4. The labelled states correspond to the subset X0 of CircFree(Llex), and we have used
the notation

x
state(x) to denote the states (where x ∈ X0 and state(x) is the corresponding state

of Alex). The accept states are shaded.
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Figure 4: An automaton recognising ΓW,S(φ3)

Some simplifications are possible in the automaton (c.f. Example 2.9). For example, the circuits
based at the non-accept states can be removed (without altering the accepted language).

Example 4.6 (The group ∆(2, 3, 2m)). Let 3 ≤ m < ∞ and consider the triangle group
∆(2, 3, 2m). By Proposition 4.3 the weight functions on ∆(2, 3, 2m) are determined by the
choices φ(s) = φ(t) = a and φ(u) = b with a, b ∈ R. The minimal shortlex automaton Alex

(using the order s < t < u) can be computed using Proposition 4.1 and Theorem 4.2. The
automaton is illustrated in Figure 5, where black, blue, and red arrows indicate s, t, and u
transitions respectively, 0 is the start state, and all states are accept states (the states are denoted
0, 1, . . . , 2m + 1, x, y, z, w, and in this example we do not encircle the states for typesetting
reasons).

0

y

z

x

1 2 3 4 5 6 7 8 · · · 2m − 4 2m − 3 2m − 2

w

2m − 12m2m + 1

Figure 5: The minimal shortlex automata for ∆(2, 3, 2m), m ≥ 3

By inspection the simple circuits are 1 → 2 → 3 → · · · → 2j → x → 1 (with 2 ≤ 2j ≤ 2m− 4)
and 3 → 4 → · · · → 2m − 1 → 2m → 2m + 1 → 3, and it follows from Corollary 2 that φ is
bounded if and only if (i+1)a+ ib ≤ 0 for all 1 ≤ i ≤ m−1. The inequalities with 1 < i < m−1
are redundant, and therefore φ is bounded if and only if

2a+ b ≤ 0 and ma+ (m− 1)b ≤ 0.

By inspection, CircFree(Llex) consists of the words of the form

{∅, s, t, st, sts} · [ut]j with 0 ≤ j ≤ 2m− 1, or

{∅, s, t, st} · [ut]2i · s with 1 ≤ i ≤ m− 2, or

{∅, s, t, st, sts} · [ut]2m−2 · {s, su, sut}
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where [ut]j = utut · · · with j terms. By directly considering the values of a bounded weight
function φ on this finite set we obtain bW,S(φ) = max{0, a, 2a, 3a, a + b, ia + (i + 1)b | 0 ≤ i ≤
m− 1}. Since 2a+ b ≤ 0 and ma+ (m− 1)b ≤ 0 there is some redundancy, and it follows that

bW,S(φ) = max{0, 3a, b, (m− 1)a+mb}.

An example of calculating Aφ is given in Example 4.5, and we omit such an example here.

Example 4.7. Consider the triangle groupW = ∆(3, 3, 3) (an affine Coxeter group of type Ã2).
The automatonAlex is given in Example 2.10. By Proposition 4.3 the only weight functions onW
are the functions φ(g) = λℓ(g) (and such a function is bounded if and only if λ ≤ 0). Therefore
Corollary 2 gives no information. However we note that working with weight functions on the
exact geodesic language Llex (rather than weight functions on the group) gives richer information
as weight functions then have 3 degrees of freedom. For example, following from Example 2.10,
the weight function φ : S∗ → R with φ(s) = 0, φ(t) = 1 and φ(u) = −1 is bounded with
bound 1. It follows that for every w ∈ Llex we have |wt| ≤ 1 + |wu| (note that this bound does
not hold in the language L(W,S) of all reduced expressions, for example consider tutst).

A striking feature of Examples 4.5 and 4.6 is that for the triangle groups ∆(2, 3, 2m) and
∆(2, 4, 6) the bound bW,S(φ) of a bounded weight function is always attained on an element of
a spherical parabolic subgroup. We ask the following question.

Question 4.8. Let φ be a bounded weight function on a Coxeter system (W,S). Let Sph(W )
denote the union of all spherical parabolic subgroups WJ , with J ⊆ S. Is it true that there
exists x ∈ Sph(W ) such that φ(x) = bW,S(φ)?

If the answer to Question 4.8 is affirmative, then the possible values of bW,S(φ) are severely
restricted (see the following section).

4.4 Spherical Coxeter groups

All weight functions on a spherical Coxeter group are bounded, and the statements in Corollary 2
are trivial (for example, every finite set is regular). However in the spherical case one can ask
more precise questions. In this section we explicitly determine the bound bW,S(φ) and the cell
ΓW,S(φ) of a (necessarily bounded) weight function on a spherical Coxeter system.

It is clear that if φ(s) ≤ 0 for all s ∈ S then bW,S(φ) = 0 and ΓW,S(φ) = W 0
φ (see Proposi-

tion 4.4). Thus we can assume that φ(s) > 0 for some s ∈ S. The following lemma deals with
the case φ(s) ≥ 0 for all s ∈ S (in the spherical case).

Lemma 4.9. If (W,S) is spherical and φ(s) ≥ 0 for all s ∈ S then bW,S(φ) = φ(w0) and
ΓW,S(φ) = w0W

0
φ.

Proof. For all x ∈ W we have w0 = x(x−1w0) with ℓ(w0) = ℓ(x) + ℓ(x−1w0), and hence φ(x) =
φ(w0) − φ(x−1w0) ≤ φ(w0) (because φ(x−1w0) ≥ 0). Thus bW,S(φ) = φ(w0). If x ∈ ΓW,S(φ)
then φ(x) = φ(w0) and so φ(x−1w0) = 0. Thus x−1w0 ∈W 0

φ, and hence x ∈ w0W
0
φ. Conversely,

if x ∈ w0W
0
φ then x = w0y with y ∈ W 0

φ and ℓ(x) = ℓ(w0) − ℓ(y), and so xy−1 = w0 with
ℓ(x) + ℓ(y−1) = ℓ(w0). Thus φ(x) = φ(w0), and so x ∈ ΓW,S(φ).

Thus it remains to consider the case φ(s) < 0 and φ(t) > 0 for some s, t ∈ S. By Proposi-
tion 4.3, in the cases An, Dn, E6, E7, E8, H3, H4 and I2(2m+1), every weight function is constant
on the generators, and so it remains to consider types Bn, F4, and I2(2m).

The case of dihedral groups I2(2m) is elementary, and we omit the simple proof of the
following theorem.

14



Theorem 4.10. Let W = ⟨s, t | s2 = t2 = (st)2m = 1⟩ be a dihedral group of order 4m and let
φ be a weight function. Let φ(s) = a and φ(t) = b, and assume that a < 0 and b > 0. Then

bW,S(φ) =

{
b if a+ b ≤ 0

(m− 1)a+mb if a+ b ≥ 0

ΓW,S(φ) =


{t} if a+ b < 0

{t(st)k | 0 ≤ k ≤ m− 1} if a+ b = 0

{w0s} if a+ b > 0.

We now turn attention to the Bn case. We label the generators s1, . . . , sn with (sn−1sn)
4 = 1

(Bourbaki [4] conventions). Let φ(s1) = · · · = φ(sn−1) = a and φ(sn) = b.

Theorem 4.11. Let φ be a weight function on Bn and let φ(s1) = a and φ(sn) = b. Then

bW,S(φ) = max

{
i(i− 1)

2
a+ ib,

(
n(n− 1)− (n− i)(n− i− 1)

2

)
a+ ib

∣∣∣∣ 0 ≤ i ≤ n

}
,

and if a, b ̸= 0 then ΓW,S(φ) = {x ∈ X | φ(x) = bW,S(φ)} where X = {xi, yi | 0 ≤ i ≤ n}, where

xi =

i∏
j=1

(snsn−1 · · · sn−i+j) and yi = wS\{sn}

i∏
j=1

(snsn−1 · · · sj).

Proof. Let J = S\{sn}. From Proposition 4.4, if b > 0 and a < 0 (respectively b < 0 and
a > 0) then the bound occurs on a minimal (respectively maximal) length (WJ ,WJ)-double
coset representative. These minimal (respectively maximal) length (WJ ,WJ)-double coset rep-
resentatives are xi (respectively yi) for 0 ≤ i ≤ n. To see this, it is clear that xi (respectively
yi) is of minimal (respectively maximal) length in its (WJ ,WJ)-double coset, and to check that
we have found all minimal/maximal length representatives one can compute the cardinalities of
the double cosets and verify that they cover W ; we omit the details. The result follows (note
that x0 = e and yn = w0, dealing with the cases a, b ≤ 0 and a, b ≥ 0).

We now turn to the group F4, with labelling

• • • •
s1 s2 s3 s4

4

By Proposition 4.3 every weight function φ has φ(s1) = φ(s2) and φ(s3) = φ(s4).

Lemma 4.12. The elements of W that are both maximal length (W{s1,s2},W{s1,s2})-double coset
representatives, and minimal length (W{s3,s4},W{s3,s4})-double coset representatives are 121,
121321, 12132132, 1213214321, 121321432132, 121323432132, 121321324321, 12132132432132,
1213214321324321, 121321324321324321, and 121321324321323432132.

Proof. This is easily verified with the help of a computer [3].

Let A be the set consisting of the 11 elements in Lemma 4.12. Let σ be the nontrivial
diagram automorphism of F4, and let X = A ∪Aσ ∪ {e,w0} (thus |X| = 24).

Proposition 4.13. Let φ be a weight function on F4 with φ(s1) = φ(s2) = a and φ(s3) =
φ(s4) = b. Then

bW,S(φ) = max{0, 3a, 3b, 5a+ b, a+ 5b, 11a+ 7b, 7a+ 11b, 12a+ 9b, 9a+ 12b, 12a+ 12b},

and if a, b ̸= 0 then ΓW,S(φ) = {x ∈ X | φ(x) = bW,S(φ)} with X as above.
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Proof. Suppose that φ(s1) = φ(s2) = a > 0 and φ(s3) = φ(s4) = b < 0. By Proposition 4.4
if x ∈ ΓW,S(φ) then x is both a maximal length (W{s1,s2},W{s1,s2})-double coset representative,
and a minimal length (W{s3,s4},W{s3,s4})-double coset representative. Thus the bound occurs
on the set A (and only on the set A). The values of φ(x) with x ∈ A are 3a, 5a + b, 6a + 2b,
7a+ 3b, 8a+ 4b, 7a+ 5b, 8a+ 4b, 9a+ 5b, 10a+ 6b, 11a+ 7b, 12a+ 9b. Since a > 0 and b < 0
the maximum is attained on one of the elements 3a, 5a+ b, 11a+ 7b, 12a+ 9b. Thus

bW,S(φ) = max{φ(x) | x ∈ A} = max{3a, 5a+ b, 11a+ 7b, 12a+ 9b},

and ΓW,S(φ) = {x ∈ A | φ(x) = bW,S(φ)}. If a < 0 and b > 0 there is a dual argument
(interchanging the roles of a and b). Combining this with the cases a < 0 and b < 0 (where the
bound is 0, attained at e only), and a > 0 and b > 0 (where the bound is φ(w0), attained only
at w0), the result follows.

4.5 Affine Coxeter groups

In this section we explicitly describe the cone of bounded weight functions on an irreducible
affine Coxeter system (W,S). We do not use Theorem 1 (or Corollary 2) directly – instead we
make use of the affine structure, thus avoiding the need to explicitly compute an automaton
recognising L(W,S).

It is convenient to index the irreducible affine Coxeter systems as Ãn (n ≥ 2), B̃n (n ≥ 3), C̃n
(n ≥ 1), D̃n (n ≥ 4), Ẽn (n = 6, 7, 8), F̃4, and G̃2 (in particular, the dimension 1 affine group is
denoted C̃1 rather than Ã1). We associate a root system Φ to (W,S) as follows. If W is of type
X̃n with X ̸= C then let Φ be an irreducible root system of type Xn, while if X = C let Φ be the
(non-reduced) root system of type BCn. Let {α1, . . . , αn} be a fixed set of simple roots of Φ, and
let Φ+ be the associated positive roots. Let Q be the coroot lattice, and P the coweight lattice,
associated to Φ. Let ω1, . . . , ωn ∈ P be the fundamental coweights (defined by ⟨ωi, αj⟩ = δi,j),
and let P+ = Nω1 + · · ·+ Nωn.

There is a standard realisation of W as a semidirect product W = Q ⋊W0 where W0 is
the associated spherical Weyl group (see [12, §1.1, §1.2], and in particular [12, Remark 1.1] for
conventions on the BCn root system). Let V be the underlying vector space of Φ, and let C0 be
the fundamental (closed) alcove.

It is convenient to work with the extended affine Weyl group W̃ = P ⋊W0. Write tλ ∈ W̃
for the translation by λ ∈ P (thus tλ(v) = v + λ for v ∈ V ). We have W̃ = W ⋊ Ω, where

Ω = P/Q. We extend weight functions φ :W → R to functions φ : W̃ → R be setting φ(g) = 0

for all g ∈ Ω (we call such an extension a weight function on W̃ , however note that it may not
be a weight function in the strict sense of Section 3.1).

Let φ : W̃ → R be a weight function. We define φ(α), for α ∈ Φ, as follows. If Φ is reduced
we set φ(αi) = φ(si) for all 1 ≤ i ≤ n, and if Φ is of type BCn we define φ(αi) = φ(si) for
1 ≤ i ≤ n− 1, φ(2αn) = φ(s0), and φ(αn) = φ(sn)−φ(s0). In all cases extend the definition to
Φ by declaring φ(α) = φ(β) whenever β ∈W0α, and it is convenient to set φ(β) = 0 if β /∈ Φ.

Let

ρ(φ) =
1

2

∑
α∈Φ+

φ(α)α.

For x ∈W0 let Φ(x) = {α ∈ Φ+ | x−1α ∈ −Φ+}.

Lemma 4.14. For λ ∈ P+ and x ∈W0 we have

φ(tλ) = ⟨λ, 2ρ(φ)⟩ and φ(x) =
∑

α∈Φ(x)

φ(α).

Proof. The formula for φ(x) with x ∈ W0 follows by considering hyperplanes separating the
alcove C0 from the alcove xC0 (in the non-reduced case, note that if α ∈ Φ(x) and 2α ∈ Φ then
2α ∈ Φ(x) and φ(α) + φ(2α) = φ(sn)). Similarly, the formula for φ(tλ) follows by considering
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the hyperplanes separating C0 from tλ(C0). Since λ ∈ P+, these hyperplanes are Hα,k with
1 ≤ k ≤ ⟨λ, α⟩ for α ∈ Φ+. In the reduced case, there is no double counting, and all hyperplanes
in a parallelism class have the same weight φ(α). Thus, in the reduced case,

φ(tλ) =
∑
α∈Φ+

⟨λ, α⟩φ(α) = ⟨λ, 2ρ(φ)⟩.

In the non-reduced case there is some double counting of the hyperplanes corresponding to the
long and short roots (but not the middle length roots), but the definition of φ ensures that after
cancellation each hyperplane is counted with the appropriate weight (see [24, Appendix A] for
similar calculations in a related context).

Let V0 = {v ∈ V | 0 ≤ ⟨v, αi⟩ ≤ 1 for all i = 1, . . . , n} be Lusztig’s box, and let

B0 = {w ∈ W̃ | wC0 ⊆ V0}.

The following theorem gives an explicit version of Corollary 2 for extended affine Weyl groups.

Theorem 4.15. Let W̃ be an extended affine Weyl group, and let φ : W̃ → R be a weight
function. Then φ is bounded if and only if ⟨λ, ρ(φ)⟩ ≤ 0 for all λ ∈ P+.

If φ is bounded, then setting b(φ)′ = maxx∈W0 φ(x) and b(φ)′′ = maxy∈B0 φ(y) we have
bW,S(φ) = b(φ)′ + b(φ)′′, and

ΓW,S(φ) = {xtλy | x ∈W0, y ∈ B0, λ ∈ P+ with φ(x) = b(φ)′, φ(y) = b(φ)′′, ⟨λ, ρ(φ)⟩ = 0}.

Moreover, the bound bW,S(φ) is attained on an element of the finite set {xy | x ∈W0, y ∈ B0}.

Proof. If φ is bounded, then for λ ∈ P+ and k ≥ 0 Lemma 4.14 gives φ(tkλ) = k⟨λ, 2ρ(φ)⟩, and
hence ⟨λ, ρ(φ)⟩ ≤ 0 for all λ ∈ P+. For the converse, it is well known and easy to prove that

each w ∈ W̃ can be written, in a unique way, as w = xtλy with x ∈ W0, λ ∈ P+, and y ∈ B0.
Moreover, for all x ∈W0, λ ∈ P+, and y ∈ B0 we have ℓ(xtλy) = ℓ(x) + ℓ(tλ) + ℓ(y). Thus

φ(w) = φ(x) + ⟨λ, 2ρ(φ)⟩+ φ(y), (4.1)

and since W0 and B0 are finite sets it follows that if ⟨λ, 2ρ(φ)⟩ ≤ 0 for all λ ∈ P+ then φ is
bounded. The remaining statements now easily follow from (4.1).

The irreducible affine Coxeter groups admitting non-constant weight functions are the B̃n
(n ≥ 3), C̃n (n ≥ 1), F̃4, and G̃2 cases. Since G̃2 is a special case of the triangle group ∆(2, 3, 2m)
(with m = 3, see Example 4.6) we will not consider it further here. We consider the remaining
cases below.

Example 4.16 (The group F̃4). Consider the group F̃4. Using Bourbaki conventions the roots
α1 and α2 are long in Φ, and the affine generator s0 satisfies (s0s1)

3 = 1. Let φ(s0) = φ(s1) =
φ(s2) = a and φ(s3) = φ(s4) = b. Direct calculation gives

2ρ(φ) = (10a+ 6b)α1 + (18a+ 12b)α2 + (24a+ 18b)α3 + (12a+ 10b)α4

and so by Theorem 4.15 the weight function φ is bounded if and only if 5a+3b ≤ 0, 3a+2b ≤ 0,
4a + 3b ≤ 0, and 6a + 5b ≤ 0 (these inequalities arise by considering ⟨ωi, 2ρ(φ)⟩ ≤ 0 for
i = 1, 2, 3, 4). The inequalities 3a+ 2b ≤ 0 and 4a+ 3b ≤ 0 are redundant, and so we see that a
weight function on F̃4 is bounded if and only if 5a+ 3b ≤ 0 and 6a+ 5b ≤ 0.

Example 4.17 (The group B̃n). Consider the group B̃n, n ≥ 3. If φ is a weight function then
φ(s0) = φ(s1) = · · · = φ(sn−1) = a and φ(sn) = b. Using standard Bourbaki conventions, the
short roots are ek, k = 1, . . . , n, and the long roots are ei − ej , ei + ej with 1 ≤ i < j ≤ n. Thus
we have

2ρ(φ) =

n∑
i=1

[2(n− i)a+ b]ei.

17



Since ωj = e1+ · · ·+ej Theorem 4.15 gives that φ is bounded if and only if (2n− j−1)a+ b ≤ 0
for all j = 1, . . . , n. It follows that a weight function is bounded if and only if 2(n− 1)a+ b ≤ 0
and (n− 1)a+ b ≤ 0.

Example 4.18 (The group C̃n). Consider the group C̃n. Let n ≥ 2. If φ is a weight function
we write φ(s1) = · · · = φ(sn−1) = b, φ(sn) = a, and φ(s0) = c. In the standard setup of the
BCn root system (see [12, Remark 1.1]) we compute

ρ(φ) =
1

2

n∑
i=1

(a+ c+ 2(n− i)b)ei.

Since ωi = e1 + · · · + ei for 1 ≤ i ≤ n Theorem 4.15 gives that φ is bounded if and only if
a+ c+ (2n− i− 1)b ≤ 0 for all 1 ≤ i ≤ n. It follows that a weight function φ on C̃n is bounded
if and only if a+ c+ 2(n− 1)b ≤ 0 and a+ c+ (n− 1)b ≤ 0.

4.6 Bounded representations of Hecke algebras

Let (W,S) be a Coxeter system, and let ψ : W → Z≥0 be a non-negative integer valued weight
function on (W,S) with ψ(s) > 0 for all s ∈ S. Recall the definition of the associated weighted
Hecke algebra H = H(W,S, ψ) from the introduction. We now give the proof of Corollary 3.

Proof of Corollary 3. Let π be a 1-dimensional representation. For s ∈ S the quadratic relation
T 2
s = 1 + (qψ(s) − q−ψ(s))Ts implies that π(Ts) ∈ {qψ(s),−q−ψ(s)}, and if ms,t is odd then the

relation TsTtTs · · · = TtTsTt · · · (ms,t terms on each side) forces π(Ts) = π(Tt). Conversely, each
choice π(Ts) ∈ {qψ(s),−q−ψ(s)} with π(Ts) = π(Tt) whenever ms,t is odd extends uniquely to a
1-dimensional representation by Matsumoto’s Theorem [21]. It follows that the map φ :W → Z
with φ(x) = deg π(Tx) is a Z-valued weight function on W , and that φ is bounded if and only
if the representation π is bounded. Moreover, Γ(π) = ΓW,S(φ), and the result now follows from
Corollary 2.

Example 4.19. Let W = ∆(2, 4, 6) be the hyperbolic triangle group generated by S = {s, t, u}
(see Example 4.5). Let ψ :W → Z≥0 be the weight function with ψ(s) = ψ(t) = ψ(u) = 1, and
let H = H(W,S, ψ) (the equal parameter Hecke algebra). By the proof of Corollary 3, there is
a 1-dimensional representation π of H with π(Ts) = −q−1, π(Tt) = q, and π(Tu) = −q−1. The
weight function φ(x) = deg π(Tx) for x ∈ W is the weight function φ = φ3 from Example 4.5,
and by the proof of Corollary 3 the bound of π is b(π) = bW,S(φ3) = 1 and the cell recognised
by π is Γ(π) = ΓW,S(φ3) (the regular set recognised by the automaton in Figure 4).
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