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Abstract

An automorphism of a spherical building is called domestic if it maps no chamber
to an opposite chamber. In previous work the classification of domestic automor-
phisms in large spherical buildings of types F4, E6, and E7 have been obtained, and in
the present paper we complete the classification of domestic automorphisms of large
spherical buildings of exceptional type of rank at least 3 by classifying such auto-
morphisms in the E8 case. Applications of this classification are provided, including
Density Theorems showing that each conjugacy class in a group acting strongly
transitively on a spherical building intersects a very small number of B-cosets, with
B the stabiliser of a fixed choice of chamber.
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1 Introduction

The opposite geometry of an automorphism θ of a spherical building Ω is the set Opp(θ)
consisting of those elements mapped to opposite elements by θ. Recently a detailed theory
of this geometry has been developed (see, for example, [2, 21, 27, 29, 31]). A starting point
is the fundamental result of Abramenko and Brown [2, Proposition 4.2], stating that if θ
is a nontrivial automorphism of a thick spherical building then the opposite geometry of θ
is necessarily nonempty. Indeed the generic situation is that Opp(θ) is rather large, and
typically contains many chambers of the building (chambers are the simplices of maximal
dimension). The more special situation is when Opp(θ) contains no chamber, in which
case θ is called domestic.

In [29] we initiated the classification of domestic automorphisms of spherical buildings of
exceptional type. In particular we classified all domestic automorphisms of thick buildings
of type E6, and split buildings of types F4 and G2. In [30] we obtained the classification of
domestic automorphisms for all Moufang hexagons, and in [21] Lambrecht and the second
author obtained the classification of domestic automorphisms for all large thick buildings
of type F4. In [25] we, together with Neyt and Victoor, classified domestic automorphisms
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of large E7 buildings (an irreducible thick spherical building of rank at least 3 is called
large if it contains no Fano plane residues, and small otherwise).

The purpose of this paper is to complete the classification of domestic automorphisms
of large spherical buildings of exceptional type by classifying domestic automorphisms of
large buildings of type E8. The fact that makes type E8 harder and different from the other
exceptional types, is that no “simpler” geometry than the long root subgroup geometry
exists for buildings of type E8. For types E6 and E7, for example, we have the so-called
minuscule geometries (with below notation, these are the geometries E6,1(K) and E7,7(K)).
Our new technique relies on a more systematic use of the equator geometries (for a defi-
nition, see below), which allows one to use the classification of domestic automorphisms
of spherical buildings of lower rank. A typical example is the proof of Proposition 4.14,
which is one of the crucial results of the present paper.

By Tits’ classification of spherical buildings [40], a large building of type E8 is any building
E8(K) over a field K with at least 3 elements (the unique small E8 building corresponds
to the field with 2 elements). By the main result of [27], each automorphism θ of a
large spherical building is capped, meaning that it satisfies the following property: If θ
maps a flag of type J1 to an opposite flag, and another flag of type J2 to an opposite
flag, then θ maps a flag of type J1 ∪ J2 to an opposite flag. Hence in a large spherical
building, in order to know the types of all flags mapped to an opposite it suffices to
know the types of the minimal ones. Since these minimal types are orbits of the induced
action of the automorphism on the Dynkin (or Coxeter) diagram, and since that action
is always trivial in the case of E8, it suffices to know the types of the vertices mapped to
an opposite. Encircling those types on the Coxeter diagram gives the opposition diagram
of the automorphism. In [27], all possible opposition diagrams are classified, and the list
for E8 is given in Figure 1.

E8;0 = • • • • • • •
•

E8;1 = • • • • • • •
•

E8;2 = • • • • • • •
•

E8;4 = • • • • • • •
•

E8;8 = • • • • • • •
•

Figure 1: The opposition diagrams of type E8

The fix diagram of an automorphism of an E8 building is given by encircling the types
of the vertices of the building fixed by θ. We will use the same symbols E8;j for fixed
diagrams. They are extensions of the indices defined by Tits in [39] in the sense of [23].

The opposition diagram E8;8 is the opposition diagram of any non-domestic automorphism,
and hence we shall not be concerned with it. Also, since the opposite geometry of a
nontrivial automorphism is never empty (by [2]), the only automorphism with opposition
diagram E8;0 is the identity automorphism. Moreover, in [29, Theorems 1 and 4] we proved
that each automorphism with opposition diagram E8;1 is a nontrivial central collineation
(and vice-versa), and that each automorphism with opposition diagram E8;2 is the product
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of two nontrivial perpendicular root elations (and vice-versa). Thus the focus of the
present paper is to classify the automorphisms with opposition diagram E8;4.

In [29, Theorems 5 and 6] we provided examples of automorphisms with opposition di-
agram E8;4. These examples were certain products of 4 perpendicular nontrivial central
collineations, or certain certain homologies. In particular, all of these examples fix a
chamber of the building (equivalently, they are conjugate to a member of the Borel sub-
group B). Moreover, in the case of E6, it is shown in [29, Theorem 8] that all domestic
automorphisms of a thick E6 building fix a chamber of the building. In contrast to these
examples, we shall see that there exist automorphisms with opposition diagrams E8;4 fix-
ing no chamber, provided the underlying field admits certain extensions. The complete
classification of such automorphisms for large buildings is given in the following theo-
rem. We work in the non-strong parapolar space and also long root subgroup geometry
∆ = E8,8(K) (see Section 3 for the notation and terminology). We say that an automor-
phism of ∆ is of Class I if it pointwise fixes precisely a fully and isometrically embedded
subspace isomorphic to F4,1(K,H), for some quaternion division algebra H over K, and of
Class II if it pointwise fixes precisely an equator geometry, while acting fixed point freely
on its set of poles.

Theorem A. Let θ be an automorphism of the building E8(K) with |K| > 2, and suppose
that θ fixes no chamber. The following are equivalent.

(1) θ is domestic;
(2) θ has opposition diagram E8;4;
(3) θ is an automorphism of Class I or Class II.

Also, the building E8(K) admits an automorphism of Class I if, and only if, K admits an
associative quadratic division algebra of dimension 4, whereas it admits an automorphism
of Class II if, and only if, it admits a quadratic extension.

To complete the classification of domestic automorphisms of large spherical building of
type E8 we must also classify the automorphisms with opposition diagram E8;4 fixing a
chamber. The techniques in this classification are more algebraic, and we give precise
formulae in terms of Chevalley generators for representatives of the conjugacy classes (see
Section 2 for the notation).

Theorem B. Let θ be an automorphism of the building E8(K) with |K| > 2, and suppose
that θ fixes a chamber. Then θ has opposition diagram E8;4 if, and only if, θ is conjugate
to one of the following elements of the standard D4 subgroup (with a 6= 0 arbitrary and
c 6= 0, 1 arbitrary):

(1) x0100(a)x1110(1)x1101(1)x0111(1) (a certain product of 4 orthogonal long root elations);
(2) x1111(1)x0100(a)x1110(1)x1101(1)x0111(1);
(3) hϕ(c) (a homology fixing a non-thick subbuilding with thick frame of type E7 if c 6= −1

and type E7 × A1 if char(K) 6= 2 and c = −1);
(4) xϕ(1)hϕ(−1) with char (K) 6= 2.

The unique small E8 building E8(2) (over the field with 2 elements) is excluded from the
above theorems. See Remark 1.1 below for a discussion.
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Our results translate into group theoretic statements concerning conjugacy classes in
Chevalley groups of exceptional type. To put these results into context, recall that by
the Density Theorem (see [19, Section 22.2]), if G is a connected linear algebraic group
over an algebraically closed field then the union of all conjugates of a Borel subgroup B
is equal to G. Equivalently, if C is a conjugacy class in G then C ∩B 6= ∅. This theorem
is a cornerstone in the theory of algebraic groups, for example simple corollaries include
the important facts that the centres of G and B coincide, and that the Cartan subgroups
of G are precisely the centralisers of maximal tori.

The statement of the Density Theorem is clearly false in the general setting of a Chevalley
groupG over an arbitrary field, as there typically exist elements θ ∈ G fixing no chamber of
the building Ω = G/B. However our classification theorems allow us to provide analogues
of the Density Theorem in this setting, showing that every conjugacy class in G intersects
a union of a very small number of B-cosets. For example, in [29, Corollary 11] we showed
that in a Chevalley group of type E6 or F4 over a field F we have C ∩ (B ∪ w0B) 6= ∅ for
all conjugacy classes C . The existence of domestic automorphisms of E7 and E8 buildings
fixing no chamber implies that this result does not extend to the cases E7 and E8, however
in this paper we are able to prove the following analogue of the Density Theorem for
Chevalley groups of type E8 (see Theorem 7.1 for a general density theorem for all types).

Corollary C. Let G be a Chevalley group of type E8 over a field K with |K| > 2, and let
C be a conjugacy class in G. Then

(1) C ∩ (B ∪ wD4w0B ∪ w0B) 6= ∅;
(2) if K is quadratically closed then C ∩ (B ∪ w0B) 6= ∅.

Here w0 is the longest element of W , and wD4 is the longest element of the standard D4

parabolic subgroup.

In [24] we introduced the notion of uniclass automorphisms of spherical buildings. These
automorphisms are defined by the property that the displacement spectra

disp(θ) = {δ(C,Cθ) | C ∈ Ω}

is contained in a single conjugacy class in the Weyl group (and it then turns out that
disp(θ) is necessarily equal to a conjugacy class in the Weyl group). In [24, Theorem 1] we
gave the classification of uniclass automorphisms, with the results for type E8 conditional
on the classification of domestic automorphisms of buildings of type E8. The results of
the present paper provide these results, thus completing the proof of [24, Theorem 1].
In particular, the only uniclass automorphisms of buildings of type E8 are the identity,
anisotropic automorphisms, and automorphisms of Class I.

Theorems A and B constitute the final step in the complete classification of domestic
automorphisms of large spherical buildings of exceptional type with rank at least 3 (see
[29] for the classification in type E6 and for the opposition diagrams E7;1, E7;2, E8;1, and
E8;2, [21] for the F4 case, and [25] for opposition diagrams E7;3 and E7;4). In the final section
of this paper we record some applications and consequences of this classification. The first
application is a general version of the Density Theorem stated above (see Theorem 7.1).
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We also prove further spectral properties of Class I automorphisms of large E8 buildings
(see Section 7.2), and in Section 7.3 we give a natural extension of the concept of uniclass
automorphism, and use the classification of domestic automorphisms to classify those type
preserving automorphisms of Moufang spherical buildings whose displacement spectra
contains the identity and only one other conjugacy class in the Weyl group.

Remark 1.1. As noted above, the present paper completes the classification of domestic
automorphisms of large spherical buildings of exceptional type, of rank at least 3. We
now discuss the small buildings, and the rank 2 case.

The small buildings of exceptional type of rank at least 3 are the buildings E6(2), E7(2),
E8(2), F4(2), and F4(2, 4). In these buildings the analysis is complicated by the existence
of uncapped automorphisms, and indeed for these buildings additional examples of do-
mestic automorphisms exist. For types F4 and E6 the classification is given in [28] (via
computation), however for the buildings E7(2) and E8(2) a different approach is required
due to the enormous size of these groups, and currently the classification is unknown.

In rank 2 (generalised polygons) it is not feasible to classify domestic automorphisms
(because the polygons themselves do not admit a classification). However one may rea-
sonably ask for the classification of domestic automorphisms of all Moufang polygons. For
exceptional types this involves the Moufang hexagons and the Moufang octagons. The
complete classification of domestic automorphisms in Moufang hexagons is given in [30],
and it remains to classify domestic automorphisms of Moufang octagons. An approach
similar to [30] should be possible for this task, however currently the classification is
unknown.

Finally, we note that for spherical buildings of classical type, partial classifications (and
for some opposition diagrams complete classifications) and characterisations of domestic
automorphisms are given in [31].

Structure of the paper. The classification of domestic automorphisms fixing at least
one chamber (Theorem B) is carried out in Section 2, with the preliminaries required for
the proof being introduced in that same section. Essentially the approach to Theorem B
is via calculations in the Chevalley group using Chevalley’s commutation relations. The
classification of the domestic automorphisms fixing no chamber (Theorem A) is achieved
using the underlying so-called long root subgroup geometry. The necessary preliminaries
on these geometries are introduced in Section 3, and the automorphisms of Class I and
Class II are described in Section 4 and Section 5 respectively. Moreover, in these sections,
we characterise these automorphisms in terms of their fixed structure, proving existence
and uniqueness results, and show that they are domestic with opposition diagram E8;4.
In Section 6, we show that each domestic automorphism of a large building of type E8

fixing no chamber is of Class I or Class II, completing the proof of Theorem A. Finally,
in Section 7 we discuss applications of the classification of domestic automorphisms.
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2 Proof of Theorem B

In this section we classify the domestic automorphisms of a large building of type E8

with opposition diagram E8;4 and fixing a chamber, proving Theorem B. The techniques
here are algebraic, making use of commutator relations in the associated Chevalley group.
These techniques build on those developed in [29, 25], and to perform the required calcu-
lations we make use of the Groups of Lie Type package in MAGMA [3, 7].

We first describe the algebraic setup of this section. This setup will also be used at two
later occasions in the paper (Theorem 5.1 and Lemma 6.3).

Let G0 be the adjoint Chevalley group of type E8 over a field K. We adopt the sign conven-
tions from the Groups of Lie Type package in MAGMA for the commutator relations. We
will use the notation and conventions outlined in [29, Section 1.1], and so in particular Φ
is the root system of G0, with simple roots α1, . . . , α8 and (W,S) is the associated Coxeter
system. The fundamental coweights of Φ are denoted ω1, . . . , ω8, and the coweight lattice
of Φ is P = Zω1 + · · ·+Zω8. The highest root of Φ is ϕ = (2, 3, 4, 6, 5, 4, 3, 2) (in the basis
of simple roots). Let G = GΦ(K) be the subgroup of Aut(G0) generated by the inner auto-
morphisms of G0 and the diagonal automorphisms, as in [18, 35], and let xα(a), sα(t), and
hλ(t) be the elements of G described in [29, Section 1.1] (with α ∈ Φ, λ ∈ P , a ∈ K, and
t ∈ K×). In particular, we have sα(t) = xα(t)x−α(−t−1)xα(t) and hα(t) = sα(t)sα(1)−1

for α ∈ Φ and t ∈ K×. We write sα = sα(1) (however note that sα is not necessarily
an involution). We record the following relations for later use: hλ(t)hµ(t′) = hµ(t′)hλ(t),
hλ(t)hλ(t

′) = hλ(tt
′), and

hλ(t)xα(a)hλ(t)
−1 = xα(at〈λ,α〉) sαhλ(t)s

−1
α = hsαλ(t) (2.1)

for a ∈ K and t ∈ K×.

For each α ∈ Φ let Uα be the subgroup of G generated by the elements xα(a) with a ∈ K.
For A ⊆ Φ let UA be the subgroup generated by the groups Uα, α ∈ A, and let U+ = UΦ+ .
The elements of U+ and their conjugates will be called unipotent elements. Let H be the
subgroup generated by the diagonal elements hλ(t) with λ ∈ P and t ∈ K×. Let B be the
subgroup of G generated by U+ and H. It is easy to see that an element of B belongs to
U+ if, and only if, it fixes each or exactly one chamber of every panel residue it stabilises
(a panel is a codimension 1 simplex).

Let Ω = ΩΦ(K) be the standard split spherical building associated to G. Thus Ω is of
type E8 with chamber set G/B and Weyl distance function given by δ(gB, hB) = w if
and only if g−1h ∈ BwB, and by Tits’ classification of spherical buildings [40] every thick
building of type E8 arises in this way for some field K, and Ω is large if and only if |K| > 2.

Let ϕ1 = ϕE8 , ϕ2 = ϕE7 , ϕ3 = ϕD6 , and ϕ4 = α7, and let J = {1, 6, 7, 8} (the nodes
encircled in the diagram E8;4). Define

Ψ = {β ∈ Φ | 〈α, β〉 = 0 for all α ∈ ΦD4},

where ΦD4 is the parabolic subroot system of type D4 generated by {α2, α3, α4, α5}. Let
Ψ+ = Ψ ∩ Φ+. Note that ϕ1, ϕ2, ϕ3, ϕ4 ∈ Ψ+.
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Lemma 2.1. The set Ψ is a root system of type D4 with positive system Ψ+ and simple
system γ1 = ϕE7, γ2 = α8, γ3 = ϕD6, and γ4 = α7. The element

u = 134265423456765423143546876542314354265431765876

satisfies u−1γ1 = α2, u−1γ2 = α4, u−1γ3 = α3, and u−1γ4 = α5, and thus u−1 maps Ψ+ to
the positive system Φ+

D4
of the standard D4 parabolic subsystem.

Proof. This follows from a direct calculation. �

To fix conventions, we identify the simple roots α2, α3, α4, α5 of the E8 root system with
simple roots α′1, α

′
3, α

′
2, α

′
4 of the D4 system (respectively). Let GD4 be the subgroup of

the E8 Chevalley group G generated by the root subgroups Uα with α ∈ ΦD4 (we shall use
the sign conventions in D4 inherited from the sign conventions in E8 in MAGMA, however
since the elements below are listed up to conjugation, the particular choices turn out to
be irrelevant). Let wD4 be the longest element of the D4 Coxeter group.

We now prove Theorem B.

Proof of Theorem B. Suppose that θ has opposition diagram E8;4. By [25, Theorem 8.1],
and following the first paragraph of the proof of [25, Theorem 8.4], we see that θ lies in
the Chevalley group G, and is conjugate to an element of the form

θ1 = u′s−1
ϕ1
s−1
ϕ2
s−1
ϕ3
s−1
ϕ4
hω1(c1)hω6(c2)hω7(c3)hω8(c4), (2.2)

where c1, c2, c3, c4 ∈ K\{0}, u′ ∈ UΨ+ and ϕ1 = ϕE8 , ϕ2 = ϕE7 , ϕ3 = ϕD6 , and ϕ4 = α7.

We will now make explicit calculations to further restrict u′. Write

u′ = x22343210(a1)x22343211(a2)x22343221(a3)x23465431(a4)x23465432(a5)x01122210(a6)x01122211(a7)

× x01122221(a8)x00000010(a9)x23465421(a10)x00000011(a11)x00000001(a12)

with a1, . . . , a12 ∈ K (the roots appearing here are the 12 roots of Ψ+). For α, β ∈ Φ+ we
consider the element v ∈ W given by

x−β(−1)Bx−α(−1)θ′x−α(1)x−β(1)B = BvB.

Since v = δ(x−α(1)x−β(1)B, θ′x−α(1)x−β(1)B), if `(v) > `(wS\Jw0) = 108 (where J =
{1, 6, 7, 8}) then we have a contradiction with the fact that θ has opposition diagram
E8;4 (see the proof of [25, Theorem 8.6]). By direct calculation (using MAGMA) if α =
(10100000) and β = (12343210) with a6 6= c4a1 then v = s3wS\Jw0 and so `(v) =
`(wS\Jw0) + 1, a contradiction. Thus a6 = c4a1. Similarly, taking α = (10100000)
and β = (12343211) forces a7 = c4a2, taking α = (10100000) and β = (12343221)
forces a8 = c4a3, taking α = (00001100) and β = (01122110) forces a9 = c3c4a1, taking
α = (00001100) and β = (01122111) forces a11 = c3c4a2, taking α = (00001100) and
β = (23465321) forces a10 = c−1

3 a3, taking α = (00001110) and β = (01122111) forces
a12 = −c2c3c4a3, taking α = (00001110) and β = (23465321) forces a4 = −c−1

2 c−1
3 a2, and

taking α = (00001111) and β = (23465321) forces a5 = c−1
1 c−1

2 c−1
3 a1.
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Conjugating θ1 by the element u from Lemma 2.1 it follows that θ is conjugate to an
element of the form θ2 = uwD4h, where u, h ∈ GD4 are of the form

u = x1000(a1)x1100(a2)x1101(−a3)x1111(c−1
2 c−1

3 a2)x1211(−c−1
1 c−1

2 c−1
3 a1)x0010(c4a1)

× x0110(c4a2)x0111(−c4a3)x0001(c3c4a1)x1110(c−1
3 a3)x0101(−c3c4a2)x0100(−c2c3c4a3)

h = h1000(−c1c
2
2c

3
3c

2
4)h0100(c2

1c
3
2c

4
3c

2
4)h0010(−c1c

2
2c

3
3c4)h0001(−c1c

2
2c

2
3c4)

Considering h−1θ2h, and setting a = t3t4a1, b = t3t4a2, and c = t2t3t4a3, we see that θ is
conjugate to an element of the form uwD4h with

u = x1000(t2t3t4a)x1100(−t1t2t3t4b)x1101(t1t2t3t4c)x1111(−t1t22t23t4b)x1211(t1t
2
2t

2
3t4a)x0010(t2t3a)

x′0110(t1t2t3b)x
′
0111(t1t2t3c)x

′
0001(t2a)x′1110(t1t2t

2
3t4c)x

′
0101(t1t2b)x

′
0100(t1c)

h = h1000(t1t
2
2t

3
3t

2
4)h0100(t21t

3
2t

4
3t

2
4)h0010(t1t

2
2t

3
3t4)h0001(t1t

2
2t

2
3t4).

This element of GD4 appears in [25, Theorem 8.6] (in the D4 subgroup of the E7 Chevalley
group, with superficial differences in signs reflecting the different sign choices in E7 and
E8). The D4 analysis in [25, Theorem 8.10] applies and it follows that θ is conjugate to
an element of the form listed in the statement of the theorem.

It remains to show that each element θ of the form (1), (2), (3), or (4) in the statement
of the theorem is domestic with opposition diagram E8;4. Reversing the conjugations
performed in [25, Theorem 8.10] shows that θ is conjugate to an element of the form (2.2),
and such an element maps the base chamber to Weyl distance sϕ1sϕ2sϕ3sϕ4 = wD4w0.
This shows that θ maps some type {1, 5, 6, 7} simplex to an opposite, and hence θ is
either domestic with diagram E8;4, or θ is not domestic (by the classification of possible
opposition diagrams). Thus it is sufficient to prove that elements θ of the form (1), (2),
(3), or (4) are domestic.

Consider θ = x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0. By [25, Lemma 8.9] this element
is conjugate to an element of the form θ′ = x1211(±a)x1000(1)x0010(1)x0001(1), and then
with u as in Lemma 2.1 we have uθ′u−1 = xϕ1(±a)xϕ2(1)xϕ3(1)xϕ4(1). This element is
domestic with opposition diagram E8;4 by [29, Theorem 3.1].

Consider θ = x1111(1)x0100(a)x1110(1)x1101(1)x0111(1) with a 6= 0. Then

uθu−1 = x23465431(±1)x00000001(±a)x23465421(±1)x22343221(±1)x01122221(±1),

and by [29, Lemma 3.4(3)(b)] this element is domestic (and hence has diagram E8;4).

The element hϕ(c) with c 6= 0, 1 is domestic (with diagram E8;4) by [29, Theorem 4.7]
(note that ϕ = ω8). Finally, the element xϕ(1)hϕ(−1) with char (K) 6= 2 is domestic with
diagram E8;4 by [25, Proposition 8.11], completing the proof. �

3 Geometric preliminaries

The remainder of this paper is focused on proving Theorem A, and the techniques used are
primarily geometric. Indeed the classification and description of the domestic collineations
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that do not fix any chamber makes use of the so-called long root subgroup geometry of
type E8, which is a parapolar space. We will use the language of the theory of parapolar
spaces, and we provide a brief introduction below.

Note that we, in Theorem A, not only provide a necessary and sufficient condition for the
existence of domestic collineations fixing no chamber in terms of fixed substructures, but
also give a necessary and sufficient algebraic condition on the field of definition for such
substructures to exist. All domestic collineation corresponding to a given fix structure
isomorphic to a metasymplectic space form a group, which we describe abstractly below.

3.1 Quaternion algebras

A building of type E8 is completely determined by a given field K (and then each residue
of type A2 conforms to a projective plane naturally corresponding to a K-vector space of
dimension 3).

Let L/K be a quadratic extension (not necessarily separable) and let L → L : x 7→ x
be the unique automorphism of L pointwise fixing K and such that N(x) := xx ∈ K,
for all x ∈ L. Note that this map, which we call the standard involution is trivial in
the inseparable case, and is really an involution in the separable case. An element N(x),
x ∈ L, is called a norm. Suppose now there exists a ∈ K such that a is not a norm. Then
we can define a division algebra H over K (via the so-called Cayley–Dickson process),
consisting of all pairs (x, y) ∈ L× L ∼= K×K×K×K with multiplication

(x, y) · (x′, y′) = (xx′ + ayy′, xy′ + x′y), for all x, x′, y, y′ ∈ K.

If L/K is separable, then H is a proper skew field, called a quaternion division algebra.
If L/K is inseparable (this can only happen if the characteristic of K is 2), then H is
just a field extension of K of degree 4, which, for ease of formulation, we will also call a
quaternion division algebra over K, sometimes preceded by the adjective inseparable.

Now let H be a quaternion division algebra over K, defined via L/K as above. We
embed L in H by taking the first component of each pair. We embed K in H via the
natural embedding of K in L. We can extend the standard involution as follows. For
z = (x, y) ∈ H we set z = (x,−y). Then N(z) := z · z = z · z ∈ K. In the inseparable case
we again have N(z) = z2. It follows that, in that case, an element has norm 1 if and only
if it is itself equal to 1. However, in the separable case there are many elements with norm
1 and these form a (non-commutative) subgroup of the multiplicative group of H, which
we denote by G(K,H). If H is inseparable, then G(K,H) denotes the additive group (of
exponent 2) of elements (x, y) ∈ H such that x = x2 + ay2 (with above notation).

Let H be a quaternion division algebra over K. Then the map

ρ : H×H×H→ K×K×K×H×H×H : (x, y, z) 7→ (xx, yy, zz, yz, zx, xy)

is called the Veronesean map. Its image in the associated projective space PG(14,K) is
called the quaternion Veronese variety. If we consider the triple (x, y, z) as homogeneous
coordinates of a point of the projective plane PG(2,H) over H, then the image of a line of
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PG(2,H) through the Veronese map represents a quadric of Witt index 1 in a subspace of
dimension 5 with standard equation X−1X1 = N(X0), where X−1, X1 ∈ K and X0 ∈ H,
the latter viewed as 4-dimensional vector space over K.

A quaternion division algebra over K is a special case of a quadratic alternative division
algebra over K, that is, an algebra over K satisfying the alternative laws a(ab) = a2b and
(ab)b = ab2 and such that every element x satisfies a quadratic equation x2−t(x)x+n(x) =
0, where t is a linear form and n a quadratic form. In our case, we have n ≡ N and
t(x) = x + x. Also a quadratic extension of K is in a natural way a quadratic algebra
over K. The quadratic alternative division algebras are classified, but we will not need
this result (however, see for instance Chapter 10 of [40]). One of the examples is the
split Cayley algebra O′ over K, a non-associative 8-dimensional algebra over K. One can
define a Veronese variety over O′ (as in [11]). If O′ contains a subalgebra H isomorphic
to a quaternion algebra, then one can restrict the coordinates from O′ down to H in
the definition of this variety to obtain a standard embedding of the quaternion Veronese
variety in the Veronese variety over O′.

3.2 Parapolar spaces

We assume the reader to be familiar with the basic theory of buildings from the sim-
plicial complex point of view as explained in the first three chapters of [40]. By [40,
Theorem 6.13], we know that, up to isomorphism, there exists exactly one building of
type En, n = 6, 7, 8, with ground field K, that is, such that all irreducible residues of
rank 2 are projective planes over K. We shall denote that building by En(K). By [40,
Theorem 10.2], a building of type F4 is uniquely determined by a field K and a quadratic
alternative division algebra A. We denote such a building by F4(K,A). By convention,
the types 1 and 2 are such that the residues of simplices of cotype {1, 2} correspond to
projective planes over K, see Fig. 2.

•1
K

•2
K

•3
A

•4
A

Figure 2: The Dynkin diagram of type F4 with Bourbaki labelling

Likewise, a building of type An, n ≥ 3, or Dn, n ≥ 4, is, up to an automorphism of the
Coxeter diagram, completely determined by a skew field L and a field K, respectively,
and we denote the building as An(L) and Dn(K), respectively.

We now briefly explain how to define point-line geometries from spherical buildings. A
point-line geometry Γ is a pair (X,L ), where X is the point set and L is the line set ;
for our purposes it suffices that each line is a subset of the point set. We us the Greek
letters Γ and ∆, possibly furnished with subscripts, for geometries. A point-line geometry
is called a partial linear space if any pair of distinct points x, y is contained in at most
one line, which is then denoted by xy. It is called thick if each line contains at least three
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points. Two (not necessarily distinct) points x, y contained in a common line are said to
be collinear, in symbols x ⊥ y. The set of points collinear to a given point x is denoted
by x⊥. A permutation θ of the point set such that triples of collinear points are mapped
to triples of collinear points by both θ and θ−1, is called a collineation.

Let Ω be a (simplicial) building over some type set S, and pick j ∈ S. There is an
associated geometry ∆ with point set the set of vertices of Ω of type j. The lines are the
sets of vertices completing the simplices of type S \{j} to a chamber (several simplices of
type S \ {j} can give rise to the same line). If Ω is thick, then so is ∆. If Ω is irreducible
and spherical, say of type Xn, then we say that ∆ has type Xn,j. Using Bourbaki labelling
[4], the most popular geometries are those of type An,1 (projective spaces) and Bn,1,Dn,1

(polar spaces, see below). In the exceptional cases we denote the point-line geometry of
type En,j over the field K by En,j(K). For the building F4(K,A), we denote the geometry
of type F4,j by F4,j(K,A). Also, geometries of type An,j and Dn,j corresponding to the
buildings An(K) and Dn(K) are denoted as An,j(K) and Dn,j(K), respectively.

Geometries arising from thick spherical buildings as explained in the previous paragraph
are called Lie incidence geometries (see [5] for further details).

We now recall some terminology from the theory of parapolar spaces (see for instance [34,
Chapter 16] for more background).

Let Γ = (X,L ) be a point-line geometry. A subspace is a set of points which contains
each line with which it shares at least 2 distinct points. A hyperplane is a subspace
intersecting each line in at least one point, called proper when it does not coincide with
X itself. A singular subspace is one for which every pair of points is collinear. The point
graph of Γ is the graph with vertices the members of X, with distinct vertices adjacent
if they are collinear. A subspace is called convex if the corresponding set of vertices in
the point graph is a convex set (that is, closed under taking shortest paths between its
vertices). This notion should not be confused with the notion of convexity of subcomplexes
of buildings, viewed as a simplicial complex. We will also need the latter notion, and we
shall always make it very clear which kind of convexity is meant. Convexity in the sense of
simplicial complexes and buildings means that a set is closed under taking projections in
the building-theoretic sense (and we follow here Abramenko & Brown [1, Section 4.11.2,
Definition 4.120], and not Tits [40, Section 1.5]).

A polar space is a point-line geometry Γ = (X,L ) in which x⊥ is a proper hyperplane for
all x ∈ X (then Γ is automatically a partial linear space, see [6]). We will always assume
that a polar space is thick, unless explicitly stated otherwise, in which case we talk about
weak polar spaces. Polar spaces in this paper will always have some finite rank r, that is,
each maximal singular subspace is a projective space with finite dimension equal to r− 1.

Definition 3.1. A parapolar space is a point-line geometry with connected point graph
such that (1) and two points at distance 2 in the point graph either they have a unique
common neighbour in that graph, or are contained in a convex subgeometry isomorphic
to a polar space (called a symplecton, or symp for short), and (2) every line is contained
in a symp. A parapolar space is called strong if the first possibility in (1) never occurs. It
is called proper if it is not a polar space itself. A convex subspace which, when endowed
with the lines contained in it is itself a proper parapolar space, is called a para.
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If p, q are points of a parapolar space we write ponq to indicate that p, q are at distance 2
in the point graph, and have exactly one common neighbour, and we write pon for the set
of all points q′ with ponq′. If ponq then we say that that p and q are special, and we denote
the common collinear point by c(p, q). If p and q are not collinear but are contained in
a symp then we write p ⊥⊥ q, and we denote the (unique) symp containing p and q by
ξ(p, q), and we call p and q symplectic. Two symps of the same rank intersecting in a
maximal singular subspace of both are called adjacent. If all symps of a parapolar space
have the same rank r, then the polar space is said to have rank r.

Local properties of parapolar spaces, that is, properties involving subspaces and symps
that contain a common point, can best be seen and proved in the corresponding point
residual geometry, which we define now. Let x be a point of some parapolar space ∆ of
rank at least 3. Then Res∆(x) is the point-line geometry with point set the set of lines
of ∆ containing x, and the lines of Res∆(x) are the planar line pencils with vertex x,
that is, the sets of lines through x in a given plane (a singular subspace of dimension 2)
containing x. Point residuals of Lie incidence geometries are also Lie incidence geometries,
and they correspond to the star St(x) defined for buildings in [40, §1.1].

It turns out that most Lie incidence geometries are parapolar spaces. We now introduce
in some more detail the ones we will need in the present paper.

We already used the notation PG(n,A) for the projective space of dimension n over an
associative division algebra A, and this is nothing else than the Lie incidence geometry
An,1(A). Also, An,n(A) is isomorphic to PG(n,B), where B is the opposite division ring
of A.

The Lie incidence geometries Dn,1(K), for K a field, are polar spaces, said to be of hyper-
bolic type. These (thick) polar spaces are top-thin, meaning that every singular subspace
of dimension n − 2 is contained in precisely two singular subspaces of dimension n − 1
(these are the maximal singular subspaces). Note that singular subspaces are projective
spaces and so we can indeed speak about their dimension. A polar space Dn,1(K) of hy-
perbolic type can be identified with a hyperbolic quadric in PG(2n− 1,K) with standard
equation (using standard notation) X−nXn +X−n+1Xn−1 + · · ·+X−1X1 = 0. They have
rank n, as defined above (it is also the Witt index of the quadric).

The parapolar spaces F4,1(K,A) and F4,4(K,A) are sometimes called metasymplectic spaces,
and we shall also use this name. We add the adjective quaternion if A is quaternion over K.
The stars of vertices of type 1 in F4(K,A) are buildings corresponding to polar spaces and
denoted C3(A,K), in conformity with the direction of the arrow in the related Dynkin dia-
grams, and hence the point residuals of F4,1(K,A) are Lie incidence geometries C3,3(A,K).
Dually, the stars of vertices of type 4 in F4(K,A) are buildings, also corresponding to polar
spaces, and denoted B3(K,A). Hence the point residuals of F4,4(K,A) are Lie incidence
geometries B3,3(K,A). It follows that the symps of F4,1(K,A) are polar spaces isomorphic
to B3,1(K,A), and the symps of F4,4(K,A) are polar spaces isomorphic to C3,1(A,K). The
geometries B3,3(K,A) and C3,3(A,K) are called dual polar spaces (of rank 3). If A is a
quadratic extension of K, we more exactly call it a quadratic dual polar space; if A has
dimension 4 over K, then we call it a quaternion dual polar space.

The parapolar space E6,1(K) is strong and has diameter 2 (that is, its point graph has
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diameter 2). The symps are all isomorphic to D5,1(K), and the point residuals to D5,5(K).
The parapolar space E7,7(K) is strong and has diameter 3. The symps are all isomorphic
to D6,1(K) and the point residuals to E6,1(K). The geometries E6,1(K) and E7,7(K) are the
so-called minuscule geometries for E6(K) and E7(K), respectively. They contain maximal
singular subspaces (of dimension 5 and 6, respectively) that are not contained in any
symp. Also, no hyperplane of such maximal singular subspaces is contained in any symp,
and we refer to these hyperplanes as 4′-spaces and 5′-spaces, respectively.

We also note that the Veronese variety over the split Cayley algebra O′ over K defines an
embedding, called the standard inclusion, of E6,1(K) in PG(27,K).

The parapolar spaces E6,2(K), E7,1(K), E8,8(K) and F4,1(K,A) are the so-called long root
subgroup geometries of exceptional type. They are non-strong parapolar spaces of diam-
eter 3.

In the next subsection we collect some facts which hold for both metasymplectic spaces
and the long root subgroup geometries mentioned above, noting that these structures are
hexagonic geometries as introduced by Kasikova & Shult [20]; the name was coined by
Shult in [34, §13.7]. These geometries are all parapolar spaces of diameter 3 which are
not strong. Points at mutual distance 3 represent opposite vertices in the corresponding
building, hence they shall be called opposite points. If a subspace Γ′ of such a geometry Γ
is (when endowed with the lines of Γ completely contained in Γ′) a non-strong parapolar
space of diameter 3 itself, then we say that Γ′ is isometrically embedded in Γ if any pair of
points of Γ′ is symplectic, special or opposite in Γ′ if, and only if, it is symplectic, special
or opposite, respectively, in Γ.

When a subgeometry Γ′ of a Lie incidence geometry Γ is also a Lie incidence geometry
(for instance when Γ′ is a symp) with a different underlying opposition relation, then we
use the notion of Γ′-opposition to denote elements of Γ′ which are opposite in Γ′, but not
necessarily in Γ.

We already mentioned that an automorphism of a spherical building mapping no chamber
to an opposite is called domestic. More specifically, if J is a set of types of a spherical
building, then an automorphism of it is called J-domestic if it does not map any simplex
of type J to an opposite. Moreover, given an automorphism θ of a spherical building, a
simplex is called domestic with respect to θ if it is not mapped onto an opposite (or simply
domestic if θ is implicit).

3.3 Some properties of long root subgroup geometries and meta-
symplectic spaces

In this subsection, Γ = (X,L ) is a geometry isomorphic to either some metasymplectic
space, or to one of the long root subgroup geometries E6,2(K), E7,1(K) or E8,8(K), with K
an arbitrary field. We collect some facts in the lemmas below.

We already discussed the point residuals of metasymplectic spaces. Now we consider those
of the other exceptional hexagonic geometries (c.f. [34, §13.7]) of rank at least 3.
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Lemma 3.2. The symps and point residuals of E6,2(K), E7,1(K) and E8,8(K) are Lie
incidence geometries isomorphic to D4,1(K) and A5,3(K), D5,1(K) and D6,6(K), and D7,1(K)
and E7,7(K), respectively.

Proof. This can be read off the corresponding Coxeter diagram D noting that the type
of the residue of a point of type t is given by the Coxeter diagram obtained from D by
removing the vertex corresponding to type t, and taking as new point set the type adjacent
to t. The diagrams of the symps in Xn,t(K) (with Xn,t ∈ {E6,2,E7,1,E8,8}) are obtained by
deleting the (always unique) set of vertices from D such that the node corresponding to
type t represents the point set of a polar space in the modified diagram. For instance, the
node labelled 1 in the diagram E7 only becomes the node corresponding to the point set
of a polar space if one deletes nodes 6 and 7 from the E7 diagram, and then a D5 diagram
remains. �

Lemma 3.3. Let p ∈ X be a point and π a plane of Γ containing some line L ∈ L .
If p is special to some point x ∈ L, and c(p, x) ∈ π, then there is a unique point y ∈ L
symplectic to p; all other points of L are special to p.

Proof. This is a rephrasing of axiom (H2) of hexagonic geometries in [34, §13.7]. �

Lemma 3.4 ([8, Lemma 2(v)]). If a ⊥ b ⊥ c ⊥ d is a path in Γ with aonc and bond, then
a is opposite d.

Lemma 3.5. Let p and q be opposite points. Set Xp = p⊥ ∩ qon and Xq = q⊥ ∩ pon. Then
both Xp and Xq, furnished with the lines contained in it, are geometries isomorphic to
Res∆(p). Also, ρ : Xp → Xq : x 7→ x⊥∩Xq is an isomorphism of Lie incidence geometries.
Finally, we have the correspondences for all x, y ∈ Xp:

x = y ⇐⇒ x ⊥ ρ(y),
x ⊥ y ⇐⇒ x ⊥⊥ ρ(y),
x ⊥⊥ y ⇐⇒ x on ρ(y),
x on y ⇐⇒ x is opposite ρ(y).

Proof. This follows from Lemma 3.4 and [40, Proposition 3.29]. �

Lemma 3.6 ([10, Lemma 4.10]). If a point p is special to all points of a line L, then there
exists a line M all points of which are collinear to p and M is opposite L in a symp ξ.
The map L→M : x 7→ c(p, x) is a bijection.

Combining Lemma 3.2 and Lemma 3.6 gives

Lemma 3.7. Let p be a point collinear to at least one point of a symp to which it does
not belong. Then p is collinear to at least one line of the symp.

The next result follows from considering an apartment, as given in [42].

Lemma 3.8. Let p be a point of Γ and ξ a symp containing a point opposite p. Then
there is a unique point x ∈ ξ symplectic to p. All points of ξ collinear to but distinct from
x are special to p and all points of ξ not collinear to x are opposite p.
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Proof. This follows by choosing an apartment containing p and ξ, and using the explicit
descriptions of apartments given in [42, Section 7]. �

In our geometric context, the projection of an element x onto another element y is the
element z where z 6= y and {y, z} is the building theoretic projection of x onto y (see [40,
§3.19]).

Lemma 3.9. The projection of a plane π onto a line L opposite some line M ⊆ π is the
unique symp ξ containing L and all centres of the special pairs {p, x}, with x ∈ L and
p the unique point of π special to al points of L. Conversely, the projection of a symp ξ
onto a line L opposite some line M ⊆ ξ is the plane spanned by L and the unique point
p collinear to all points of ξ that are symplectic to some point of L.

Proof. This follows from Lemma 3.4. �

We will also need the following property.

Lemma 3.10. The projection of a symp ξ onto a plane π opposite some plane α ⊆ ξ is
the unique symp ζ containing π and such that some plane of ζ is contained in a symp
together with some plane of ξ.

Proof. For metasymplectic spaces, this is obvious since ζ is the unique symp through π
that is not opposite ξ.

Now we argue in E6,2(K), E7,1(K) and E8,8(K). Since α contains points opposite any point
of π, Lemma 3.8 implies that each point x of π is symplectic to a unique point xθ of ξ and
the set of those is a plane α′ ⊆ ξ. Now let L be a line of π and select two distinct points
x1, x2 ∈ L. Then Lemma 3.7 implies that x2 is collinear to some line L1 ⊆ ξ(x1, x

θ
1),

and the point c = L1 ∩ (xθ1)⊥ is the centre of the special pair {x2, x
θ
1} (this is indeed a

special pair and not a symplectic one as xθ2 6= xθ1 is the unique point of ξ symplectic to
x2, and xθ1 ⊥ xθ2). Interchanging the roles of L and Lθ, we find that c is also contained
in ξ(x2, x

θ
2), implying that c is contained in ξ(x1, x

θ
1) ∩ ξ(x2, x

θ
2), and hence also in each

ξ(x, xθ), x ∈ L. Note that this construction of c implies that c ⊥ L, and symmetrically,
one also has c ⊥ Lθ. If c were collinear to π, then Lemma 3.3 would imply that each
point on Lθ is symplectic to at least two points of π, a contradiction. Hence c and π are
contained in a unique symp ζ. Now xθ1 is collinear to a line K1 in ζ, and obviously K1

contains the centres of the special pairs {x, xθ1}, for all x ∈ π. Similarly there is line K2

in ζ through c carrying all the centres of the special pairs {x, xθ2}, x ∈ π. Varying L in π,
we see that the centres of the special pairs {x, x′}, x ∈ π, x′ ∈ α′, x′ 6= xθ, are contained
in and fill the plane π′ spanned by K1 and K2. Moreover each point of α′ is collinear to
a line of π′ and vice versa, and this yields a unique symp ξ′ through π′ and α′.

Considering the corresponding building, it is clear that every apartment containing π and
ξ contains α′, and hence π′ and hence ζ. This shows that ζ is the projection of ξ onto π.

�

We conclude this subsection with two properties of the geometry E7,7(K).
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Lemma 3.11. Let p be a point of E7,7(K) and ξ a symp containing a point opposite p.
Then there is a unique point x ∈ ξ collinear to p. All points of ξ collinear to but distinct
from x are symplectic to p and all points of ξ not collinear to x are opposite p.

Proof. This follows in the same way as Lemma 3.8, using the description of apartments
of type E7 in [42, Section 7.2]. �

Lemma 3.12. Let ξ be a symp of E7,7(K), and let Y be the set of points collinear to a
unique point of ξ. Then every symp entirely contained in the complement of Y is either
adjacent to ξ or coincides with it.

Proof. Each point of an opposite symp (to ξ) is collinear to a unique point of ξ (c.f.
Lemma 3.11). Since the symps are the points of a long root geometry, and symplectic
symps share a line, each symp symplectic or special to ξ has at least one line in common
with an opposite symp, yielding a point collinear to a unique point of ξ. �

3.4 Equator geometries and imaginary lines

We already discussed the obvious relation between different parapolar spaces by taking
point residuals, which is equivalent to taking the star of some vertex in the corresponding
building.

One notices that the point residuals of long root subgroup geometries are not long root
subgroup geometries. In order to stay within the class of hexagonic geometries, one has to
consider the so-called equator geometries instead of point residuals. Essentially, instead
of looking what is close to a given point, one considers what is in the middle of two given
opposite points. General definitions and background can be found in [42]; here we content
ourselves with the specific definitions for long root subgroup geometries, and more exactly
in the exceptional cases E6,E7,E8. A thorough reference is [13], and for metasymplectic
spaces we refer to [21].

So again let Γ = (X,L ) be either a metasymplectic space, or one of the geometries
E6,2(K), E7,1(K) or E8,8(K), with K a field. Let p, q be a pair of opposite points. Then the
set

E(p, q) = {r ∈ X | r is symplectic to both p and q}
is called an equator. Note that each symplecton through p contains a unique point of
E(p, q). We turn E(p, q) into a point-line geometry (also denoted E(p, q)) by taking
lines to be the subsets of points of E(p, q) corresponding to the symplecta through p
sharing a given common maximal singular subspace. If Γ is one of E6,2(K), E7,1(K) or
E8,8(K), then the lines of E(p, q) are just the lines of Γ completely contained in E(p, q).
For Γ ∼= E7,1(K) or Γ ∼= E8,8(K) the equator geometry E(p, q) is isomorphic to D6,2(K)
or E7,1(K), respectively (both long root subgroup geometries). If Γ is a metasymplectic
space, then each line of E(p, q) is a set of points contained in a common symplecton as
the intersection of the perps of two opposite lines (opposite in the symplecton).

For a given equator geometry E(p, q), as defined in the previous paragraph, we call the
points p and q poles of E(p, q). The set of all poles of a given equator geometry is called
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an imaginary line. Imaginary lines carry the structure of a projective line over K with
induced faithful stabiliser PSL2(K) in its natural action in the cases E6,2(K), E7,1(K),
E8,8(K) and F4,1(K,A) (see [16]). An imaginary line is determined by any two of its points
p, q and denoted I (p, q).

For opposite points p, q, the imaginary line I (p, q) can also be defined as the union of
{p} with the orbit containing q of the long root subgroup with centre p. Such a subgroup
consists of central elations with centre p, that is, collineations fixing all points collinear
and symplectic to p, and stabilising each line containing a point collinear to p (see [16]).
The next lemma asserts that the latter condition is superfluous for type E7. (A similar
proof applies for the other long root subgroup geometries of exceptional types E6 and E8,
but we only need the case of E7.)

Lemma 3.13. A collineation θ of E7,1(K) is a central elation with centre p if, and only
if, θ fixes each point of p⊥ ∪ p⊥⊥.

Proof. We only have to show the sufficient condition. So suppose θ fixes each point of
p⊥ ∪ p⊥⊥. Let x ⊥ p be an arbitrary point distinct from p and collinear to p. It suffices
to show that every line through x is stabilised, in other words, that the residue at x is
pointwise fixed. Our assumption implies that in the residue at x, all points collinear or
symplectic to the point corresponding to p are fixed. Translated to the associated polar
space Γ of type D6 we have a collineation that stabilises all maximal singular subspaces
of fixed type not disjoint from a given maximal singular subspace U of the same type.
Clearly, each point of U is fixed. Also, every point of Γ outside U is the intersection of
two lines, each with a point in U . Finally, each line with exactly one point in U is the
intersection of two maximal singular subspaces of the same type as U (and not disjoint
from U , obviously). �

Finally we mention a property of paras of E7,1(K). Note that paras of E7,1(K) are parapolar
spaces isomorphic to E6,1(K), see [22]. Also, a point p not contained in para Π is either
collinear to all points of a maximal singular 5-space of Π (in which case we say that p is
close to Π), or p is contained in a unique para Π′ intersecting Π in a symplecton; in this
case the set of points Π ∩Π′ coincides with the set of points of Π symplectic to p and we
say that p is far from Π.

Lemma 3.14. Given a para Π of E7,1(K), let q and q′ be two points far from Π and
symplectic to the same points of Π. If q′ is not contained in the unique para containing
q and sharing a symp with Π, then q and q′ are opposite and the imaginary line I (q, q′)
has a unique point in common with Π.

Proof. Let Π′ be the unique para containing q and intersecting Π in a symp ξ. It follows
from the discussion preceding the statement of the lemma that q′ is contained in a (unique)
para Π′′ containing ξ. Since q′ is far from Π, we see that q′ is opposite ξ in Π′′. Since q
is also opposite ξ in Π′, an inspection of the standard apartment of type E7 as given in
[42] reveals that q and q′ are opposite. Moreover, it is easy to see that there is a unique
central elation with centre q mapping Π′′ onto Π, which implies that Π contains a unique
member of I (q, q′). �
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We will also need another type of equator geometry. Let Π and Π′ be two opposite paras
in E7,1(K). Then, following [9, Definition 6.6], we define the equator geometry E(Π,Π′)
as the geometry induced in the set of points which are close to both Π and Π′. It is
isomorphic to E6,2(K) (see [9] again). Since paras correspond to vertices of type 7 in the
associated building, it is readily seen that, with the notation of [29, Section 1.1], the set of
fixed points of a homology hω7(c), with c ∈ K\{0, 1}, is exactly the union of two opposite
paras together with their equator. The set of fixed paras can be seen as the following set
of points of E7,7(K): if p and p′ correspond to Π and Π′, respectively, then the other fixed

points are (p⊥ ∩ p′⊥⊥) ∪ (p⊥⊥ ∩ p′⊥). The set p⊥ ∩ p′⊥⊥ will be referred to as a trace.

4 Class I automorphisms

We now initiate the proof of Theorem A. The first step is to analyse Class I automor-
phisms of the building E8(K) (as defined in the introduction; recall that these automor-
phisms pointwise fix precisely a fully and isometrically embedded subspace isomorphic to
F4,1(K,H), for some quaternion division algebra H over K). The main result of this sec-
tion is summarised in the following existence and uniqueness theorem, which in particular
shows that Class I automorphisms are domestic with opposition diagram E8;4. Recall the
definition of the group G(K,H) from Section 3.1.

Theorem 4.1. Let K be a field and let H be a quaternion division algebra over K (recall
that this includes inseparable quadratic extensions of degree 4 in characteristic 2). Then
there exists a projectively unique embedded metasymplectic space Γ := F4,1(K,H) in the
long root subgroup geometry ∆ := E8,8(K), provided that in the inseparable case at least
one symp of Γ is not contained in a singular subspace of ∆. This embedding is isometric,
and also convex in the building-theoretic sense. The pointwise stabiliser of Γ is a group
abstractly isomorphic to G(K,H), each nontrivial member of which acts domestically on
the building E8(K) and does not fix any chamber. Both the fix and the opposition diagram
of each nontrivial member of the pointwise stabiliser is E8;4.

The condition in the inseparable case is necessary in view of the fact, proved in [9], that
each inseparable metasymplectic space with planes over K embeds in E6,1(K) such that
symps are contained in singular subspaces, and E8,8(K) contains E6,1(K) as a subgeometry
(in the residue of a line as a trace geometry [42], or equivalently, as a para of an equator
geometry).

Throughout this section write ∆ = E8,8(K) and Γ = F4,1(K,H) as in the statement of
Theorem 4.1, where H is a quaternion division algebra over K (possibly inseparable if the
characteristic is 2). Moreover we assume that if H is inseparable over K, then at least one
symp of Γ does not span a singular subspace of ∆ (as in the statement of Theorem 4.1).

4.1 Quaternion dual polar spaces of rank 3 in E7,7(K)

Throughout this section, let Γ1
∼= C3,3(H,K) be a point residual of Γ (a dual polar space

of rank 3), and ∆1
∼= E7,7(K) the corresponding point residual of ∆. Since Γ is fully
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embedded in ∆, Γ1 is fully embedded in ∆1.

A first step to proving Theorem 4.1 is to prove a related statement in the point residuals.
Specifically, we prove:

Proposition 4.2. Let K be a field and let H be a quaternion division algebra over K.
Then there exists a projectively unique embedded dual polar space Γ1

∼= C3,3(H,K) in the
point residual ∆1

∼= E7,7(K), provided that in the inseparable case at least one symp of
Γ1 is not contained in a singular subspace of ∆1. Moreover this embedding is isometric,
a group isomorphic to G(K,H) acts on ∆1 as a collineation group, and the fixed point
structure of every nontrivial member of it is precisely Γ1.

Proposition 4.2 follows immediately from [25, Proposition 6.17] once we are able to show
that every point residual of Γ1 is a standard inclusion of the quaternion Veronese variety
in the corresponding point residual of ∆1, and we achieve this goal in the following
subsections (with the proof of Proposition 4.2 given at the end of Section 4.1.2).

4.1.1 The embedding of symplecta in a point residual

Let ξ1 be a symp of Γ1. Then ξ1 is isomorphic to an orthogonal quadrangle B2,1(K,H)
with standard representation in 7-dimensional projective space over K, and by [9, Lemma
3.19] ξ1 is either (a) isometrically embedded in a unique symp ζ1

∼= D6,1(K) of ∆1, or (b)
is contained in a singular subspace of ∆1 (which has dimension at most 6).

In case (a), considering a representation of ζ1 in projective 11-space PG(11,K) it follows
from [9, Lemma 3.19] that ξ1 arises as the intersection of ζ1 with a 7-dimensional subspace
W of PG(11,K).

In case (b) since the singular subspaces of ∆1 have dimension at most 6, ξ1 can only embed
in a singular subspace of ∆1 via a quotient of the universal embedding as a quadric and
then charK = 2. However [32, Proposition 3.18] implies that ξ1, viewed as a quadric in
7-dimensional space, has empty nucleus whenever H is separable, and therefore case (b)
can only arise in the inseparable case.

Now, by assumption, in both cases there is at least one symp, say ξ∗1 , of Γ1 that embeds
isometrically in a symp ζ∗1 of ∆1. Thus, considering the natural embedding of ζ∗1 in
PG(11,K), there exists a subspace W ∗ in PG(11,K) such that ξ∗1 = ζ∗1 ∩W ∗. Note that,
since W ∗ has dimension 7, every singular 5-space of ζ∗1 intersects ξ∗1 in exactly a line.

Choose a point p ∈ ξ∗1 . Consider ∆p := Res∆1(p), which is isomorphic to E6,1(K). We will
work with the latter’s standard embedding E6(K) in PG(26,K). Let Γp be the point-line
geometry in ∆p with point set the set of lines of Γ1 through p and lines given by the symps
of Γ1 through p. Then Γp is isomorphic to PG(2,H), and we call its lines still symps of Γp.
We denote by ξ∗2 the symp of Γp corresponding to ξ∗1 . Then ξ∗2 embeds isometrically in the
symp ζ∗2 of ∆′1 corresponding to ζ∗1 in such a way that, in the ambient projective 9-space
of ζ∗2 , ξ∗2 is the intersection of ζ∗2 with a 5-space. It follows from a dimension argument
that every singular 4-space of ζ∗2 intersects ξ∗2 in precisely a point. Hence ξ∗2 is an ovoid
of ζ∗2 .
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We now show that, if there are symps of Γ1 through p which embed in singular subspaces
(and so necessarily H is inseparable), then the latter are contained in ζ∗2 .

Lemma 4.3. With the above notation, suppose ξ1 is a symp of Γ1 containing p and
suppose ξ1 embeds in a singular subspace. Let ξ2 be the corresponding symp of Γp. Then
ξ2 ⊆ ζ∗2 .

Proof. Let x denote the unique point in ξ∗2 ∩ ξ2. Suppose for a contradiction that ξ2

contains a point x′ not contained in ζ∗2 . We start with an observation. Take any point y
of ξ∗2 \ {x}. Then the points x and y are not ∆p-collinear. As such, x′ is not ∆p-collinear
to y, since it is already ∆p-collinear to x and does not belong to ζ∗2 by assumption.

Set S := 〈ξ2〉. Since x′ is ∆p-collinear to x, it is collinear to a 4′-space S ′ of ζ∗2 (note that
S ∩ ζ∗2 ⊆ S ′). Considering the tangent hyperplane at x′ to ξ2, which meets S ∩ ζ∗2 in a
hyperplane of it (disjoint from x), it follows that there is a 3-space U in S ′ which contains
no points of ξ2. Let V be the unique 4-space of ξ∗2 containing U . Then V contains a
unique point v of ξ∗2 . By the above observation, v is not ∆p-collinear to x′, i.e., v ∈ V \U .
Consequently, v is not ∆p-collinear to any point of ζ∗2 ∩ ξ2, since such a point belongs to
S ′ \ U and v⊥ ∩ S ′ = U .

Now let w be any point of ξ∗2 \ {x, v}. Then again w and x′ are not ∆p-collinear by the
above, and hence the symp ξ′2 of Γp they determine embeds isometrically in a symp ζ ′2 of

∆p. Since w is ∆p-collinear to a 3-space of S ′ = x′⊥ ∩ ζ∗2 , it follows that ζ ′2 meets ζ∗2 in a
4-space S∗. The point v is ∆p-collinear to a 3-space U∗ of S∗. The unique 4′-space V ′ of
ζ ′2 containing U∗ contains a unique point v′ of ξ′2. Now, since 〈v, U∗〉 and V ′ are 4′-spaces
sharing a 3-space, they determine a singular 5-space of ∆p. So v′ and v are ∆p-collinear
and hence the symp ξv,v′ of Γp they determine embeds in a singular subspace. Let z be the
unique intersection point of ξ and ξv,v′ . Then z is ∆p-collinear to both v and x. Therefore,
z belongs to ζ∗2 ∩ ξ2 and is ∆p-collinear to v. However, as mentioned above, v was chosen
such that it is not ∆p-collinear to any point of ξ∗2 ∩ξ. We conclude from this contradiction
that ξ2 ⊆ ζ∗2 . �

Lemma 4.4. With the above notation, suppose some symp ξ2 6= ξ∗2 of Γp is contained in
ζ∗2 . Then all symps of Γp are contained in ζ∗2 .

Proof. Let x denote the unique point in ξ∗2 ∩ ξ2. Take any symp ξ′2 of Γp not through
x. Then ξ′2 meets ξ∗2 and ξ2 in distinct points z∗ and z, respectively. If z and z∗ are
∆p-collinear, then ξ′2 embeds in a singular subspace and hence Lemma 4.3 implies that
ξ′2 ⊆ ζ∗2 . If z and z∗ are not ∆p-collinear, then ξ′2 embeds isometrically in the unique symp
of ∆p containing z and z∗, being ζ∗2 . So in both cases, ξ′2 ⊆ ζ∗2 . Interchanging the roles of
ξ′2 and ξ2, the same conclusion is obtained for any symp of Γp containing x. The lemma
follows. �

Lemma 4.5. With the above notation, and with the hypothesis of Theorem 4.1. each
symp of Γp embeds isometrically in a symp of ∆p and this correspondence is injective
(that is, no two symps of Γp embed in the same symp of ∆p).
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Proof. Suppose for a contradiction that either there is a symp of Γp which embeds in
a singular subspace of ∆p, or all symps of Γp embed isometrically but there are two
distinct symps which embed in the same symp of ∆p. Note that each symp which embeds
isometrically plays the same role as ξ∗2 . In both cases, it follows from Lemmas 4.3 and 4.4
that all symps of Γp are contained in ζ∗2 .

Consider a point x of Γp not contained in ξ∗2 . Then each maximal singular subspace of ζ∗2
containing x, contains a unique point of ξ∗2 . Let U be such a maximal singular subspace.
Then we can pick a maximal singular subspace U ′ intersecting U in a 3-space that does
not contain either of the two points x or U ∩ ξ∗2 . We see that U ′ ∩ ξ∗2 is not collinear to x.
This implies that there is at least one symp of Γp through x which embeds isometrically.
Since we can find two maximal singular subspaces through x only having x in common,
there are at least two which do not.

So we may select a symp ξ2 of Γp through x which embeds in a singular subspace U of
ζ∗2 , and one, say ξ′2, also through x, which embeds isometrically. We may assume that U
is a maximal singular subspace, possibly not generated by ξ2. However, there is a unique
hyperplane of 〈ξ2〉 tangent to ξ2 at x (as ξ2 comes from an embedded polar space of rank
2—a symp of Γ1). We can easily extend this hyperplane to a 3-space S of U intersecting
ξ2 in only x. Let V be the unique other maximal singular subspace of ζ∗2 containing S.
Then V contains a unique point v of ξ∗2 . Since v is not collinear to ξ2 ∩ ξ∗2 , as ξ∗ is an
ovoid of ζ∗2 , the point v is not contained in S. But then v⊥ ∩ ξ2 ⊆ v⊥ ∩ U = S, implying
that there is only one symp of Γp through v which embeds in a singular subspace (and it
contains x; hence v /∈ ξ′2). Interchanging the roles of (x, ξ∗2) and (v, ξ′2), we deduce from
the first paragraph that there are at least two symps through v that are embedded in a
singular subspace, a contradiction.

We obtain that our initial assumption is wrong, from which the lemma follows. �

4.1.2 The global situation in any point residual

A classical ovoid O of a quadric is an ovoid that is the intersection of the quadric with
a subspace S of the ambient projective space. The nucleus of O is the intersection of
all tangent hyperplanes to O in S. Since we are dealing with ovoids that are residues of
quadrics Q of Witt index 2 (quadrics that contain lines but no planes: the symps of Γ1),
and each embedding of Q in a projective space is obtained from a quotient of the standard
embedding as a quadric, the embeddings of O that will occur here are also quotients of
their standard representation as a quadric of S.

By the previous sections, we have shown the following proposition.

Proposition 4.6. Let Γp = (X,L ) be a point-line geometry isomorphic to a projective
plane, contained in E6,1(K) such that each member of X is a point of E6,1(K) and such
that each member of L is either a classical ovoid of some symp, or the quotient of a
classical ovoid contained in some singular subspace. Assuming X itself is not contained
in a singular subspace, each member of L is then an ovoid of a symp of E6,1(K), and
no two distinct members of L are contained in the same symp of E6,1(K). In particular,
each pair of points of X is symplectic.
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Next we want to show that, with the notation of Proposition 4.6, and with reference to
Section 3.1, the set X, viewed as a subset of points of PG(26,K) is a quaternion Veronese
variety in some 14-dimensional subspace of PG(26,K). The following lemma paves the
way to achieve that.

Lemma 4.7. Let q be a point of Γp and ξ2, ξ
′
2 ∈ L symps of Γp. Let ζ2 and ζ ′2 be the

respective corresponding symps of ∆p. Then:

(i) If q /∈ ξ2, then q is far from ζ2, that is, q⊥ ∩ ζ2 = ∅.
(ii) If ξ2 6= ξ′2 then ζ2 and ζ ′2 share a unique point (namely the point ξ2 ∩ ξ′2).

Proof. (i) Suppose for a contradiction that q is close to ζ2, that is, q⊥ ∩ ζ2 is a 4′-
space U . Since ξ2 is an ovoid of ζ2, there is some point x ∈ ξ2 ∩ U , contradicting
Proposition 4.6 that ensures that q and x are symplectic and not collinear.

(ii) Suppose for a contradiction that ζ2 ∩ ζ ′2 is a 4-space W . Select y ∈ ξ′2 \W . Then
y /∈ ξ2 is close to ζ2, contradicting (i). �

We can now show:

Proposition 4.8. The set X, viewed as a subset of the ambient projective space PG(26,K)
of E6(K), is a quaternion Veronese variety in a subspace of dimension 14.

Proof. If two symps ζ2, ζ
′
2 of E6,1(K) intersect in a point, then also the subspaces 〈ζ2〉 and

〈ζ ′2〉 intersect in a point (see [33, §7.1]). Hence, by Lemma 4.7, for each pair of distinct
symps ξ2, ξ

′
2 of Γp, the subspaces 〈ξ2〉 and 〈ξ′2〉 intersect in a unique point. Now the

assertion follows from [12, Main Result 4.3]. �

We now give the proof of Proposition 4.2.

Proof of Proposition 4.2. By Proposition 4.8 and [25, Remark 5.3] we have a standard
inclusion of the quaternion Veronese variety in E6,1(K) in the point residual at p. Let
q be any point of Γ1 collinear to p. Since the symps of Γ1 through pq are isometrically
embedded, we can interchange the roles of p and q and obtain that all symps of Γ1

through q are isometrically embedded. Connectivity then implies that all symps of Γ1 are
isometrically embedded in ∆1 and in each point residual we have a standard inclusion of
the quaternion Veronese variety in E6,1(K).

Now [25, Proposition 6.17] shows existence and uniqueness of Γ1 in ∆1. Moreover we
obtain that Γ1 is isometrically embedded in ∆1 (this follows from [25, Lemma 6.16]), and
a group isomorphic to G(K,H) acts on ∆1 as a collineation group, and the fixed point
structure of every nontrivial member of it is precisely Γ1. �

We also note the following properties:

Corollary 4.9. (i) Every point of ∆1 is collinear to a least one point of Γ1.
(ii) Each line of ∆1 carrying exactly one point p of Γ1 is contained in exactly one symp

of ∆1 that contains a symp of Γ1.

Proof. (i) is the last assertion of Proposition 6.2 of [25], and (ii) follows from Lemma 4.11
of [25] by considering the point residual at p. �
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4.2 The embedding of Γ in ∆

We return to our main goal of proving Theorem 4.1. We first prove that the embedding
of Γ in ∆ is isometric.

Lemma 4.10. The metasymplectic space Γ is isometrically embedded in ∆.

Proof. Clearly, for two collinear points p and q of Γ we have that, if the point residual at
p contains an isometrically embedded symp, then so does the point residual at q (because
by Proposition 4.2 all symps through p are isometrically embedded). By connectivity, it
follows that all symps and all point residuals are isometrically embedded. Hence symplec-
tic points in Γ are also symplectic in ∆. Let p and q be special points of Γ. Then in the
point residual of their centre, say c, the lines cp and cq correspond to opposite points of
ResΓ(c). Since point residuals are isometrically embedded, this implies that cp is opposite
in cq in Res∆(c), and so {p, q} is a special pair of ∆.

Finally suppose p and q are opposite in Γ. Then Lemma 3.4, which holds in both Γ and
∆, implies that p is opposite q in ∆, and the lemma is proved. �

Our next goal is to show that Γ is also convex in ∆, in the building-theoretic sense, that is,
closed under projections. Since the embedding is isometric, it is easy to see by extending
galleries in Γ that this is equivalent to the property that every apartment in ∆ containing
two given opposite chambers of Γ, viewed as flags of ∆, contains the unique apartment of
Γ containing these two chambers.

Lemma 4.11. The embedding of Γ in ∆ is convex.

Proof. Consider two opposite chambers C = {p, L, α, ξ} and D = {q,M, β, ζ} of Γ, with
p, q points, L,M lines, α, β planes, and ξ, ζ symps of Γ. Let σ and ω be the symps of ∆
containing ξ and ζ, respectively. We first show that the projection of C onto each of the
members of D coincide whether considered in Γ or ∆. Note that, since the embedding is
isometric, collinearity of points, but also opposition of arbitrary flags in Γ is the same as
in ∆.

(i) Set {q,M ′, β′, ω′} = projq(C) in ∆. The line M ′ is the unique line in ∆ through q
containing a point collinear to some point of L. The plane β′ is the unique plane
through q containing a line all points of which are collinear to some point of α.
Finally, the symp ω′ is the unique symp of ∆ through q intersecting σ (necessarily
in a unique point, say t). If ζ ′ is the unique symp of Γ through q intersecting
ξ ⊆ σ, then this intersection point must clearly be t and ζ ′ ⊆ ω′. This implies that
{q,M ′, β′, ζ ′′} = projq(C) in Γ.

(ii) Similarly, since being a special pair is the same in Γ as in ∆, and since projecting
planes and symplecta from a line to an opposite line is determined by the mutual
position of certain points in the same way in Γ as in ∆ by Lemma 3.9, we conclude
that projM(C) is the same in ∆ as in Γ.

(iii) In the same vein, projβ(C) is the same whether considered in Γ or in ∆, now using
Lemma 3.10.
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(iv) The last case is also easy: since projection from a symp to an opposite is just
given by being symplectic, it immediately follows that projζ(C) in Γ is the pointwise
restriction of projω(C) to ξ.

Now since projq(C) is, in Γ, opposite projp(D), and likewise for projM(C) and projL(D),
for projβ(C)projα(D), and for projζ(C) and projξ(D), the same is true in ∆, and we can
apply the foregoing to these pairs of opposite chambers. Continuing like this we obtain
the whole apartment in Γ spanned by C and D, and that this is a convex set in ∆, also
contained in the convex hull of C and D and hence in an apartment of ∆. �

Using the group G(K,H) pointwise fixing a point residual of Γ inside the corresponding
point residual of ∆, and the identity group, pointwise fixing a plane of Γ, we can apply
[40, Proposition 4.16], in just the same way as done in the proof of [9, Proposition 4.16],
or [25, Proposition 6.17], to obtain:

Proposition 4.12. Suppose the field K admits a quaternion division algebra (separable
or inseparable) H. Then E8,8(K) admits a full embedding of F4,1(K,H), unique up to a
projectivity if we assume in the inseparable case that at least one symp—and then auto-
matically each symp—is not contained in a singular subspace. Also, this embedding arises
as the fixed point set of each nontrivial collineation of a group of collineations isomorphic
to the group G(K,H). The embedding is isometric and convex and has fix diagram E8;4.

This shows a large part of Theorem 4.1. It remains to show that every collineation θ of
∆ pointwise fixing Γ is domestic with opposition diagram E8;4 if θ is nontrivial. We prove
this in the following subsection.

4.3 Domesticity of Class I automorphisms

In the following lemma we require another type of equator geometry (defined in [13,
Definition 3.6 ]). Let ∆1 = E7,7(K) and let ξ, ξ′ be opposite symps. Then the equator
geometry E(ξ, ξ′) is the set of points of ∆1 collinear to a 5′-space of ξ, and also to one of
ξ′. By [13, Lemma 3.7], E(ξ, ξ′) is isomorphic to D6,6(K). Also for the lemma, a spread
(of lines) of a polar space is a partition of its point set in lines.

Lemma 4.13. Let Γ1 = (X,L ) ∼= C3,3(H,K) be a quaternion dual polar space isomet-
rically embedded in ∆1

∼= E7,7(K) and let θ be a collineation of ∆1 pointwise fixing Γ1.
Then

(i) No point is mapped onto a collinear or opposite one, and every point is collinear to
at least one fixed point.

(ii) If a point is mapped onto a symplectic one, then the corresponding symp is fixed
by θ.

(iii) Let ξ1 be a symp of ∆1 mapped to an opposite symp under the action of θ. Then
X∩E(ξ1, ξ

θ
1) is the point set of an induced quadratic dual polar space Γ′1

∼= C3,3(L,K),
with K ≤ L ≤ H. The set of symps of Γ′1 is in natural bijective correspondence with
the set of lines of ξ1 mapped by θ to their projection onto ξθ1, and forming a spread
of ξ1.
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Proof. We first observe that, by [25, Proposition 6.2], θ is domestic with opposition dia-
gram E7;4. Then (i) follows from this and [25, Lemma 6.7]. The same proposition in [25]
implies that every point p is collinear to some fixed point x. Hence x is contained in the
symp ξ(p, pθ). Now (ii) follows from [25, Corollary 6.1]. Now we show (iii).

Pick an arbitrary point p ∈ ξ1. By (i), p is mapped onto a symplectic point. Set
ζ1 := ξ(p, pθ). Then ζ1 is fixed under θ. By Definition 3.7, Proposition 3.8 and Lemma 4.3
in [25], every maximal singular subspace of ζ1 contains a pointwise fixed line. Also, ζ1∩ξ1

is at least a line, but if it were a 5-space, then each intersection point of ξθ1 and ζ1 would be
collinear with a 5′-space of ξ1, contradicting the fact that ξ1 is opposite ξθ1 . Hence ζ1 ∩ ξ1

is a line L. Obviously Lθ = ζ1 ∩ ξθ1 , and L is ζ1-opposite Lθ as each point of L ⊆ ξ1 is
collinear to at most one point of Lθ ⊆ ξθ1 , and hence to exactly one point since L,Lθ ⊆ ζ1.
By (i), pθ ∈ Lθ is not collinear to p and so its projection p′ onto ξ1 belongs to L \ {p}. It
follows that the mapping θξ1 : ξ1 → ξ1 : p 7→ p′ is point-domestic without fixed points. By
[31, Theorem 8], the set of fixed maximal singular subspaces forms the point set of a dual
polar space isomorphic to C3,3(L,K), for some field L quadratic over K. Now, we claim
that the fixed point structure of θ in E(ξ1, ξ

θ
1) is isomorphic to the fixed point structure

of θξ1 formed by the fixed 5′-spaces of ξ1. Indeed, each fixed point p in E(ξ1, ξ
θ
1) gives rise

to a 5′ space W = p⊥∩ ξ1 in ξ1, and a unique 5′-space W ′ = p⊥∩ ξθ1 of ξθ1 , which coincides
with W θ. Suppose for a contradiction that the image of W ′ under the projection of ξθ1
onto ξ1 is distinct from W . Then some point x′ of W ′ is collinear to a point x ∈ ξ1 \W .
Consequently, by Lemma 3.11, x′ is opposite every point of W \ x⊥, which is nonempty.
This contradicts x′ ⊥ p ⊥ x and hence W is fixed under θξ1 . Conversely, suppose a

5′-space W of ξ1 is fixed under θξ1 . Let W̃ be the unique 6-space containing W . Then

W̃ contains a unique point w ∈ E(Σ,Σθ). Then, by the above argument, w⊥ ∩Σθ = W θ.
The 6-space generated by w and W θ is the unique 6-space containing W θ and is hence
the image under θ of W̃ . It follows that wθ ⊥ w and hence, by (i), w = wθ. It remains
to show that the maximal subspaces of Σ fixed under θξ1 are really 5′-spaces (and not
5-spaces). By the foregoing, this is equivalent to showing that E(ξ1, ξ

θ
1) contains at least

one fixed point under θ. Let U be a 5-space of ζ1 through L. Then, as noted above,
U contains a pointwise fixed line M . Let y ∈ M . Then y ⊥ L and hence y⊥ ∩ ξ1 is a
5′-space. Consequently y⊥ ∩ ξθ1 is also a 5′-space and y ∈ X ∩E(ξ1, ξ

θ
1). The claim is now

completely proved.

Hence the fixed point structure of θ in E(ξ1, ξ
θ
1), which equals X ∩E(ξ1, ξ

θ
1), is isomorphic

to C3,3(L,K). Obviously, since it is contained in X, we find that L ≤ H.

The last assertion of (iii) now also follows from [31, Theorem 8]. �

Now we can show the main result of this subsection.

Proposition 4.14. Let θ be a nontrivial collineation of ∆ ∼= E8,8(K) pointwise fixing
precisely an isometrically embedded metasymplectic space Γ = (X,L ) ∼= F4,1(K,H), with
H a quaternion division algebra over K, possibly inseparable. Then θ is domestic with
opposition diagram E8;4.

Proof. Suppose, for a contradiction, that C is a chamber mapped to an opposite chamber
by θ. Then its point p is mapped onto an opposite point. Clearly p is not collinear to
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any point of Γ. We claim it is symplectic to at least one point of Γ. Indeed, suppose
not. Considering an arbitrary line of Γ, we see that at least one point x of Γ is special
to p. Now, by Lemma 4.13(i), each point of Res∆(x) is collinear to some fixed point in
this residue, that is, each line through x lies in a plane containing a fixed line. Hence the
line cx, with c = c(x, p), is contained in a plane π containing a fixed line L through x. By
the second axiom of hexagonic geometry (Lemma 3.3), there is a point y ∈ L symplectic
to p and y belongs to Γ. The claim is proved.

So we established a point y ⊥⊥ p with y in Γ. Note that y = yθ ⊥⊥ pθ, and so y ∈
p⊥⊥ ∩ (pθ)⊥⊥ = E(p, pθ). Set ξ := ξ(p, y). Let z be any point of p⊥ ∩ y⊥. Since z ⊥ p, we
know that z does not belong to Γ. But Lemma 4.13(i) yields a plane α 3 x containing
a line K 3 y of Γ. Now Lemma 4.13(ii) yields a (unique) symplecton ζ of ∆ containing
α and fixed under θ. It follows from Lemma 3.4, the assumption that p is opposite pθ,
and the fact that both p⊥ ∩ ζ and (pθ)⊥ ∩ ζ contain a line, that p⊥ ∩ ζ and (pθ)⊥ ∩ ζ are
ζ-opposite lines, say R and Rθ, respectively. Since R⊥ ∩ (Rθ)⊥ is isomorphic to D5,1(K),
for which a classical ovoid in the perp of a line canonically lives in a 3-space and hence
is 2-dimensional, [25, Proposition 3.8] implies that X ∩ R⊥ ∩ (Rθ)⊥ is a polar space,
containing y, canonically isomorphic to B3,1(K,L), for some quadratic extension L of K
contained in H. This quadratic extension is determined by the point residual at p of
X ∩R⊥ ∩ (Rθ)⊥, which is isomorphic to B2,1(K,L) ∼= C2,2(L,K).

We claim that every symp ζ ′ of ∆ containing two symplectic fixed points y1, y2 in E(p, pθ)
can play the role of ζ in the previous paragraph. Indeed, we may without loss of generality
assume y2 = y ∈ ζ ′. Since y ⊥⊥ y1, the symps ξ(y, p) and ξ(y1, p) intersect in a line K (this
follows from the isomorphism between Res∆(p) and E(p, pθ), see [42]). The unique points
z1 and z2 of K collinear to y1 and y, respectively, coincide as both points are not opposite
pθ (by Lemma 3.4). Hence z1 = z2 can play the role of z in the previous paragraph, and
it is now easy to find a plane α in ζ ′ containing a fixed line. This proves the claim.

Now note that R ⊆ p⊥ ∩ y⊥ ⊆ ξ. Exhausting all points z of p⊥ ∩ y⊥ as above, we
obtain a line spread of p⊥ ∩ y⊥. Now Lemma 4.13 implies that the fixed point structure
Y of Res∆(y) symplectic to both p and pθ (which is equivalent to each point of Y being
close to both ξ and ξθ, which is equivalent to Y belonging to the equator with poles the
symps y⊥ ∩ ξ and y⊥ ∩ ξθ of Res∆(y)) is a dual polar space isomorphic to C3,3(L′,K),
with K ≤ L′ ≤ H. Moreover, the last assertion of Lemma 4.13(iii) implies that the point
residual at p of X ∩R⊥ ∩ (Rθ)⊥ is a symp of that dual polar space, implying that L and
L′ coincide.

Since each fixed point symplectic to p is also symplectic to pθ, we have shown that the
fixed points in E(p, pθ) form an isometrically embedded geometry Γ′ = (Z,M ) with the
following properties.

(i) Each symplectic pair of points is contained in a unique convex subgeometry isomor-
phic to B3,1(K,L).

(ii) The point residual of Γ′ at each point z ∈ Z is isomorphic to C3,3(L,K).

It follows rather easily that Γ′ is convexly (in the building-theoretic sense) embedded
in Γ, because it is isometrically embedded and projections of objects onto other objects
are determined by the mutual positions between the points of these objects, see the proof
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of Lemma 4.11. Since Γ′ contains opposite chambers of Γ, it follows that it corresponds
to a subbuilding of the building corresponding to Γ. From the two properties mentioned
above, we then deduce that Γ′ is a parapolar space isomorphic to F4,1(K,L), isometrically
embedded in E(p, pθ).

We now consider the automorphism θp of E(p, pθ) mapping each point x onto ξ(pθ, xθ) ∩
E(p, pθ). Clearly, θp pointwise fixes Z, and so by [25, Proposition 7.1] θp is domestic with
opposition diagram E7;3. It follows, using Theorem 3.28 and Proposition 3.29 of [40], that
C is not mapped to an opposite, a contradiction.

Thus θ is domestic, and since θ fixes no chamber it has opposition diagram E8;4 (by the
classification of automorphisms with opposition diagram E8;1 and E8;2 in [29]). �

We note down an interesting consequence of the previous arguments, summarising the
situation. We use the notation of the previous proof. Note that θ does not necessarily
stabilise E(p, pθ), but θp of course does.

Corollary 4.15. Let p be a point such that pθ is opposite p. Then the fix structure of θ
and θp in E(p, pθ) is a parapolar space isomorphic to F4,1(K,L), isometrically and fully
embedded, with fix diagram E7;4.

5 Class II automorphisms

In this section we use the notation of Section 2. The main theorem of this section is as
follows, giving an explicit description, condition for existence, and domesticity of Class II
automorphisms.

Theorem 5.1. Every automorphism pointwise fixing an equator geometry in E8,8(K) is
domestic. Moreover, every automorphism pointwise fixing an equator geometry and fixing
no chamber is conjugate to an element of the form xϕ(a)x−ϕ(1) with a ∈ K× and aX2 +
aX − 1 irreducible over K, and has opposition diagram E8;4.

Proof. The points of the long root geometry E8;8(K) can be identified with the cosets
G0/P where P =

⊔
w∈WE7

BwB. Let M denote the set of minimal length double coset

representatives in WE7\W/WE7 . Then M consists of precisely 5 elements, e, s8, w1, w2, sϕ
(arranged in increasing length, with ϕ the highest root), and G0 =

⊔
w∈M PwP . Points

g1P and g2P are collinear (respectively symplectic, at special distance, opposite) if, and
only if, g−1

1 g2 ∈ Ps8P (respectively g−1
1 g2 ∈ Pw1P , Pw2P , PsϕP ).

Since G0 acts transitively on pairs of opposite points, we may assume, up to conjugation,
that the poles of the equator geometry are P and sϕP . As described in the paragraph
before Lemma 3.13, the imaginary line I (P, sϕP ) is the union of {P} with the orbit
containing sϕP of the long root subgroup with centre P . Thus

I (P, sϕP ) = {P} ∪ {xϕ(a)sϕP | a ∈ K},
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and the stabiliser of I (P, sϕP ) (and hence the stabiliser of E(P, sϕP )) is

Gϕ = 〈Uϕ, U−ϕ〉 ∼= PSL2(K).

Thus it is sufficient to prove that every element of the group Gϕ acts domestically on ∆.
Let G′ϕ = 〈Gϕ, Hα8〉, where Hα8 = {hα8(t) | t ∈ K×}. We first claim that each element
g ∈ Gϕ can be conjugated, by an element of G′ϕ, to one of the following forms:

g1 = hϕ(t), g2 = xϕ(1), g3 = xϕ(1)hϕ(−1), g4 = xϕ(a)x−ϕ(1)

where t ∈ K× and a ∈ K.

By the Bruhat decomposition in 〈U−ϕ, Uϕ〉, each element g can be written, up to conju-
gation in Gϕ, as either g = xϕ(a)hϕ(t) or g = xϕ(a)hϕ(t)sϕ (a ∈ K, t ∈ K×). Consider
g = xϕ(a)hϕ(t). If a = 0 then g = g1, so suppose that a 6= 0. Since 〈ϕ, α8〉 = 1 it follows
from (2.1) that

g′ = hα8(a)−1ghα8(a) = xϕ(1)hϕ(t).

If t = 1 then g′ = g2 and if t = −1 then g′ = g3. If t 6= ±1 then by (2.1) we compute

xϕ(t−1/(t− t−1))g′xϕ(t−1/(t− t−1))−1 = hϕ(t) = g1.

Now consider g = xϕ(a)hϕ(t)sϕ. We have hα8(t)
−1ghα8(t) = xϕ(at−1)sϕ, and since sϕ =

xϕ(1)x−ϕ(−1)xϕ(1) the element g is conjugate to x−ϕ(−1)xϕ(b) with b ∈ K. If b = 0
then the element is conjugate to g2, and if b 6= 0 then conjugating by sϕhα8(b

−1) gives the
form g4, completing the proof of the claim.

We now show that the elements g1, g2, g3, g4 act domestically. The element g1 is domestic
with diagram E8;0 (if t = 1) or E8;4 (if t 6= 1) by [29, Theorem 4.7], the element g2 is
domestic with diagram E8;1 by [29, Theorem 2.1], and the element g3 is domestic with
diagram E8;4 by [25, Proposition 8.11] (unless char(K) = 2 in which case g3 = g2 has
diagram E8;1). Now, g4 is a product of two long root elations, each with displacement `(sϕ)
(by [29, Theorem 2.1], assuming a 6= 0). Hence disp(g4) ≤ 2`(sϕ). We have sϕ = wE7w0

and so disp(g4) ≤ 114 < `(w0), showing that g4 is domestic.

The elements g1, g2 and g3 in the proof of Theorem 5.1 fix the base chamber B of
∆ = G0/B. Consider g4 = xϕ(a)x−ϕ(1). This element is conjugate to the element
θ′ = x−α8(a)xα8(1), which stabilises the residue B ∪ Bs8B. By [29, Lemma 8.2] the au-
tomorphism θ′ (and hence g4) fixes a chamber of ∆ if and only if θ′ fixes a chamber of
the residue B ∪ Bs8B. If a = 0 then θ′ fixes B. If a 6= 0 then θ′ does not fix B, and the
remaining chambers of the residue B ∪ Bs8B are of the form xα8(z)s8B with z ∈ K. We
compute

θ′xα8(z)s8B =

{
B if az + a+ 1 = 0

xα8((z + 1)/(az + a+ 1))s8B if az + a+ 1 6= 0

It follows that θ′ (and hence g4) fixes a chamber of ∆ if and only if aX2 + aX − 1 has
a root z ∈ K. If aX2 + aX − 1 is irreducible, then since g4 does not fix a chamber
the classifications of automorphisms with diagram E8;1 and E8;2 from [29, Theorems 2.4
and 5.1] imply that g4 necessarily has diagram E8;4. �
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Remark 5.2. The technique used in Theorem 5.1 to prove that elements of the form
θ = xϕ(a)x−ϕ(1) (with a 6= 0) are domestic extends to all types of sufficiently high rank,
since it shows that the numerical displacement of θ is bounded by 2`(sϕ) which is linear in
the rank, while `(w0) is quadratic in the rank. For low rank the element θ is typically not
domestic. Indeed, for the simply laced diagrams, θ is domestic for An with n ≥ 5, Dn with
n ≥ 6, and En with n ≥ 7 (and non-domestic otherwise). The statements for An and Dn

are easily checked, and the fact that θ is not domestic for E6 follows from the classification
of domestic automorphisms. In type E7 the crude estimate above is not sufficient to prove
that θ is domestic, however the element θ is indeed domestic (see the third paragraph of
[25, Section 6.1], where a geometric proof is given using the minuscule geometry E7,7(K)
– such a proof is not possible in the E8 case because there is no minuscule geometry).

Remark 5.3. The elements θ = xϕ(1)hϕ(−1) (with char(K) 6= 2), θ = hϕ(c) (with
c 6= 0, 1,−1), and θ = hϕ(−1) (with char(K) 6= 2) appearing in Theorem B also fix
an equator geometry in E8,8(K). These elements fix 1 point, 2 points, and all points,
respectively, of the imaginary line associated to the equator geometry.

6 Proof of Theorem A

So far we have proved that automorphisms of Class I and Class II provide examples of
domestic automorphisms of the building E8(K) fixing no chamber, and hence necessarily
have opposition diagram E8;4. We now show that these are the only examples. We work
in the non-strong parapolar space and also long root subgroup geometry ∆ := E8,8(K).

Then we can state our main achievement of this section as:

Theorem 6.1. A domestic collineation of ∆ fixing no chamber is either of Class I or II.

The proof of Theorem 6.1 is achieved in the following subsections.

6.1 A lemma and a case distinction

Recall our assumption |K| ≥ 3. The following lemma is about projective planes. A
projectivity between two projective spaces defined over the same field K is a collineation
between these spaces that corresponds to a K-linear bijective map between the respective
underlying K-vector spaces.

Lemma 6.2. Let π and π′ be two projective planes over K containing the respective lines
L and L′, and respective points p /∈ L and p′ /∈ L′. Let ϕ : L′ → L be a given projectivity.
Let θ : π → π′ be a projectivity mapping p to p′. Set θ(L) = M ′, suppose L′ 6= M ′. For
each point q ∈ π \ (L∪ θ−1(L′)) define the map ϕq : L→ L : z 7→ ϕ(L′ ∩ θ(qz)). Then the
following hold.

(i) If ϕp is the identity, then there exists q ∈ π \ (L ∪ θ−1(L′)) such that ϕq has exactly
two fixed points.
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(ii) If ϕp is the identity, then there exists q ∈ π \ (L ∪ θ−1(L′)) such that ϕq has exactly
one fixed point.

(iii) If ϕp has no fixed points, then there exists q ∈ π \ (L ∪ θ−1(L′)) such that ϕq is not
the identity and has at least one fixed point.

(iv) If ϕ(L′ ∩M ′) is the unique fixed point of ϕp, then there exists q ∈ π \ (L ∪ θ−1(L′))
such that ϕq has exactly two fixed points.

(v) If ϕp has exactly two fixed points among which ϕ(L′ ∩M ′), then there exists q ∈
π \ (L ∪ θ−1(L′)) such that ϕq has exactly one fixed point.

Proof. Set {x′} = L′ ∩ M ′ and x = ϕ(x′) and note that, if ϕp fixes x, then {x} =
L ∩ θ−1(L′).

(i) Suppose that ϕp is the identity. Choose arbitrarily q in π \ (L∪ px∪ θ−1(L′)). Note
that this is possible since |K| ≥ 3. Then it is easy to verify that ϕq fixes x and
qx ∩ L, but no other point of L. Hence ϕq has exactly two fixed points.

(ii) Suppose again that ϕp is the identity. Choose arbitrarily q in px \ {p, x}. Then it
is easy to verify that ϕq fixes x, but no other point of L. Hence ϕq has exactly one
fixed point.

(iii) Suppose that ϕp has no fixed points. Select z ∈ L\{x} with ϕp(z) 6= x. Let q ∈ π be
such that {θ(q)} = p′x′ ∩ ϕ−1(z)θ(z). Then ϕq(x) 6= x and ϕq(z) = ϕ(L′ ∩ θ(qz)) =
ϕ(L′ ∩ θ(q)θ(z)) = ϕ(L′ ∩ ϕ−1(z)θ(z)) = ϕ(ϕ−1(z) = z.

(iv) Select z′1 and z′2 6= z′1 in L′ \ {x′}. Let q ∈ π be such that θ(q) is the intersection of
the line p′z′1 with the line joining z′2 with θ(ϕ(z′2)). Then one easily checks that ϕq
fixes x and ϕ(z′2), but not ϕ(z′1). Since ϕq stems from a linear map, it fixes exactly
two points.

(v) Define the following projectivity ρ : L′ → M ′ : z 7→ θ(ϕ(z)). Then x′ is fixed and
hence ρ is a perspectivity with centre c′ on the line K ′, where θ−1(K ′) ∩ L is the
second fixed point of ϕp. Since the latter is not trivial, the point c′ does not coincide
with p′. Now taking for q the inverse image under θ of any point of x′z′ \ {x′, z′}, it
follows that θq only fixes x, as is straightforward to verify.

This completes the proof of the lemma. �

We return to proving Theorem 6.1. So let θ be an automorphism of E8(K) with opposition
diagram E8;4 fixing no chamber. Select a chamber C of E8(K) realising the opposition
diagram, that is, such that some simplex of C (of type {1, 6, 7, 8}) of size 4 is mapped
onto an opposite simplex (such a chamber exists by cappedness, as |K| ≥ 3). We now view
θ as a collineation of ∆ = E8,8(K). Then such a simplex consists of a point p, a line L, a
plane π and a symp ξ. Let θp be the collineation of Res∆(p) mapping an arbitrary simplex
in Res∆(p) to the projection onto p of its image under θ. It follows from [40, Proposition
3.29] that θp has opposition diagram E7;3. So by [25], there are three possibilities.

(1) Either θp does not fix a chamber—and then its fixed structure is an isometrically
embedded subgeometry Γ′ isomorphic to F4,4(K,L), with L a quadratic extension of
K, and the points of Γ′ are lines of Res∆(p) ∼= E7,7(K),

(2) or θp does fix a chamber and it is a generalised homology with fixed structure a
non-thick building with thick frame of type E6,
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(3) or it is a certain product of three perpendicular (commuting) axial elations of E7,7(K)
with axes three symps pairwise intersecting in a line, and globally intersecting in a
point.

Regarding the third possibility, we will need the following result.

Lemma 6.3. Let θp be the product of three perpendicular commuting axial elations of
E7,7(K) with axes three symps pairwise intersecting in a line, and with global intersection
a point p and opposition diagram E7;3. Then every point opposite p is mapped to an
opposite point by θ.

Proof. By [25, Theorem 8.5] θp is conjugate, in the E7 Chevalley group, to an element of
the form θp = xϕ1(1)xϕ2(1)xϕ3(1) (in Chevalley generators as in Section 2, where ϕ1 is the
highest root, ϕ2 is the highest root of the D6 diagram, and ϕ3 = α7). The type 7 points
opposite the fixed base point are identified with the P7 cosets in P7w0P7 (where P7 is the
standard parabolic subgroup of type E6). For such a point gw0P7 (with g ∈ P7) we have

w−1
0 g−1θpgw0 ∈ P7x−ϕ1(1)x−ϕ2(1)x−ϕ3(1)P7

⊆ P7Uϕ1sϕ1Uϕ1Uϕ2sϕ2Uϕ2Uϕ3sϕ3Uϕ3P7

⊆ P7sϕ1sϕ2sϕ3P7,

where we use the fact that the root elations commute (see [25, Theorem 8.1] for similar
calculations). By [29, Lemma 3.5] we have sϕ1sϕ2sϕ3 = wE6w0, and hence w0g

−1θpgw0 ∈
P7w0P7, and so θp(gw0P7) is opposite gw0P7. �

We treat the three cases (1), (2) and (3) separately below.

Note that, similarly to these cases, if q is a non-domestic point of ∆ for θ, and there does
not exist a non-domestic simplex of size 4 containing q, then θq is either trivial, or it has
opposition diagram either E7;1 (and θq is an axial elation in Res∆(q)) or E7;2 (and θq is the
product of two perpendicular such elations). We will use this fact below.

A non-domestic point q will be said to have Type 1 or 2 if it is contained in non-domestic
simplex of size 4 and case (1) or (2), respectively, above applies. It has Type 3 in all other
cases.

In the sequel, the upper residue of a plane π of ∆ is the residue of that plane in the
parapolar space, that is, the point residual at π of the point residual at L of the point
residual at x ∈ π, where L is a line in π through x. This conforms to the star of the
simplex {x, L, π} in the building. Similarly, one defines the upper residue of a line. We
now have the following useful result.

Lemma 6.4. Suppose α is a plane of ∆ through p and fixed by θp. Then, if p has Type 1,
then so has every non-domestic point of α. If, moreover, θp does not fix the upper residue
of α elementwise, then each non-domestic point of α has the same type (with the above
definition of type) as p.
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Proof. Note that θp and θq coincide over the upper residue of α because the projection
between points is type preserving.

If p has Type 1, then in the upper residue of α, there are no fixed chambers, whereas this
is not the case in any of the other types, because there is always some fixed chamber C
in Res∆(p) , and so the (building theoretic) projection of C onto π yields a fixed chamber
containing π. Hence q also has Type 1.

Now suppose that θp does not fix the upper residue of α elementwise. If p has Type 2,
then in the upper residue of α, there is a nontrivial homology induced, whereas in Type
3, this is a unipotent element. Now, a unipotent element is only a homology if it is the
identity. The lemma follows. �

6.2 Type 1: θp does not fix a chamber

Since in this case the fixed structure of θp is an isometrically embedded subgeometry Γ′

isomorphic to F4,4(K,L), with L a quadratic extension of K, and the points of Γ′ are lines
of Res∆(p) ∼= E7,7(K), there exists a fixed plane α of θp. Set L = α∩(pθ)on and L′ = αθ∩pon.
Set M ′ = Lθ. Assume for a contradiction that L′ 6= M ′. Then, since Γ′ does not contain
lines through p, the projectivity L → L defined by x 7→ L ∩ ((px)θ ∩ L′)⊥ does not have
fixed points. However, by Lemma 6.2(iii), setting ϕ : L′ → L : x 7→ L ∩ x⊥, we can
choose q ∈ α such that the analogously defined map does have fixed points, contradicting
the fact that q also has Type 1 by Lemma 6.4. We have shown that Lθ = αθ ∩ pon.

Now let ζ be a symp through p fixed by θp. Then ζ ∩ ζθ is a point u. Also, each line
M of ζ through p is contained in a fixed plane, so the previous paragraph implies that
(M ∩ (pθ)on)θ = M θ ∩ pon. It follows that p⊥ ∩ (pθ)on ∩ ζ, which equals p⊥ ∩ u⊥, is mapped
onto (pθ)⊥ ∩ pon ∩ ζθ, which equals (pθ)⊥ ∩ u⊥. But since ζ is hyperbolic, u and p are the
only points of ζ collinear to p⊥ ∩ u⊥; likewise u and pθ are the only points collinear to
(pθ)⊥ ∩ u⊥. This implies {u, p}θ = {u, pθ}, yielding uθ = u. We have shown:

Lemma 6.5. With the above notation and conventions, if θp fixes a symp ξ, then it fixes
the unique point of ξ symplectic to pθ. It follows that the equator geometry E(p, pθ) = p⊥⊥∩
(pθ)⊥⊥ contains a fully isometrically embedded pointwise fixed subgeometry Γ′′ ∼= F4,1(K,L).

Now consider two opposite points x, y of Γ′′. Then the collineation θ′ induced in E(x, y) by
θ is domestic (as every singular subspace of ∆ is domestic) and does not fix any chamber
(as this would induce a fixed chamber in ∆ containing x). By [25], there are three (nested)
possibilities.

• The opposition diagram of θ′ is E7;3. In this case, the opposition diagram of θ′p
(which is the restriction of θp to E(x, y)) is one of D6;0, D

1
6;1, D

2
6;1 or D1

6;2 (because
these are the opposition diagrams of which the encircled nodes are a subset of those
encircled in the opposition diagram D1

6;2 obtained from E7;3 by taking the residue
of a node of type 1). In all these cases [31, Theorem 1] implies that θ′p pointwise
fixes planes of the corresponding polar space. Let π be such a plane. This conforms
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to a maximal singular 3-space of the associated geometry of type D6,6, hence to a
maximal singular 4-space U containing p of E(x, y), and θ′p fixes all symps and paras
containing U . The latter relates to a vertex of the branching type in Res∆(p), hence
to a plane π of E(p, pθ). Since all symps throught U are fixed, Lemma 6.5 implies
that π is a pointwise fixed plane in E(p, q)∩E(x, y), contradicting the fact that the
fixed points in the latter form the equator in an F4,1(K,L), which does not contain
lines (see for instance [32]).

• The opposition diagram of θ′ is E7;4. Since no chamber is fixed, [25] implies that
this case splits in two possibilities.

– θ′ pointwise fixes an equator geometry of E(x, y) (as geometry isomorphic to
E7,1(K)), say E(a, b) ∩ E(x, y), with a and b two opposite points of E(x, y).
Select a point z in Γ′′ symplectic to both x and y. Then z ∈ E(a, b) as the only
fixed points of E(x, y) are those of E(a, b). Set ξ = ξ(x, z). Set ζ = ξ ∩E(a, b)
and let ζ ′ be the intersection of ξ with the point set of Γ′′.

First we note that, in the geometry E(a, b), two opposite points x, y and their
equator are pointwise fixed. Hence all symps of E(a, b) through x or y are
stabilised, which implies that the residue of x is pointwise fixed. This, in turn,
implies that ζ ∩ (z⊥ ∩ x⊥) ⊆ E(a, b) ∩ (yon ∩ x⊥) is pointwise fixed.

We now argue in the ambient projective space W of ξ, which is allowed as θ
stabilised ξ and extends uniquely to a collineation in W . Note that ξ ∼= D7,1(K),
ζ ∼= D5,1(K) and ζ ′ ∼= B3,1(K,L). Hence, in W , the dimensions of 〈ζ〉 and 〈ζ ′〉
are 9 and 7, respectively. Consequently, 〈ζ〉∩ 〈ζ ′〉 is at least 3-dimensional and
contains the line 〈x, z〉. Since θ pointwise fixes ζ ′, it pointwise fixes 〈ζ〉 ∩ 〈ζ ′〉.
Since it also pointwise fixes 〈ζ ∩ z⊥ ∩ x⊥〉, which is complementary to 〈x, z〉 in
〈ζ〉, we deduce that θ pointwise fixes ζ.

Now let ζ̃ be a symp of E(a, b) containing x and adjacent to ζ, that is,
intersecting ζ in a maximal singular subspace (here 4-dimensional) U . Set

{z̃} = ζ̃∩E(x, y). Then, as above, θ pointwise fixes ζ̃∩ z̃⊥∩x⊥. Together with
the fact that U is pointwise fixed, this implies that θ pointwise fixes the tangent
hyperplane Hx at x of ζ̃, and also z̃. Hence θ induces in 〈q̃〉 a homology with

axis Hx and centre z̃. But since there are lines through z̃ intersecting ζ̃ in ex-
actly one other point, this has to be the identity. We conclude that θ pointwise
fixes ζ̃. Going on like this, we find that θ fixes each point of E(a, b)∩(x⊥∪x⊥⊥).
Then Lemma 3.13 implies that θ induces a central elation in E(a, b) with cen-
tre x, which fixes the point y opposite x. We conclude that θ pointwise fixes
E(a, b) and θ is domestic of Class II.

– θ′ pointwise fixes a fully and isometrically embedded polar space ∆′′′ isomor-
phic to C3,1(H,K), for some quaternion division algebra over K. Note that
‘isometric’ here means that collinear points of C3,1(H,K) are symplectic in ∆,
and opposite points of C3,1(H,K) are also opposite in ∆. The geometry ∆′′′

isometrically contains the subgeometry Γ′′′, induced by E(x, y)∩E(p, pθ), and
isomorphic to C3,1(L,K). This shows K ≤ L ≤ H.

34



Now consider any line K through x fixed by θ. Then the corresponding para in
E(x, y) is fixed, and hence belongs to ∆′′′. Since the paras of ∆′′′ correspond to
planes of the associated polar space C3,1(H,K), we find that some plane of the
subgeometry C3,1(L,K) corresponding to Γ′′′ is opposite the plane correspond-
ing to K. Hence the corresponding line K ′ through x is opposite K in Res∆(x),
and is pointwise fixed (since it is contained in Γ′′), just like its projection K ′′

onto y. But now K ′′ is opposite K (use [40, Proposition 3.29]). It follows that θ
pointwise fixes K. The fixed lines through x in a fixed symp correspond to the
fixed paras in E(x, y) through a fixed point, and hence constitute a geometry
isomorphic to B2,1(K,H). Hence the fixed point structure of θ induced in any
stabilised symp through x is a geometry isomorphic to B3,1(K,H).

We now claim that every fixed point z is opposite some point of Γ′′. Indeed,
if z is collinear to x, we exhibited an opposite fixed point collinear to y above;
if z is special to x, then a similar argument exhibits an opposite fixed point
collinear to x using Lemma 3.4. Since x was chosen arbitrarily, we may assume
that z is symplectic to all points of Γ′′. Hence z belongs to ∆′′′, which clearly
contains points opposite any of its own points. The claim is proved. Hence the
fixed point structure in the residue of each fixed point is the same as the one
in x, and is isomorphic to C3,1(H,K).

Next we claim that also the fixed point structure in each fixed symp ξ∗ is the
same, and isomorphic to B3,1(K,H). Indeed, clearly not all fixed points are
close to ξ∗, hence at least one is far and induces a fixed point z in ξ∗. We may
treat z as x above and the claim follows. Let Γ be the geometry of fixed points
and (pointwise) fixed lines.

The previous paragraph now implies that for two fixed symplectic points a, b,
the convex closure in Γ is a subquadric of ξ(a, b) isomorphic to B3,1(K,H).
Hence Γ is a parapolar space all point residuals are isomorphic to C3,1(H,K).
Since we can now derive that the fix diagram is E8;4, we know that Γ is asso-
ciated to a building of F4, and we hence conclude that Γ is a metasymplectic
space isomorphic to F4,1(K,H), isometrically and fully embedded in ∆. Hence
θ is of Class I.

Remark 6.6. Note that, if θ is of Class I, pointwise fixing a metasymplectic space Γ,
then θ does not fix any vertex of the associated building apart from those of Γ. Indeed,
such vertex corresponds to a singular subspace U(because we already proved that every
stabilised symp belongs to Γ). It is easy to see that there exists a fixed point f opposite
some point of U . Then also the projection U ′ of x onto U is stabilised, and this is a singular
subspace of dimension one less than the dimension of U . Repeating this argument a few
times leads to a fixed point in U , and our proof above implies that U belongs to Γ.

6.3 Type 2: θp is a generalised homology

By [31], θp pointwise fixes a non-thick building with thick frame of type E6; in Chevalley
notation it is the homology hω7(c), with c ∈ K \ {0, 1}, see [25, Theorem 2(ii)]. Hence,

35



according to the last paragraph of Section 3.4, we can describe the fixed point set of
θp, acting on the symps through p, hence acting on E7,1(K), as the point sets of two
opposite paras Π and Π′ (isomorphic to E6,1(K), together with the point set of their
equator geometry E(Π,Π′). As point set of Res∆(p), it is the union of two opposite
points and their traces. Let π be a plane through p that corresponds to a line in Res∆(p)
intersecting both the mentioned traces. Then π is fixed by θp, but the upper residue of π
is not fixed pointwise, because π corresponds to a symp in E7,1(K) containing lines that
are not contained in Π∪Π′∪E(Π,Π′). We can now use the same technique as in the first
paragraph of Section 6.2, using Lemma 6.2(ii) and Lemma 6.4 to conclude that π ∩ (pθ)on

is mapped onto πθ ∩ pon, and consequently that the unique point symplectic to pθ of each
symp through π fixed by θp is fixed by θ. But every symp through p fixed by θp contains
such a plane π, so we conclude that E(p, pθ) contains a fixed point set Γ′′ isomorphic to
the long root geometry of a non-thick building of type E7 having thick frame type E6, in
particular the union of two paras Π and Π′ and their equator geometry E(Π,Π′).

Consider two opposite points x, y of Γ′′, more exactly in E(Π,Π′). The equator geometry
E(x, y) (viewed inside ∆) is stabilised by θ and hence, as before, θ induces in E(x, y)
a domestic collineation not fixing any chamber. Recall from [25, Theorem 1] that there
are three possibilities for the fixed point sets of such collineations, but all of them are
subspaces, that is, if two collinear points are fixed, then the joining line is fixed pointwise.
However, if we restrict E(x, y) to E(p, pθ), then, by [9, Proposition 6.15], we obtain a
stabilised geometry D6,2(K). The intersection of D6,2(K) with Γ′′ is the restriction of
Π ∪ Π′ ∪ E(Π,Π′) to E(x, y), which is readily seen to contain points of Π and points of
E(Π,Π′) which are collinear. But the line through these points is not fixed pointwise, and
that is a contradiction. (More exactly, the fixed point structure consists of two opposite
paras Υ and Υ′ of E(x, y) isomorphic to A5,2(K) together with their equator geometry
E(Υ,Υ′) (defined similarly as E(Π,Π′)), and this is not a subspace.)

Hence this case does not lead to an example.

6.4 Type 3: θp is the product of three pairwise perpendicular
axial elations

Since

• this is the only case remaining, and
• using [40, Proposition 3.29], the opposition diagram of θq, for any non-domestic point
q, is one of E7;0, E7;1, E7;2 or E7;3, and
• each collineation of E7,1(K) with opposition diagram E7;1 or E7;2 is the product of one

or two (perpendicular) central elations,

we may assume that

(*) for any non-domestic point q, the collineation θq is unipotent.

This implies for instance, that each fixed line either has exactly one fixed point (and then
we call the action of θq on L an elation), or is pointwise fixed.
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We first prove the following claim about hyperbolic polar spaces.

Lemma 6.7. Let ϕ be a collineation of Dn,1(K) fixing some point x and all lines through
it. If ϕ is unipotent, then it is the product of two axial elations. Their axes are not
coplanar if, and only if, ϕ is not an axial elation itself if, and only if, ϕ maps some point
to a non-collinear point.

Proof. We may represent Dn,1(K) as a hyperbolic quadric Q in PG(2n− 1,K) and choose
coordinates (x−n, . . . , x−1.x1, . . . , xn) in such a way that Q has equation

x−nxn + x−n+1xn−1 + · · ·+ x−2 + x2 + x−1 + x1 = 0.

One verifies easily that a generic unipotent collineation of Q fixing all lines through the
point (1, 0, 0, . . . , 0) stems from a linear map with matrix

MA,B :=


1 A A ·B B
0 In−1 −BT 0
0 0 1 0
0 0 −AT In−1

 ,

where A and B are two arbitrary (n− 1)-tuples with entries in K, and A ·B is the usual
scalar product. One now computes that MA,B = MA,0M0,B. The matrix MA,0 represents
an axial elation with axis generated by the points (1, 0, . . . , 0) and (1, 0, . . . , 0, A), whereas
M0,B represents an axial elation with axis generated by (1, 0, . . . , 0) and (1, B, 0, . . . , 0).
One verifies that ϕ is an axial elation itself if, and only if, A · B = 0. The latter is
also equivalent to (1, 0, . . . , 0, A) and (1, B, 0, . . . , 0) being collinear. The last equivalence
follows from noting that an axial collineation is point-domestic and the image of the point
whose coordinates are all 0 except for x1 = 1 is (A ·B,−B, 1, A). �

Now the fixed point set of θp, viewed as a collineation in E7,1(K), is a para Π (all points
symplectic to three given pairwise symplectic points not contained in a common symp;
this para corresponds to the global intersection point of the three axes when θ is viewed
as a collineation of E7,7(K)). To Π corresponds a line L of ∆ through p, which on its turn
corresponds to a point pL of E7,7(K) ∼= Res∆(p). Each symp ξL through pL is stabilised
and, by Lemma 6.7, the restriction of θp to such symp is a product of two axial elations
the axes AL and BL of which are two non-coplanar lines through pL. Hence all lines
through pL are stabilised with induced action either the identity or a translation. Hence,
if α is a plane of ∆ containing L, then the same argument as in the first paragraph of
Section 6.2, using Lemma 6.2 and (*), shows that θ maps α ∩ (pθ)on to αθ ∩ pon.

Now let ξL be any symp through pL in Res∆(p), and let ML be a line in ξL intersecting,
with above notation, the axis AL in some point yL, and not collinear to pL. Then, by
(*), the map sending a point x ∈ML to the projection of xθp to ML is a translation with
fixed point yL. Let α be the plane in ∆ through p corresponding to the line ML. Set
K = α ∩ (pθ)on and K ′ = αθ ∩ pon. Then, by Lemma 3.5, the foregoing implies that the
mapping K → K : x 7→ (K ′ ∩ (px)θ)⊥⊥ ∩K is a translation with (unique) fixed point the
point on K corresponding to yL. If K ′ 6= Kθ, then using Lemma 6.2(iv), we can select a
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non-domestic point q in α such that the analogously defined map for q and qθ has exactly
two fixed points. However, composing with a suitable axial elation (using the other axis
of θq), and by virtue of (*), we then obtain a unipotent map in a symp fixing exactly
two points on some line, a contradiction. We conclude that K ′ = Kθ. Since ξL is, as
a subgeometry, generated by p⊥L ∩ ξL and ML, this implies, if ξ is the symp through p
corresponding to ξL, that ξ ∩ (pθ)on is mapped onto ξθ ∩ pon. Since the projection of ξθ

onto p is exactly ξ, the same argument as in the second paragraph of Section 6.2 shows
that ξ ∩ ξθ is a fixed point of θ.

Now let ML be any line in Res∆(p) containing points opposite pL. Then, with the same
notation for α,K and K ′ as in the previous paragraph, and using Lemma 6.3, the mapping
K → K : x 7→ (K ′ ∩ (px)θ)on ∩K is a translation. Similarly as in the previous paragraph,
this leads, using Lemma 6.2(iv), to a contradiction if K ′ 6= Kθ. Varying ML, this now
implies that Ξ := p⊥ ∩ (pθ)on is mapped onto Ξ′ := (pθ)⊥ ∩ pon. Now, since hyperbolic lines
in hyperbolic quadrics have size 2, we have

E(p, pθ) = {x ⊥⊥ p | x⊥ ∩ p⊥ ⊆ Ξ} = {x ⊥⊥ pθ | x⊥ ∩ (pθ)⊥ ⊆ Ξ′} = E(p, pθ)θ,

and so we conclude that E(p, pθ) is stabilised by θ. The line L, which is “sympwise” fixed,
corresponds to the pointwise fixed para Π, by which we now also denote the corresponding
para in E(p, pθ).

Since the opposition diagram of θp is E7;3, there exists some point q ∈ E(p, pθ) mapped to
an opposite point qθ. Clearly, q is not close to Π. Then Lemma 3.14 yields a unique point
q∗ ∈ I (q, qθ) ∩ Π. Now, we may assume that q has Type 3, and so θ fixes a chamber
in E(q, qθ) = E(q, q∗), yielding a fixed chamber through q∗ in ∆, a contradiction. Hence
this case does not lead to an example.

This completes the proof of Theorem 6.1.

Now Theorem A follows from Proposition 4.14, Theorem 5.1 and Theorem 6.1.

7 Density Theorems and further applications

As noted in the introduction, the present paper completes the classification of domestic
automorphisms of large spherical buildings of exceptional type, of rank at least 3. In this
section we record some applications and consequences of this classification.

The first application, in Section 7.1, provides “density theorems” for groups G acting
strongly transitively on large spherical buildings of exceptional type. Specifically, we use
the theory of domesticity and opposition diagrams to show that each conjugacy class in
G intersects a union of a very small number of B-cosets (with B the stabiliser of a fixed
choice of base chamber of the building).

In Section 7.2 we focus on Class I automorphisms of large E8 buildings, and show that
the displacement spectrum of points in the long root geometry E8,8(K) of such an auto-
morphism has a “spectral gap” property, meaning that certain distances in the spectrum
are skipped.
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Finally, in Section 7.3 we give a natural extension of the concept of uniclass automorphism,
and use the classification of domestic automorphisms to classify those type preserving
automorphisms of Moufang spherical buildings whose displacement spectra contains the
identity and only one other conjugacy class in the Weyl group.

7.1 Density Theorems

In this subsection we discuss Density Theorems for groups acting on spherical buildings
(and in particular prove Corollary C). More precisely, let Ω be a large spherical building
of irreducible type (W,S) of rank at least 3, considered as a chamber system with Weyl
distance function ∆ : Ω×Ω→ W . Let G be a group of type preserving automorphisms of
Ω (that is, if δ(C,D) = s then δ(Cθ, Dθ) = s, for s ∈ S). Furthermore, assume that G acts
strongly transitively on Ω (that is, G is transitive on pairs (C,Σ) with Σ an apartment,
and C a chamber of Σ). Let C0 ∈ Ω be a fixed choice of chamber, and let Σ0 be a fixed
choice or apartment containing C0. Let B (respectively N) be the subgroup of G fixing
C0 (respectively stabilising Σ0). Then (B,N) is a BN -pair (or Tits system) in G, with
Coxeter system (W,S).

Let Otp(W,S) denote the set of all possible opposition diagrams of type preserving au-
tomorphisms of a large spherical building of type (W,S). These diagrams are classified
in [31], specifically they are the diagrams appearing in [31, Tables 1–5] with πθ = id (in
the notation of [31]). For each diagram Γ ∈ Otp(W,S) let J(Γ) denote the subset of S
consisting of the encircled nodes, and let wΓ = wS\J(Γ)wS, where for subsets K ⊆ S we
write wK for the longest element of the parabolic subgroup WK = 〈K〉. We can now state
a general Density Theorem.

Theorem 7.1. In the above setup, if C is a conjugacy class in G then C intersects at
least one coset wΓB with Γ ∈ Otp(W,S).

Proof. Let C be a conjugacy class in G, and let θ ∈ C . Then θ acts on Ω as a type
preserving automorphism. Let Γ be the opposition diagram of θ. By [31, Theorem 2.6]
there is a chamber C ∈ Ω with δ(C, θ(C)) = wΓ. Since G acts strongly transitively we
have C = gC0 for some g ∈ G and hence g−1θg ∈ BwΓB. So there is b1, b2 ∈ B with
g−1θg = b1wΓb2, and hence (gb1)−1θ(gb1) = wΓb2b

−1
1 ∈ wΓB as required. �

For some nontrivial opposition diagrams Γ it is known that every automorphism with this
diagram necessarily fixes a chamber. In such an instance one may remove Γ from the set
Otp(W,S) and Theorem 7.1 remains valid. For example, it is shown in [29] that every
type preserving domestic automorphism of a large building of type E6 necessarily fixes
a chamber, and therefore for type E6 Theorem 7.1 can be refined to the statement that
every conjugacy class in G intersects B ∪ w0B.

Corollary C is now immediate.

Proof of Corollary C. By [29] all automorphisms with opposition diagram either E8;1 or
E8;2 necessarily fix a chamber, and so (1) follows from Theorem 7.1. For (2), note that, if
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K is quadratically closed, then by Theorem A all automorphisms with opposition diagram
E8;4 also fix a chamber, and hence every domestic automorphism fixes a chamber, and the
result follows. �

For completeness, we also state a corresponding result for buildings of type E7.

Corollary 7.2. Let G be a Chevalley group of type E7 over a field K with |K| > 2, and
let C be a conjugacy class in G. Then

(1) C ∩ (B ∪ ∪wD4B ∪ s2s5s7w0B ∪ w0B) 6= ∅;
(2) if K is quadratically closed then C ∩ (B ∪ w0B) 6= ∅.
Here w0 is the longest element of W , wD4 is the longest element of the standard D4

parabolic subgroup, and we use Bourbaki labelling for the simple reflections.

Proof. The proof is similar to Corollary C, as all automorphisms with opposition diagram
E7;1 or E7;2 necessarily fix a chamber, and if K is quadratically closed then all automor-
phisms with opposition diagram either E7;3 or E7;4 also fix a chamber (by [25]). �

7.2 Spectral properties of Class I collineations

Domestic collineations in buildings of type E7 have rather nice kangaroo properties, that
is, the displacement spectra of vertices of certain types are rather restricted (certain
distances are “skipped”). This in particular holds for the vertices corresponding to the
polar node—the points of the long root subgroup geometry. Moreover, these collineations
behave “locally” like involutions in the sense that, if some vertex v is mapped onto a non-
opposite vertex w, then any vertex incident with both v and w and uniquely defined by v
and w, is fixed. We show that analogous things hold in the case of domestic collineation
of E8(K) of Class I.

Throughout, we consider a domestic collineation θ of Class I, acting on ∆ = E8,8(K).

Firstly, we consider the displacement of the points.

Lemma 7.3. No point of E8,8(K) is mapped onto a special point.

Proof. Suppose for a contradiction that the point x is mapped onto the point y that is
special to x. Let x ⊥ z ⊥ y. Then we find a line L through x containing points special to
both z and zθ

−1
(this follows from [40, Proposition 3.30] applied to Res∆(x)). Lemma 3.4

implies that L is not domestic. The collineation θL of the upper residue of L defined by
projecting the image of an object incident with L from Lθ back to L, is a domestic duality.
By the classification of opposition diagrams of dualities in buildings of type E6 in [27] and
[28], we find a non-domestic plane α through L. The mapping θα on the lower residue
now, and similarly defined as θL, is a duality, for which the point x is absolute, that is,
x is incident with its image. It follows that the line xθα =: K ⊆ α through x contains a
point p mapped to an opposite. Since p is special to y by definition of K, the lines px and
pθy are not opposite. Since α is opposite αθ, it follows that px and (px)θp are symplectic.
But using Corollary 4.15, this contradicts [25, Lemma 7.15], which says that θp, viewed
as a collineation of Res∆(p), does not map points to symplectic ones. �
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Lemma 7.4. No point of E8,8(K) is mapped onto a collinear point.

Proof. Let, for a contradiction, the point x be mapped onto the collinear point. Selecting
a line L through x containing points that are special to both xθ and xθ

−1
, we find a

point p on L mapped onto an opposite. Then the line px is fixed under θp. However,
Corollary 4.15 asserts that the fix diagram of θp on Res∆(p) is E7;4, and so there are no
fixed points, a contradiction. �

Now we consider the displacement of the symps.

Corollary 7.5. No symp of E8,8(K) is mapped onto an adjacent one.

Proof. Suppose for a contradiction that the symp ξ is mapped onto an adjacent symp
ξθ. Then the 6-space U = ξ ∩ ξθ is mapped onto another 6-space U θ of ξθ. Since U and
U θ belong to the same natural system of generators of ξθ, they intersect in at least one
point pθ. Then p ∈ U and hence, by Lemma 7.4, p = pθ. In the residue of p, however, we
see a pointwise fixed fully embedded dual polar space isomorphic to C3,3(H,K). But [25,
Corollary 6.11] asserts that a collineation pointwise fixing such a dual polar space cannot
map symps to adjacent ones. This contradiction concludes the proof of the corollary. �

Lemma 7.6. If a point x is mapped onto a symplectic one, then the corresponding symp
ξ is fixed.

Proof. Let L be line through x such that some point of L is collinear to only a line of
ξ (hence L is coplanar with some unique line of ξ). Suppose, for a contradiction, that
Lθ is contained in ξ. At least one point yθ of Lθ distinct from xθ is not collinear to
all points of the unique line M through x coplanar to L. Then y and yθ are special,
contradicting Lemma 7.3. Hence, by Lemma 3.12, ξ is, in Res∆(x), adjacent or equal to
ξθ
−1

. Corollary 7.5 completes the proof of the lemma, noting that two symps in a point
residual of ∆ are adjacent if, and only if, they are adjacent in ∆. �

7.3 Automorphisms with restricted displacement spectra

Our results on domestic automorphisms of spherical buildings have been successfully ap-
plied in [24] to classify all uniclass automomorphisms of Moufang spherical buildings that
are not anisotropic. A natural question that arises is whether there are more automor-
phisms having a similar restricted displacement. Specifically, rather than restricting to
displacements in a unique conjugacy class (the uniclass condition), one can consider dis-
placements in a restricted number of conjugacy classes of the Weyl group. Of course,
if the longest elements is one of these classes, then the automorphism is not domestic,
and so our results on domesticity will not be of help. So assume no chamber is mapped
onto an opposite. Let us also restrict to type preserving automorphisms. If no chamber is
fixed, then from our classifications of domestic automorphisms we see that “most” domes-
tic automorphisms are uniclass, and the few that are not appear to have more than two
classes in their displacement spectra (see for instance Remark 7.8 below). Hence we are
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lead to consider domestic automorphisms that fix at least one chamber and have, besides
the identity, displacements in exactly one other conjugacy class of the Weyl group. This
seems to be a worthwhile classification, since the result is somewhat unpredictable and
nontrivial.

Corollary 7.7. Let θ be a nontrivial type preserving automorphism of a Moufang spherical
building Ω of rank at least 2 with the property that θ fixes a chamber and disp(θ) is
contained in at most 2 conjugacy classes in the Weyl group. Then disp(θ) = {1} ∪ Cl(s)
for some simple generator s of the Weyl group. Moreover, θ is either a long root elation,
or one of the following cases occurs (and, conversely, each such case does give rise to
such an automorphism). In each case of a non-simply laced diagram, we mention, with
obvious notation, the class of the Weyl group belonging to the displacement (using standard
Bourbaki labelling).

(i) θ is a homology in a projective space fixing a hyperplane pointwise (of dimension at
least 2);

(ii) θ pointwise fixes a Baer subplane in a (Moufang) projective plane;
(iii) θ pointwise fixes a geometric hyperplane in a polar space of rank r at least 2 (up to

duality if the rank is equal to 2)—class Cl(sr);
(iv) θ pointwise fixes an ideal Baer sub polar space of a (thick) polar space of rank 3—

class Cl(s1);
(v) θ is an involution in a symplectic polar space pointwise fixing a hyperbolic line and

the perp of it, or, equivalently, a imaginary line and its equator geometry—class
Cl(s1);

(vi) θ is an involution pointwise fixing an extended equator geometry and its tropics
geometry in the corresponding geometry of type F4,4, or, equivalently pointwise fixing
a weak subbuilding with thick frame of type B4, or, equivalently, a homology hω4(−1)
in Chevalley notation, in a split building of type F4—class Cl(s4);

(vii) θ is an involution in a building of relative type F4 and absolute type E6 pointwise
fixing a corresponding split subbuilding of type F4—class Cl(s4);

(viii) θ is a collineation of order 3 and fixes a subhexagon Γ, where either Ω corresponds
to a split Cayley hexagon and Γ to a non-thick ideal subhexagon (this occurs when
the underlying field has nontrivial cubic roots of unity), or Ω corresponds to a triality
hexagon (Moufang hexagon of type 3D4) and Γ to an ideal split Cayley subhexagon—
class Cl(s2).

Proof. Suppose that θ is nontrivial, fixes a chamber, and has displacement spectra con-
tained in at most 2 conjugacy classes of the Weyl group. Clearly θ maps some chamber
to an adjacent chamber, say of Weyl distance s. Thus s ∈ disp(θ), and so disp(θ) ⊆
{1}∪Cl(s). It follows from [24, Proposition 2.1] that disp(θ) = {1}∪Cl(s). We claim that
this implies that the opposition diagram of θ has only one orbit encircled.

To prove this, we first make the following observations. Let Φ be an irreducible reduced
crystallographic root system with positive system Φ+ and highest root ϕ. Let ℘ be the
polar type (see [29, Section 1.1]). We have sϕ = wS\℘w0 (to prove this, note that the
inversion sets of both sides are equal, using properties of the highest root and polar type;
see [29]).
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Now, associate a crystallographic system Φ to the building Ω, choosing between duality
classes in such a way that s = sαi for a long simple root αi ∈ Φ. With this choice,
the longest member of disp(θ) = {1} ∪ Cl(s) is sϕ. On the other hand, if the opposition
diagram of θ has nodes J encircled, then the longest member of disp(θ) is wS\Jw0 (see
[31, Theorem 2.6]). Thus sϕ = wS\Jw0. But as noted above we have sϕ = wS\℘w0, and
so J = ℘, and hence the claim.

Consider the An case. If n ≥ 3, then the opposition diagram is 2A
1
n;1 and by [36, The-

orem 4.3], θ is either a central elation, or a central homology. Now let n = 2. Then
the conjugacy class in the Weyl group W (A2) ∼= Sym(3) = 〈s1, s2〉 of a generator s1 is
{s1, s2, s1s2s1}, which contains the longest word and confirms that θ is not (necessarily)
domestic. Hence a ‘forbidden’ distance is s1s2, which means that, if we map a point
x to different point xθ, then the line 〈x, xθ〉 must be fixed, as otherwise the chamber
{x, 〈x, xθ〉} has distance s1s2 to {xθ, 〈x, xθ〉θ}. By [31, Proposition 3.3], θ is either a
central long root elation, a central homology, or a Baer collineation, and each these also
satisfy the dual condition that the point of intersection of a line and its (distinct) image
is fixed (displacement distance s2s1 is not attained). This concludes the An case.

Consider the Bn case, n ≥ 2. Here the opposition diagram is never full, and is one of
B1
n;1 or B2

n;1. So θ is domestic, and we can apply the results of [31, 37]. First suppose
n = 2. Then [37, Theorem 2.1] implies the assertion (noting tat a large full subquadrangle
is a geometric hyperplane) and it is easy to check that in each case disp(θ) is really the
union of the identity and one more class (the cases of an ovoid or spread elementwise fixed
corresponds to uniclass collineations).

Now suppose n ≥ 3. If the opposition diagram is B1
n;1, then [31, Theorem 1] implies that θ

is a symmetry (following Dieudonné [15], we call a collineation of a polar space pointwise
fixing a geometric hyperplane, a symmetry ; these include central elations). Clearly all
symmetries have the trivial and only one non-trivial class in their displacement spectra.
Now assume the opposition diagram is B2

n;1. Then [31, Theorem 3] implies that θ is either
an axial long root elation, a Baer collineation in rank 3, or a (generalised) homology in
a symplectic polar space in characteristic different from 2 pointwise fixing a hyperbolic
line and its perp. We check whether disp(θ), for θ a Baer collineations in rank 3 (which is
a point-domestic collineation), consists of two conjugacy classes among which the trivial
one. We leave the other (easier) cases to the reader. The technique of doing so is similar to
the proofs in [24] that establish certain automorphisms to be uniclass. Call the generators
of the Weyl group s1, s2, s3 with standard Bourbaki labelling. Let C be a chamber, which
we will represent by a triple {p, L, π}, with p a point, L a line and π a plane of the polar
space Ω of rank 3. Recall from [38, §7] that a Baer collineation is a collineation with
fix stucture an ideal Baer sub polar space, which is a subset B of points of Ω with the
properties that in each plane α which contains at least two points of B, the set B induces
a Baer subplane of α, and B, together with all secants (that is, lines of Ω intersecting B
in at least two points) form a polar space of rank 3. Now suppose first that p ∈ B. If L
is a secant, then both L and π are fixed, leading to trivial displacement. Suppose L is
not fixed. Then either π is fixed (and the displacement is s2 ∈ Cl(s1)), or πθ intersects π
in exactly p (as otherwise a point of the intersection is collinear to L and Lθ, hence to a
plane to which it does not belong, a contradiction to the rank). Then the displacement
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of θ is s3s2s3 ∈ Cl(s1). Now suppose that p is not fixed. Then pθ is collinear to p. If
pθ ∈ L, then π is fixed and the displacement is s1 ∈ Cl(s1). Since all planes through p
and pθ are stabilised, the line L is mapped onto a collinear one, and as before π is either
fixed (leading to the displacement s2s1s2 ∈ Cl(s1)) or π ∩ πθ is the single point L∩Lθ, in
which case the displacement is s3s2s1s2s3 ∈ Cl(s1). This completes the proof for the Baer
collineations.

Consider the Dn case, n ≥ 4. Then θ has opposition diagram D1
n;1 or D2

n;1. In the former
case, [31, Theorem 2.6] asserts that θ is a type rotating involution with fix structure a
split building of type Bn−1 (and which is a geometric hyperplane), however since this
automorphism is not type preserving it is not considered here. In the latter case [31,
Theorem 3(2)] implies that θ is a long root elation.

Consider the En case, n ∈ {6, 7, 8}. Them θ has opposition diagram 2E6;1,E7;1 or E8;1. By
[29, Theorem 1], θ is a long root elation.

Consider the F4 case. If s ∈ {s1, s2} then we have opposition diagram F1
4,1, and it is a long

root elation. If s ∈ {s3, s4} then we have opposition diagram F1
4,4. Such automorphisms

are classified in [21], they are either the homology hω4(−1) (in the split case), or a diagram
automorphism σ of E6 (in a twisted case). In either case they are involutions. So by [24,
Proposition 2.1] their displacements are unions of full conjugacy classes of involutions in
the Weyl group. Now, by a direct calculation in the Weyl group of type F4, all classes
of involutions have elements longer than 15 except for the classes of s1 and s4 (see [24,
Theorem 1.9] for a description of the involution classes). Since the numerical displacement
of our automorphism is 15, it forces it to only contain these classes (with the identity) –
but it does not contain the class of s1 (otherwise there is a type 1 vertex mapped to an
opposite). So it indeed has the correct displacement.

Consider the G2 case. According to [30, Theorem 1], the collineations with opposition
diagram G1

2;1 and G2
2;1 fixing a chamber occur precisely if θ is either a (central or axial)

long root elation, or θ is a collineation of order 3 and fixes a subhexagon Γ, where either Ω
corresponds to a split Cayley hexagon and Γ to a non-thick ideal subhexagon (this occurs
when the underlying field has nontrivial cubic roots of unity), or Ω corresponds to a triality
hexagon (Moufang hexagon of type 3D4) and Γ to an ideal split Cayley subhexagon. In
all these case, it is easily checked that disp(θ) is the union of two conjugacy classes, one
of which is the identity.

Finally consider the 2F4 case, that is, the case of Moufang octagons. We appeal to
Theorems 2.7 and 2.8 of [26] to see that θ either fixes a large suboctagon, or θ is a long
root elation. Proposition 4.3 and §5.1 of [17] imply that Ω has a unique class of full or
ideal suboctagons, and Proposition 5.1 of that paper proves that no such suboctagon is
pointwise fixed by a nontrivial collineation. �

Remark 7.8. We will now show that the displacement set of a Class II automorphism
of a large E8 building contains at least three elements from distinct classes in the Weyl
group (and precisely the same argument applies to the automorphisms of E7 buildings
from [25, Theorem 1(iii)]). If θ is of Class II then by Theorem 5.1 θ is conjugate to an
element of the form xα4(a)x−α4(1) for some a ∈ K with aX2 + aX − 1 irreducible over K
(in Bourbaki labelling). This element preserves the the residues of the base chamber of
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types {4}, {3, 4, 5}, and {2, 3, 4, 5} (these residues are buildings of types A1, A3, and D4

respectively). By Remark 5.2 the restriction of θ to these residues is not domestic, and
hence disp(θ) contains the elements s4, w{3,4,5}, and wD4 . These elements all lie in different
conjugacy classes in the Weyl group (indeed, wD4 is of minimal length in its conjugacy
class by [24, Theorem 1.9] and so it is not conjugate to either s4 or w{3,4,5}, and s4 and
w{3,4,5} are not conjugate by parity of length).
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