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Abstract. In each dimension n+1 ≥ 3 and for each real number λ ≥ 1,
we construct complete solutions to Ricci flow on Rn+1 which encounter
global singularities at a finite time T . The singularities are forming
arbitrarily slowly with the curvature blowing up arbitrarily fast at the
rate (T − t)−(λ+1). Near the origin, blow-ups of such a solution converge
uniformly to the Bryant soliton. Near spatial infinity, blow-ups of such
a solution converge uniformly to the shrinking cylinder soliton. As an
application of this result, we prove that there exist standard solutions of
Ricci flow on Rn+1 whose blow-ups near the origin converge uniformly
to the Bryant soliton.

1. Introduction

An important phenomenon in Ricci flow is the formation of finite-time
singularities which occurs for a large family of initial metrics. Let (M, g) be
a complete Riemannian manifold and g(t) be a solution to the Ricci flow

∂

∂t
g = −2 Ric(g)

for time t ≥ 0. Suppose g(t) becomes singular at time T < ∞. Then this
finite-time singularity is called Type-I if

sup
M×[0,T )

|Rm(·, t)| (T − t) <∞,

and it is called Type-II if

sup
M×[0,T )

|Rm(·, t)| (T − t) =∞.

The simplest example of a Type-I singularity in Ricci flow is the shrinking
round sphere. In his seminal paper [27], Hamilton proved that Ricci flow on
a compact three-manifold with positive Ricci curvature develops a Type-I
singularity and shrinks to a round point. The same is true for Ricci flow on a
compact four-manifold with positive curvature operator [28]. By the works
of Hamilton [29] and Chow [18], Ricci flow on S2 with an arbitrary initial
metric always develops a Type-I singularity and shrinks to a round point. On
a compact n-dimensional manifold for n ≥ 3, Böhm and Wilking [8] proved
that Ricci flow starting at a metric with 2-positive curvature operator (the
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sum of the two smallest eigenvalues of Rm is positive) develops a Type-I
singularity and shrinks to a round point. We note that the n = 4 case in
their result was known earlier [16]. Brendle [10] generalized the result of
[8] under a much weaker assumption on the curvature operator. All these
Type-I singularities are global in the sense that the volume of a manifold
shrinks to zero at time T .

In [30], Hamilton sketched intuitively the formation of local singularities
under Ricci flow. By local we mean that a singularity forms on a compact
subset of a manifold while the volume of the manifold remains positive at
time T . Rigorous results on finite-time local singularites in Ricci flow were
obtained later. On a noncompact warped product R ×f Sn, Simon [41]
showed that there are Ricci flow solutions that encounter finite-time local
singularities. For local singularities in Kähler-Ricci flow, the first exam-
ples were constructed on holomorphic line bundles over CPn−1 using U(n)-
invariant shrinking gradient Kähler-Ricci solitons [23].

Hamilton’s examples of local singularities are the so-called neckpinches
on a sphere. To describe them precisely, we recall the blow-up technique in
singularity analysis. We say that a sequence {(xi, ti)}∞i=0 of points and times
in a Ricci flow is a blow-up sequence at time T if ti ↗ T and |Rm(xi, ti)| ↗
∞ as i ↗ ∞. A blow-up sequence has a pointed singularity model if the
sequence of parabolically dilated metrics

gi(x, t) := |Rm(xi, ti)| g
(
x, ti + |Rm(xi, ti)|−1t

)
has a complete smooth limiting metric. A Ricci flow solution is said to
develop a neckpinch singularity at time T < ∞ if there is some blow-up
sequence at T whose pointed singularity model exists and is given by the
self-similarly shrinking Ricci soliton on the cylinder R× Sn.

A neckpinch singularity is nondegenerate if every pointed singularity model
of any blow-up sequence at T is a shrinking cylinder soliton. A nonde-
generate neckpinch is a Type-I singularity. The first rigorous examples of
finite-time neckpinch singularities in Ricci flow on a compact manifold were
produced by Angenent and Knopf [3]. They exhibited a class of rotation-
ally symmetric metrics on Sn+1 (n ≥ 2) which develop Type-I neckpinch
singularities under Ricci flow. In a subsequent paper [7], the same authors
proved the precise asymptotics for such neckpinch singularities.

A neckpinch singularity is degenerate if there is at least one blow-up se-
quence at T with a pointed singularity model that is not a shrinking cylinder
soliton. A degenerate neckpinch is expected to be a Type-II singularity. In
this paper, we construct Ricci flow solutions that encounter finite-time Type-
II singularities, which can be regarded as global degenerate neckpinches on
Rn+1. Before stating our main theorem, we first recount the existing results
on Type-II singularities in Ricci flow.

Daskalopoulos and Hamilton [21] showed that on R2 there exist complete
noncompact Ricci flow solutions that form Type-II singularities at the rate
(T−t)−2. Their proof is particular to dimension two, in which case the Ricci



TYPE-II RICCI FLOW SINGULARITIES ON Rn+1 3

flow is conformal and the conformal factor u evolves by the logarithmic fast
diffusion equation ut = ∆ log u. Assuming rotational symmetry and addi-
tional constraints, Daskalopoulos and del Pino [20] gave a precise description
of the extinction profile of this maximal solution in R2: up to proper scaling,
it must be a cigar soliton in an inner region, and a logarithmic cusp in an
outer region. Daskalopoulos and Šešum [22] proved the same result without
assuming rotational symmetry. An extension of the results of [20, 22] was
obtained by Hui [31]. The formal asymptotics of the extinction profile were
derived by King [33].

In dimension three or higher, if one is willing to assume rotational sym-
metry of the metrics, then the Ricci flow is reduced to a parabolic equation
for a scalar function. Gu and Zhu [26] proved the existence of Type-II sin-
gularities on Sn+1, although their work shed little light on the geometric
details of such solutions. Garfinkle and Isenberg [24, 25] have conducted
numerical investigations on the formation of Type-II singularities modeled
by degenerate neckpinches on S3.

In their recent works, Angenent, Isenberg, and Knopf [5, 6] demonstrated
the existence of rotationally symmetric Ricci flow solutions on Sn+1 that
develop finite-time Type-II degenerate neckpinches. Their solutions become
singular at the rate (T − t)−2+2/k for k ∈ N and k ≥ 3. Moreover, they were
able to describe the asymptotic profiles of these solutions. The techniques
in [5, 6] have been applied to study singularity formation in other geometric
flows. For example, Angenent and Velázquez [1] studied the asymptotic
shape of cusp singularities in the curve shortening flow. The same authors
[2] constructed solutions with degenerate neckpinches to the mean curvature
flow.

In this paper, we consider rotationally symmetric Riemannian metrics on
Rn+1 (n ≥ 2). We first note that Ricci flow on Rn+1 can encounter finite-
time singularity. For example, take a metric on Sn+1 as constructed in [3]
and conformally open up the north pole of the sphere. This produces an
initial geometry on Rn+1, which one expects to develop finite-time Type-I
neckpinch singularity under Ricci flow. Similarly, one expects that there
are Ricci flow solutions that form finite-time Type-II singularities on Rn+1.
Indeed, this happens on R2 [21].

We now state our main result.

Theorem 1.1. In each dimension n+1 ≥ 3 and for each real number λ ≥ 1,
there exists an open set of complete rotationally symmetric metrics Gn+1 on
Rn+1 such that the Ricci flow starting at g0 ∈ Gn+1 has a unique solution
g(t) for t ∈ [0, T ), T < ∞. The solution g(t) develops a finite-time global
singularity at time T with the following properties.

(1) The singularity is Type-II with

sup
x∈Rn+1

|Rm(x, t)| = C

(T − t)(λ+1)
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attained at the origin, where C is a constant depending on n.
(2) If one rescales a solution so that the distance from the origin dilates

at the rate (T − t)−(λ+1)/2, then the metric converges uniformly on

intervals of order (T − t)(λ+1)/2 to the Bryant soliton.

(3) If one rescales a solution at the parabolic rate (T − t)−1/2, then the
metric converges uniformly to the shrinking cylinder soliton near
spatial infinity.

Furthermore, the solutions exhibit the asymptotic behavior of the formal so-
lution described in Section 3.

Remark 1.1. The singular time T is determined only by the initial radius
of the asymptotic cylinder at spatial infinity. In terms of the rescaled time
τ0 (cf. Proposition 5.1), T = e−τ0.

Theorem 1.1 is inspired by [5, 6]. To prove it, we begin by constructing
a family of formal solutions to Ricci flow on Rn+1 with curvature blow-
up rate of (T − t)−(λ+1) near the origin for each λ ≥ 1, and of (T − t)−1
near spatial infinity. Using each formal solution, we construct upper and
lower barriers to the Ricci flow PDE and prove a comparison principle.
Before the first singular time T , the curvatures are bounded and so the
Ricci flow solution exists and is unique [40, 15]. For all initial data between
the barriers, we obtain unique complete solutions to the Ricci flow whose
asymptotic properties are the same as those of the formal solution.

Our result is interesting in several aspects. First of all, this shows that
Type-II singularities in Ricci flow on Rn+1 can occur arbitrarily slowly with
curvatures blowing up at arbitrarily fast rate. This complements the works
of [5, 6]. The λ = 1 case in Theorem 1.1 can be viewed as a higher dimen-
sional version of the result of Daskalopolous and Hamilton [21] for rotation-
ally symmetric solutions. The asymptotics in Theorem 1.1 can be compared
to those in [20, 22]. Secondly, solutions in [6] become singular at the set

of discrete rates (T − t)−2+2/k, where k ∈ N and k ≥ 3. In contrast, the
curvature blow-up rates of the Ricci flow solutions in Theorem 1.1 form a
continuum since λ ∈ [1,∞). In particular, the λ = 1 case can be thought
of as the limiting case of [6, Main Theorem] as k ↗ ∞. Thirdly, the anal-
ysis in [24, 25, 26] suggest that the formation of Type-II singularity on a
compact manifold is an unstable property. As a result, the proof in [6] uses
the somewhat indirect Ważewski retraction method. In comparison, we use
a comparison principle to give a direct proof of Theorem 1.1. So one may
regard the formation of Type-II singularity on a noncompact manifold to be
a stable property.

Our solutions are modeled by the Bryant soliton near the origin. This
is reasonable because blow-ups of Ricci flow singularities are expected, and
in many cases proved, to be Ricci solitons. On Rn+1 (n ≥ 2), the Bryant
soliton is a rotationally symmetric gradient steady Ricci soliton with pos-
itive curvature operator [13, 19]. In dimension three, Bryant [13] showed
that there are no other rotationally symmetric steady Ricci solitons. Other
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non-rotationally symmetric solitons exist in higher dimensions [32]. Perel-
man [38] asked if any three-dimensional steady Ricci soliton is necessarily
rotationally symmetric. Brendle [12] answered this question affirmatively by
proving that on R3, any steady gradient Ricci soliton which is κ-noncollapsed
and non-flat must be rotationally symmetric. Brendle [11] also proved a
higher dimensional version of this theorem. There are other uniqueness
results for Bryant solitons under the additional assumption such as local
conformal flatness [14], or suitable asymptotics near spatial infinity [9], or
half conformal flatness [17].

In [39], Perelman described a special family of Ricci flow solutions on R3,
the so-called standard solutions, which are complete rotationally symmetric
metrics asymptotic to a round cylinder at spatial infinity. The standard
solutions are used to construct long-time solutions and to study Ricci flow
with surgery [39, 34]. We will see that a subset of Ricci flow solutions in
Theorem 1.1 are in fact standard solutions in the sense defined in [36]. More
precisely, we have the following result. We refer the reader to Section 7 for
the definition of a standard solution.

Theorem 1.2. Let n+ 1 ≥ 3. Let Gn+1 be given as in Theorem 1.1. There
exists an open set G∗n+1 ⊂ Gn+1 such that the Ricci flow starting at g0 ∈
G∗n+1 has a unique standard solution g(t) on Rn+1 for t ∈ [0, T ), T < ∞.
Moreover, the solution g(t) satisfies all the properties described in Theorem
1.1.

Bennett Chow and Gang Tian have conjectured [35] the following.

Conjecture 1.2 (Chow-Tian). Sequences of appropriately scaled standard
solutions (as defined in [36]) with marked origins converge to Bryant solitons
in a suitable sense.

A corollary of Theorem 1.2 gives evidence in favor of the Chow-Tian
conjecture.

Corollary 1.3. In dimension n + 1 ≥ 3, there exist standard solutions to
Ricci flow whose blow-ups near the origin converge uniformly (cf. part (2)
of Theorem 1.1) to the Bryant soliton.

The paper is organized as follows. In Section 2, we describe the basic
set-up and the coordinates which we will use. In Section 3, we construct a
family of formal solutions with matched asymptotics. We construct sub- and
supersolutions to the Ricci flow PDE in Section 4, and use these functions
to construct upper and lower barriers in Section 5. In Section 6, we prove
a comparison principle for the Ricci flow PDE and use it to prove Theorem
1.1. In Section 7, we relate our solutions to the standard solutions and prove
Theorem 1.2.

Acknowledgments. I sincerely thank my adviser Prof. Dan Knopf for
his mentorship and support, without which this work would not have been
possible. As usual, I appreciate Dan’s good humor.
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2. Preliminaries

Let gsph be the metric of constant sectional curvature one on Sn. We punc-
ture Rn+1 at the origin and identify the remaining manifold with (0,∞)×Sn.
For x ∈ (0,∞), we define a warped product metric

g := g(t, x) = ϕ2(t, x)dx2 + ψ2(t, x)gsph.

The distance s to the origin is

s(t, x) :=

∫ x

0
ϕ(t, y)dy.

In the s-coordinate, the metric becomes

g = ds2 + ψ2 (s, t) gsph.(2.1)

Extending the metric g to a smooth complete rotationally symmetric metric,
which we still denote by g, on Rn+1, then ψ necessarily satisfy the boundary
conditions

lim
x↘0

ψ = 0 and lim
x↘0

ψs = 1.

We let ∂t|x and ∂t|s denote taking time derivatives while keeping x and s
fixed, respectively. Then

[∂t|x, ∂s] = −nψss
ψ
∂s.

In the s-coordinate, the Ricci flow is reduced to the scalar equation

∂t|xψ = ψss − (n− 1)
1− ψ2

s

ψ2
.(2.2)

The function ϕ, which is suppressed in the s-coordinate, evolves by

∂t|x(logϕ) = n
ψss
ψ
.

Let K be the sectional curvature of a two-plane orthogonal to the sphere
{x} × Sn, and let L be the sectional curvature of a tangential two-plane.
Then

K = −ψss
ψ
, L =

1− ψ2
s

ψ2
.

In particular, |Rm |2 = 2nK2 + n(n− 1)L2.
Since lim

x↘0
ψs = 1 and the metric is smooth, ψs > 0 in a neighborhood of

the origin. So we can use ψ as a new coordinate there, writing

g = z(ψ, t)−1dψ2 + ψ2gsph,(2.3)

where z (ψ, t) := ψ2
s . Then the sectional curvatures are computed by

K = −
zψ
2ψ
, L =

1− z
ψ2

.
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Under the Ricci flow, the metric (2.3) evolves by (cf. [6, Section 2.2])

∂t|ψz = Eψ[z],(2.4)

where Eψ is the purely local quasilinear operator

Eψ[z] := zzψψ −
1

2
z2ψ + (n− 1− z)

zψ
ψ

+ 2(n− 1)
(1− z)z
ψ2

.

We can split Eψ into a linear and a quadratic term:

Eψ[z] = Lψ[z] + Qψ[z],

where

Lψ[z] := (n− 1)

(
zψ
ψ

+ 2
z

ψ2

)
,(2.5)

Qψ[z] := zzψψ −
1

2
z2ψ −

zzψ
ψ
− 2(n− 1)

z2

ψ2
.(2.6)

The quadratic part defines a symmetric bilinear operator

Q̂ψ[z1, z2] :=
1

2
[z1(z2)ψψ + z2(z1)ψψ − (z1)ψ(z2)ψ](2.7)

−
z1(z2)ψ + z2(z1)ψ

2ψ
− 2(n− 1)

z1z2
ψ2

.

In particular, Qψ[z] = Q̂ψ[z, z].
Throughout this paper, we use Ck (k ∈ N) to denote a constant that may

change from line to line. The expression “f . g” means f ≤ Ckg for some
constant Ck.

3. The formal solution

We first briefly review the formal solution in [5, 6]. Introducing the coor-
dinates consistent with a parabolic cylindrical blow-up:

u :=
ψ√

2(n− 1)(T − t)
, σ :=

s√
T − t

, τ := − log(T − t),(3.1)

then in these coordinates, equation (2.2) becomes

∂τ |σu = uσσ −
(σ

2
+ nI[u]

)
uσ +

u− u−1

2
+ (n− 1)

u2σ
u
,(3.2)

where

I[u](σ, τ) :=

∫ σ

0

uσ̂σ̂(σ̂, τ)

u(σ̂, τ)
dσ̂.

For bounded σ, the solution to equation (3.2) is approximated by

u ≈ 1 +

∞∑
m=0

ame
(1−m/2)τhm(σ),

where hm is the m-th Hermite polynomial. In [5, 6], the authors assume a
nondegenerate neckpinch occurs at the equator of Sn+1 in such a way that
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the Ricci flow solution does not approach a cylinder too quickly. So the
term with m = k is dominant for some specified k ≥ 3. They then construct
a formal solution with matched asymptotics in four connected regions: the
outer, parabolic, intermediate, and tip regions. Their construction starts
in the parabolic region which models a nondegenerate neckpinch near the
equator of Sn+1, and ends in the tip region which models a degenerate
neckpinch at one of the poles of Sn+1.

In this paper, we are interested in solutions that approach a cylinder
“quickly”. This leads us to the following construction. We first build a
model for degenerate neckpinch near the origin of Rn+1, we then work our
way out to the rest of the manifold. We will see that our formal solution
is defined in two connected regions: the interior and exterior regions. It
turns out, cf. the proof of Lemma 6.3, these are enough to define complete
metrics on Rn+1. One may compare to the compact case and think that in
the noncompact case the parabolic and outer regions are pushed to spatial
infinity.

3.1. Approximate solution in the interior region. In the interior re-
gion, which is to be specified in (4.2), we expect u to be small and introduce
the variable

r := eγτu,

where γ > 0 is a constant to be specified.
In the u-coordinate, by the change of variable formulae:

∂t|ψz = {∂τ |uz + zu (∂τ |ψu)} dτ
dt

=

(
∂τ |uz +

1

2
ψzψ

)
eτ ,

Eψ[z] =
1

2(n− 1)
eτEu[z],

equation (2.4) becomes

∂τ |uz =
1

2(n− 1)
Eu[z]− 1

2
uzu,(3.3)

where we have used ψzψ = uzu.
In the r-coordinate, since

∂τ |rz = ∂τ |uz + zu (∂τ |ru) = ∂τ |uz − γuzu, uzu = rzr,

Eu[z] = e2γτEr[z],

equation (3.3) becomes

Tr[z] = 0,

where

Tr[z] := e−2γτ
{
∂τ |rz +

(
1

2
+ γ

)
rzr

}
− 1

2(n− 1)
Er[z].(3.4)
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For sufficiently large τ , the term involving e−2γτ becomes neglible and the
equation Tr[z] = 0 is approximated by

Er[z] = 0,

whose solutions, subject to the boundary conditions z(0) = 1 and z(∞) = 0,
are the Bryant soliton profile functions

z(r) = B(ar),

where a > 0 is an arbitrary constant. Each member of the one-parameter
family of complete smooth metrics given by

g = B−1(ar)dr2 + r2gsph

is a scaled version of the Bryant soliton.
The function B(r) is smooth and strictly monotone decreasing for all

r > 0. Near r = 0, B(r) has the asymptotic expansion

B(r) = 1− b2r2 + b3r
4 + b3r

6 + · · · as r ↘ 0,(3.5)

where bk’s are constants. In particular, b2 > 0. Near r = ∞, B(r) has the
asymptotic expansion

B(r) = r−2 + c2r
−4 + c3r

−6 + · · · as r ↗∞,(3.6)

where ck’s are constants. In this paper, we normalize B(r) by setting c2 = 1.
For more information on B(r), we refer the reader to [5, Appendix B].

Refining the approximate solution by considering an expansion of the
form

z = B(ar) + e−γ̃τβ1(r) + e−γ̃τβ2(r) + · · · ,(3.7)

where γ̃ > 0, then

z ∼ a−2r−2 as τ ↗∞, r ↗∞,
which, in terms of the u-coordinate, is

z ∼ a−2e−2γτu−2 as τ ↗∞, u small.

In Lemma 4.1, we will use z = B(ar) + e−γ̃τβ1(r) with γ̃ = λ, where λ
is introduced in equation (3.8), to construct sub- and supersolutions in the
interior region.

3.2. Approximate solution in the exterior region. We expect the ex-
terior region, which is to be specified in (4.8), to be a time-dependent subset
of the neighborhood of the origin where 1 > z > 0 and 0 < u < 1. In this
region, z evolves by equation (3.3), i.e.,

∂τ |uz =
1

2(n− 1)
Eu[z]− 1

2
uzu.

To construct a formal solution to this equation, we try the series

z = e−λτZ1(u) + e−2λτZ2(u) + · · · =
∑
m≥1

e−mλτZm(u),(3.8)
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where λ > 0 is a constant to be chosen. We substitute this expansion into
the equation above and split Eu[z] into linear and quadratic parts given in
(2.5) and (2.6) respectively. By comparing the coefficient of e−mλτ in the
resulting equation, we find Zm must satisfy the ODE

1

2
(u−1 − u)

dZm
du

+
(
u−2 +mλ

)
Zm = − 1

2(n− 1)

m−1∑
i=1

Q̂u[Zi, Zm−i].(3.9)

When m = 1, equation (3.9) is a linear homogeneous equation

1

2
(u−1 − u)

dZ1

du
+
(
u−2 + λ

)
Z1 = 0,(3.10)

whose solutions are

Z1(u) = bu−2(1− u2)1+λ,(3.11)

where b is an arbitrary constant that will be determined by matching con-
siderations.

When m = 2, equation (3.9) becomes

1

2
(u−1 − u)

dZ2

du
+
(
u−2 + 2λ

)
Z2 = Qu[Z1],(3.12)

where

Qu[Z1] = 2b2u−6(1− u2)2λ
{

4− n(1− u2)2(3.13)

+ 2u2(λ− 3) + u4(λ− 1)2)
}
.

So the solutions of equation (3.12) are

Z2(u) = u−2(1− u2)1+2λf(u),

where

f(u) = C1 − 2b2
(

4− n
u2
− λ2 − 1

1− u2

)
− 4(1 + λ)b2

(
log(1− u2)− 2 log u

)
for an arbitrary constant C1.

By direction computation, we have the following.

Lemma 3.1. If λ ≥ 1, then

lim
u↗1

∣∣∣Z2(u)/Z1(u)
∣∣∣ = 0.

So for any λ ≥ 1,

z(u, τ) ≈ e−λτ bu−2(1− u2)1+λ +O
(
e−2λτZ2(u)

)
is a valid approximation for u ↗ 1 and τ sufficiently large. Going in the
other direction, as u↘ 0,

Z1(u) ≈ bu−2, Z2(u) = O(u−4),
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so then

z ≈ e−λτ bu−2 +O
(
e−2λτu−4

)
.

This approximation is valid as long as

|e−λτ bu−2| � |e−2λτu−4|,

which is when

u� e−λτ/2,

or equivalently, in the r-coordinate,

r � e(γ−λ/2)τ .

From now on, given λ ≥ 1, we choose γ = λ/2.

3.3. Matching condition. We now match the formal solutions in the in-
terior and the exterior regions when τ is sufficiently large. At r = A � 1,
the formal solution in the interior region is approximately

z(A) ≈ B(aA) + e−λτβ(A)

≈ B(aA)

≈ (aA)−2.

At u = e−λτ/2A, the formal solution in the exterior region is approximately

z
(
e−λτ/2A

)
≈ e−λτZ1

(
e−λτ/2A

)
≈ bA−2(1− e−λτA2)1+λ

≈ bA−2.

Thus, matching the two expressions implies that for a given constant a > 0,
we ought to have

b ≈ a−2.

This relation is made more precise in Lemma 5.4.

3.4. Features of the formal solution. Our formal solution is valid for all
dimensions n+1 ≥ 3, and it is defined in the interior and the exterior regions.
Cf. the proof of Lemma 6.3, the metric corresponding to the formal solution
is complete on Rn+1, and one approaches spatial infinity as u↗ 1. Also, as
u ↗ 1, z(u) ↘ 0, i.e., ψs ↘ 0, so the metric (2.1) is approaching that of a
round cylinder near spatial infinity. As u ↘ 0 and τ ↗ ∞, z(u) ↗ 1 and
the formal solution z is asymptotic to a Bryant soliton profile function.

The norm of the curvature tensor achieves its maximum value at the
origin O [6], where we have

|Rm(O, t)| = C

(T − t)(λ+1)
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for some constant C depending on n. Thus, the curvature of a Ricci flow so-
lution that asymptotically approaches this formal solution necessarily blows
up at the same rate.

4. Sub- and supersolutions

A metric of the form (2.3) evolving under the Ricci flow is determined by
a profile function z which, in the u-coordinate, satisfies the quasilinear par-
abolic equation (3.3). In this section, we construct sub- and supersolutions
to this equation in the interior and the exterior regions, respectively.

4.1. In the interior region. In the r-coordinate, where r = eλτ/2u, z
satisfies the equation Tr[z] = 0, where the operator Tr is defined in (3.4).
We call z a subsolution (supersolution) of Tr[z] = 0 if Tr[z] ≤ 0 (≥ 0).

Lemma 4.1. Let λ ≥ 1. For any A1 > 0, there exist a bounded function
β : (0,∞)→ R, a sufficiently small B1 > 0, and a sufficiently large τ1 <∞,
all depending only on A1 such that the functions

z±int := B(A1r)± e−λτβ(r)(4.1)

are sub- (z−int) and super- (z+int) solutions of Tr[z] = 0 in the interior region

Ωint := {0 ≤ r ≤ B1e
λτ/2}(4.2)

for all τ ≥ τ1.

Proof. Let B(r) := B(A1r). For z(r) = B(r) + e−λτβ(r) to be a supersolu-
tion, it suffices to show Tr[z] ≥ 0. Since B(r) solves Er[z] = 0,

Tr
[
z+int
]

=e−λτ

{
−Lr[β] + 2Q̂r[B, β]

2(n− 1)
+
λ+ 1

2
rB′

}

+ e−2λτ
{
−λβ +

λ+ 1

2
rβ′ − Qr[β]

2(n− 1)

}
.

Set Â := 1 + λ+1
2 , and let β solve the linear inhomogeneous ODE

Lr[β] + 2Q̂r[B, β] = 2(n− 1)ÂrB′.(4.3)

Using the definitions of Lr and Q̂r in (2.5) and (2.6) respectively, equation
(4.3) becomes

Bβ′′+

{
n− 1

r
−B′ − B

r

}
β′(4.4)

+

{
B′′ − B′

r
+ 2(n− 1)

1− 2B

r2

}
β = 2(n− 1)ÂrB′.
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Recall the asymptotic expansions of B(r) near r = 0 and r = ∞ given by
(3.5) and (3.6), respectively. Then near r = 0, equation (4.4) is approxi-
mated by

β′′ +
n− 2

r
β′ − 2(n− 1)

r2
β = −C1r

2 (C1 > 0),

whose solution is

β0 = C2r
1−n + C3r

2 − C4r
4,

where C2, C3 are arbitrary constants and C4 is a constant depending on C1.
Discarding the unbounded solution and choosing C3 = 1, then there exists
a solution βp of equation (4.3) with

βp(r) = r2 + o(r2) as r ↘ 0.

Near r =∞, the ODE (4.4) is a perturbation of the equation

1

(A1r)2
β′′ +

n− 1

r
β′ +

2(n− 1)

r2
β = −4(n− 1)Â

(A1r)2
,

whose general solution is

β∞(r) = C5re
−αr2 + C6r

∫ r

1
ρ−2e−α(r

2−ρ2)dρ− 2Â

A2
1

,

with α := n−1
2 A2

1 and arbitrary constants C5, C6. The second term in this

expression is O
(
r−2
)
. So every solution of equation (4.3), in particular βp(r)

given above, has the following asymptotic expansions:

β(r) =

{
r2 + o(r2) as r ↘ 0,

−2Â/A2
1 + o(1) as r ↗∞.(4.5)

Also, the asymptotic expansions

−rB′(r) =

{
C7r

2 + o(r2) as r ↘ 0,
C8r

−2 + o(r−2) as r ↗∞,

imply that

−rB′(r) ≥ C9 min{r2, r−2}.

Then in view of (4.5), we have for 0 < r ≤ 1,∣∣∣∣−λβ +
λ+ 1

2
rβ′ − Qr[β]

2(n− 1)

∣∣∣∣ ≤ C10r
2,

and hence

Tr
[
z+int
]
≥ −e−λτrB′(r)− e−2λτC10r

2

≥ e−λτr2
(
C9 − e−λτC10

)
> 0,
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for all τ ≥ τ1 with τ1 sufficiently large. And for r ≥ 1,∣∣∣∣−λβ +
λ+ 1

2
rβ′ − Qr[β]

2(n− 1)

∣∣∣∣ ≤ C11,

so then

Tr
[
z+int
]
≥ −e−λτrB′(r)− e−2λτC

≥ e−λτ
(
C9r

−2 − e−λτC11

)
> 0,

if r < B1e
λτ/2 with constant B1 :=

√
C9/C11.

Therefore, z+int is indeed a supersolution. That z−int is a subsolution is
proved similarly. �

4.2. In the exterior region. In the u-coordinate, z evolves by equation
(3.3), which we rewrite as Du[z] = 0, where

Du[z] := ∂τ |uz −
1

2
(u−1 − u)zu − u−2z −

Qu[z]

2(n− 1)
.(4.6)

We call z a subsolution (supersolution) of Du[z] = 0 if Dr[z] ≤ 0 (≥ 0).

Lemma 4.2. Let λ ≥ 1. Define Z1(u) := u−2(1 − u2)1+λ. Given A2 > 0,
there exist a function ζ : (0, 1)→ R, a constant B2 > 0, a sufficiently large
τ2 < ∞, and a constant A∗3 < ∞ depending only on A2 such that for any
A3 ≥ A∗3, the functions

z±ext(u, τ) := e−λτA2Z1(u)± e−2λτA3ζ(u)(4.7)

are sub- (z−ext) and super- (z+ext) solutions of Du[z] = 0 in the exterior region

Ωext :=

{
B2

√
A3

A2
e−λτ/2 ≤ u < 1

}
,(4.8)

for τ ≥ τ2 where τ2 depends only on A2 and A3.

Proof. Since A2Z1 is a solution of the ODE (3.10), we have

e2λτDu[z+ext] = A3

{
−1

2
(u−1 − u)ζ ′ − (u−2 + 2λ)ζ

}
− A2

2

2(n− 1)
Qu[Z1]

− A2A3

n− 1
e−λτ Q̂u[Z1, ζ]− A2

3

n− 1
e−2λτQu[ζ].

Since 0 < u < 1, the definition of Z1 implies that

|Z ′1| ≤
C1

u(1− u2)
Z1, |Z ′′1 | ≤

C2

u2(1− u2)2
Z1,(4.9)

and from (3.13), ∣∣∣Qu[Z1]
∣∣∣ ≤ C3u

−6(1− u2)2λ.(4.10)
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Let ζ : (0, 1)→ R be a solution of the inhomogeneous ODE

−1

2
(u−1 − u)ζ ′ − (u−2 + 2λ)ζ = u−6(1− u2)2λ.(4.11)

Then we solve the ODE to obtain

ζ(u) = u−4(1− u2)2λh(u),

where

h(u) = 1− 2u2 + C4u
2(1− u2)

+ 2u2(1− u2)
[
log(1− u2)− 2 log u

]
for an arbitrary constant C4. This implies that ζ has the asymptotic behav-
ior

ζ(u) =

{
u−4 +O

(
u−2 log u

)
as u↘ 0,

−(1− u2)2λ +O
((

1− u2
)1+2λ

log(1− u2)
)

as u↗ 1.
(4.12)

We then have the following estimates. For 0 < u < 1/2,∣∣∣Q̂u[Z1, ζ]
∣∣∣ ≤ C5u

−8,
∣∣∣Qu[ζ]

∣∣∣ ≤ C6u
−10.(4.13)

For 1/2 ≤ u < 1,∣∣∣Q̂u[Z1, ζ]
∣∣∣ ≤ C7(1− u2)3λ−1,

∣∣∣Qu [ζ]
∣∣∣ ≤ C8(1− u2)4λ−2.(4.14)

Using the definition of ζ and the estimate (4.10), we have

e2λτDu[z+ext] ≥
(
A3 − C3A

2
2

)
u−6(1− u2)2λ

− A2A3

n− 1
e−λτ

∣∣∣Q̂u [Z1, ζ]
∣∣∣− A2

3

n− 1
e−2λτ

∣∣∣Qu [ζ]
∣∣∣.

We choose A∗3 = 2C3A
2
2. Then for A3 ≥ A∗3, we have the following. For

0 < u ≤ 1/2, there exists a constant B2 <∞ such that (4.13) implies

e2λτDu[z+ext] ≥ C9u
−6
(
A2

2 − C5A2A3u
−2e−λτ − C6A

2
3u
−4e−2λτ

)
≥ 0

for eλτu2 ≥ B2
2A3/A2, that is,

B2

√
A3

A2
e−λτ/2 ≤ u ≤ 1

2
.

For 1/2 ≤ u < 1, writing v := 1− u2, then in view of (4.14),

e2λτDu[z+ext] ≥ C10

(
A2

2 − C7A2A3e
−λτvλ−1 − C8A

2
3e
−2λτv2λ−2

)
v2λ

≥ 0

if τ ≥ τ2 with τ2 sufficiently large.
Therefore, z+ext is indeed a supersolution. That z−ext is a subsolution is

proved similarly. �
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5. Barriers

We denote by zform the formal solution constructed in Section 3. A lower
(upper) barrier is a subsolution (supersolution) that lies below (above) zform
in an appropriate space-time region. The main result of this section is the
following.

Proposition 5.1. There exist a sufficiently large τ0 <∞ and positive piece-
wise smooth functions z±(u, τ), 0 < u < 1 and τ ≥ τ0, such that the follow-
ing are true.

(B1) z± are upper (+) and lower (−) barriers to equation (3.3).
(B2) z−(u, τ0) < zform(u, τ0) < z+(u, τ0) for u ∈ (0, 1).

(B3) Near u = 0, z± = z±int; near u = 1, z± = z±ext.
(B4) At any τ ∈ (τ0,∞), lim

u↘0
z− = lim

u↘0
z+ = 1, and lim

u↗1
z− = lim

u↗1
z+ = 0.

(B5) At any τ ∈ (τ0,∞), there exists a constant K independent of τ such
that ∣∣z±u /u∣∣, ∣∣z±uu∣∣ ≤ Keλτ ,(5.1)

at points where z± are smooth.

The proposition will follow from several lemmata. We first explain the
idea behind its proof. We properly order z±ext and z±int so that z−int ≤ z+int,

z−ext ≤ z+ext. We then patch together z+int and z+ext near the interior-exterior
interface to obtain an upper barrier. A similar patching argument yields a
lower barrier.

Lemma 5.2. Let β be defined as in Lemma 4.1. Let A+
1 and A−1 denote the

constant A1 in z+int and z−int, respectively. For A−1 > A+
1 , there exists τ3 ≥ τ1

such that

z±int = B(A±1 r)± e
−λτβ

are properly ordered in Ωint for all τ ≥ τ3.

Proof. For A−1 > A+
1 , using the asymptotic expansions of B and β (cf. the

proof of Lemma 4.1) we have the following. Near r = 0, with b2 > 0,

z+int − z
−
int =

{
b2
[
(A−1 )2 − (A+

1 )2
]

+ 2[1 + o(1)]e−λτ
}
r2 +O(r4)

> 0 as r ↘ 0.

Near r =∞, with Â = 1 + λ−1
2 ,

z+int − z
−
int =

[
(A+

1 )−2 − (A−1 )−2
] {
r−2 − 2[Â+ o(1)]e−τ

}
+O

(
r−4
)

> 0

for sufficiently large τ and r. On any bounded interval c < r < C and for
sufficiently large τ , it is straightforward to check that z+int > z−int. Thus, the
lemma follows. �
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Lemma 5.3. Let Z1 and ζ be defined as in Lemma 4.2. Let A+
2 and A−2

denote the constant A2 in z+ext and z−ext, respectively. For A+
2 > A−2 , if we

relabel A3 := max{A3(A
+
2 ), A3(A

−
2 )}, B2 := max{B2(A

+
2 ), B2(A

−
2 )}, τ2 :=

max{τ2(A+
2 ), τ2(A

−
2 )}, then there exists τ4 ≥ τ2 such that

z±ext(u, τ) = e−λτA±2 Z1(u)± e−2λτA3ζ(u)

are properly ordered in Ωext
1 for all τ ≥ τ4.

Proof. For A+
2 > A−2 , the asymptotic expansions (4.12) of ζ imply the fol-

lowing. As u↘ 0, z+ext > z−ext. As u↗ 1,

z+ext − z
−
ext = e−λτ (1− u2)1+λ

{
(A+

2 −A
−
2 )u−2 − 2A3e

−λτ (1− u2)λ−1
}

+ e−2λτO
(

(1− u2)λ log(1− u2)
)

> 0

for all τ sufficiently large. On any interval 0 < a ≤ u ≤ b < 1 and for
sufficiently large τ , z+ext > z−ext by a direct computation. Thus, the lemma is
proved. �

For sufficiently large τ , Ωint and Ωext intersect. In below, we state and
prove a patching lemma for z+int and z+ext. We omit the patching lemma

for z−int and z−ext, since its statement and proof are entirely analogous. To

shorten notations, we write A+
1 and A+

2 as A1 and A2.

Lemma 5.4. Let RD := D
√
A3/A2 where D > 0 is arbitrary. Suppose A1

and A2 satisfy the following inequality

(1 +
3

8
D−2)A2 < A−21 < (1 +

1

2
D−2)A2.(5.2)

Then there exists τ5 := max{τ3, τ4} sufficiently large such that

z+int ≤ z
+
ext at r = RD,(5.3)

z+int ≥ z
+
ext at r = 2RD,(5.4)

for τ ≥ τ5.

Proof. At the interface of the interior and the exterior regions, we have
the following when τ ≥ τ5. From the interior region, as r ↗ ∞, B(r) =
r−2 + c2r

−4 +O(r−6), and so

z+int = A−21 r−2 + c2A
−4
1 r−4 +O(r−6) +O(e−λτ ) as r ↗∞.

From the exterior region, as u ↘ 0, using u = re−λτ/2 and (4.12), we have
on any compact r-interval,

z+ext = A2e
−λτu−2(1− u2)λ+1 +A3e

−2λτu−4
(
1 +O

(
u2 log u

))
= A2r

−2 +A3r
−4 +O(τe−λτ ).

1In the definition (4.8) of Ωext we replace A2 with A−2 since A+
2 > A−2 .
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Then on bounded r-interval, one has

r2
(
z+int − z

+
ext

)
= (A−21 −A2) +

(
c2A

−4
1 +O(r−2)−A3

)
r−2 +O(τe−λτ ).

We can choose a constant Ĉ so large that for

A3 ≥ ĈA−41 and A3 ≥ Ĉ
√
A2,

we have ∣∣∣∣ c2A2

A3A4
1

+O

(
A2

2

A2
3

)∣∣∣∣ ≤ A2

2
.

Then at r = RD,

R2
D

(
z+int − z

+
ext

)
= (A−21 −A2) +

[
c2A2

A3A4
1

+O

(
A2

2

A2
3

)
−A2

]
D−2 +O(τe−λτ )

≤ A−21 −
(

1 +
1

2
D−2

)
A2 +O(τe−λτ ),

and at r = 2RD,

4R2
D

(
z+int − z

+
ext

)
= (A−21 −A2) +

[
c2A2

A3A4
1

+O

(
A2

2

A2
3

)
−A2

]
D−2

4
+O(τe−λτ )

≥ A−21 −
(

1 +
3

8
D−2

)
A2 +O(τe−λτ ).

Now choose A1 and A2 according to (5.2), then the lemma follows for τ ≥
τ5. �

Lemmata 5.2, 5.3, and 5.4 allow us to construct barriers for equation
(3.3). From now on, we denote by z+ a function defined by

z+(u, τ) :=


z+int, if 0 < u ≤ e−λτ/2RD,

min{z+int, z
+
ext}, if e−λτ/2RD ≤ u ≤ 2e−λτ/2RD,

z+ext, if 2e−λτ/2RD ≤ u < 1,

(5.5)

for τ ≥ τ5. We define z− analogously using z−int and z−ext. In particular, for

e−λτ/2RD ≤ u ≤ 2e−λτ/2RD, z− = max{z−int, z
−
ext}.

Lemma 5.5. Let τ ∈ (τ5,∞). There exists a constant K independent of τ
such that ∣∣z±u /u∣∣, ∣∣z±uu∣∣ ≤ Keλτ
at points where z± are smooth.

Proof. At a point where z+ is smooth, z+ is either z+int or z+ext.

Suppose z+ is smooth at u ∈ (0, 2e−λτ/2RD) and z+ = z+int, then

z+ = B(A1r) + e−λτβ(r)

= 1 + C1r
2 + o(r2) + e−λτ

(
r2 + o(r2)

)
as r ↘ 0,

= 1 + C1e
λτu2 + eλτo(u2) + u2 + o(u2) as u↘ 0.
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So then

z+u = eλτ (C2u+ o(u)) + u+ o(u) as u↘ 0,

z+uu = eλτ (C3 + o(1)) + 1 + (o(1) as u↘ 0.

Thus, there exists a constant K1 such that for 0 < u < 2e−λτ/2RD,

|z+u /u|, |z+uu| ≤ K1e
λτ .(5.6)

Suppose z+ is smooth at u ∈ (e−λτ/2RD, 1) and z+ = z+ext, then

z+ = e−λτA2Z1(u) + e−2λτA3ζ(u),

where Z1(u) = u−2(1 − u2)λ+1 for λ ≥ 1, and ζ(u) is a smooth solution to
the ODE (4.11). So then

|z+u /u| . e−λτ |Z ′1/u|+ e−2λτ |ζ ′/u|,

|z+uu| . e−λτ |Z ′′1 |+ e−2λτ |ζ ′′|.
From the definition of Z1, we compute

Z ′1/u = −2
(
u−4 + λu−2

)
(1− u2)λ,(5.7)

Z ′′1 = 2(1− u2)λ−1
[
3u−4 + 3(λ− 1)u−2 + (2λ− 1)λ

]
.(5.8)

From equation (4.11), we have

−1

2
ζ ′ =

(1− u2)2λ−1

u5
+
u−1 + λu

(1− u2)
ζ.

Then using (4.12) we obtain, writing v := 1− u2,

|ζ ′/u| .
{

u−6 +O
(
u−4 log u

)
as u↘ 0,

v2λ−1 +O
(
v2λ log v

)
as u↗ 1.

(5.9)

and similarly,

|ζ ′′| .
{

u−6 +O
(
u−4 log u

)
as u↘ 0,

v2(λ−1) +O
(
v2λ−1 log v

)
as u↗ 1.

(5.10)

Thus, by (5.7)–(5.10), there exist constantsK2,K3 such that for e−λτ/2RD <
u < 1,

|z+u /u| ≤ K2e
λτ , |z+uu| ≤ K3e

λτ .

Choose K = max{K1,K2,K3}, then the lemma is true for z+. The proof
for z− is similar. �

We can now prove Proposition 5.1.

Proof of Proposition 5.1. Since lim
u↘0

z±int = 1, z±int > 0 on 0 < r ≤ 2RD for

sufficiently small D. Since Z1(u) ≥ 0, there exists a sufficiently large τ0 ≥ τ5
such that z±ext > 0 on e−λτ/2RD ≤ u < 1. Thus, z± are positive piecewise
smooth functions for 0 < u < 1 and τ ≥ τ0. The minimum (maximum)
of two supersolutions (subsolutions) is still a supersolution (subsolution), so



20 HAOTIAN WU

(B1) is true. One checks (B2)–(B4) directly using the definition of z± and
the properties of z±int and z±ext. (B5) follows from Lemma 5.5. �

6. Existence and uniqueness of complete solutions

We first prove a comparison principle for equation (3.3). Similar results
have appeared in [4, 37].

Lemma 6.1. Let τ̄ ∈ [τ0,∞) be arbitrary. Let z± be two nonnegative sub-
(+) and supersolutions (−) of equation (3.3) respectively. Suppose there
exists a constant K such that either |z−u /u|, |z−uu| or |z+u /u|, |z+uu| are bounded
by Keλτ . Moreover, assume

(C1) z−(u, τ0) < z+(u, τ0) for 0 < u < 1;
(C2) z−(0, τ) ≤ z+(0, τ), and z−(1, τ) ≤ z+(1, τ) for all τ ∈ [τ0, τ̄ ].

Then z−(u, τ) ≤ z+(u, τ) in [0, 1]× [τ0, τ̄ ].

Remark 6.2. In this lemma, we assume z± are smooth. The result holds
for piecewise smooth z±. When applying the comparison principle, we will
only evaluate z± at “points of first contact with a given smooth function”
which are necessarily smooth points of z± for each τ ≥ τ0.

Proof of Lemma 6.1. Suppose |z+u /u|, |z+uu| ≤ Keλτ . For µ > 0 to be chosen
and arbitrary ε > 0, define a function

w := e−µe
λτ

(z+ − z−) + ε.

Then w > 0 on the parabolic boundary of the evolution by assumptions (C1)
and (C2). We claim that w > 0 in (0, 1) × [τ0, τ̄ ]. Suppose the contrary,
there must be an interior point u∗ and a first time τ∗ such that w(u∗, τ∗) = 0
and wτ (u∗, τ∗) ≤ 0. Moreover, at (u∗, τ∗), we have

z+ = z− − εe−µeλτ∗ , z+u = z−u , z+uu ≥ z−uu.

Then at (u∗, τ∗),

0 ≥ eµeλτ∗wτ =
(
z+τ − z−τ

)
− λµeλτ∗

(
z+ − z−

)
= (z+ − z−)

(
u−2 − λµeλτ∗

)
+

Qu[z+]− Qu[z−]

2(n− 1)

=
(
z− − z+

){
λµeλτ∗ +

(z+u /u)− z+uu
2(n− 1)

+
z+ + z− − 1

u2

}
+ z−

(
z+uu − z−uu

)
≥ εe−µeλτ∗

{
λµeλτ∗ − Keλτ∗

(n− 1)
− 1

u2∗

}
.

Choose µ so large that λµ > K/(n− 1) + u−2∗ e−λτ∗ , then at (u∗, τ∗),

0 ≥ wτ > 0,

which is a contradiction. This proves the case |z+u /u|, |z+uu| ≤ Keτ .
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The case when |z−u /u|, |z−uu| ≤ Keλτ is proved analogously because at the
interior first contact point (u∗, τ∗), we have

eµe
λτ∗
wτ =

(
z− − z+

){
µλeλτ∗ +

(z−u /u)− z−uu
2(n− 1)

+
z+ + z− − 1

u2

}
+ z+

(
z+uu − z−uu

)
.

Therefore, the lemma is proved. �

Now for any solution z of equation (3.3) we have the following.

Lemma 6.3. Suppose 0 < z ≤ z+, then z defines a complete rotationally
symmetric metric g := z−1dψ2 + ψ2gsph on Rn+1.

Proof. By definition g is rotationally symmetric. To see g is a complete
metric, it suffices to show that any radial geodesic η starting from the origin
has infinite length in the s-coordinate. The length of η in s-coordinate is a
function of u and τ given by

s(u, τ) = e−τ/2σ(u) = e−τ/2
∫ u

0

dσ

dû
dû.

Since z = ψ2
s = 2(n− 1)u2σ, and 0 < z ≤ z+ by hypothesis, we have

σ(u)√
2(n− 1)

≥
∫ u

u0

1√
z
dû ≥

∫ u

u0

1√
z+
dû.

As u↗ 1,

z+ext = e−λτA2u
−2(1− u2)1+λ + e−2λτA3ζ(u),

= e−λτA2u
−2(1− u2)λ+1

+ e−2λτA3

{
−(1− u2)2λ +O

(
(1− u2)2λ+1 log(1− u2)

)}
.

So for u0 and τ0 sufficiently large, z+ = z+ext in [u0, 1)× [τ0,∞) with

z+ext ≤ e−λτu−2(1− u2)1+λ
(

3A2

2

)
.

It follows that

s(u, τ)√
2(n− 1)

≥ e−τ/2
∫ u

u0

1√
z+
dû = e−τ/2

∫ u

u0

1√
z+ext

dû

≥
√

3A2

2
e(λ−1)τ/2

∫ u

u0

û

(1− û2)(1+λ)/2
dû.

Hence,

s(u, τ)√
3(n− 1)A2

≥

{
e(λ−1)τ/2

{
log(1− u20)− log(1− u2)

}
, λ = 1,

e(λ−1)τ/2

(λ−1)
{

(1− u2)(1−λ)/2 − (1− u20)(1−λ)/2
}
, λ > 1.

Therefore, for each τ ≥ τ0, lim
u↗1

s(u, τ) =∞, thus proving the lemma. �
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We are now ready to prove our main result.

Proof of Theorem 1.1. Let ẑ0 be the function obtained by patching together
B(Ã1r) and Ã2Z1(u), where A+

1 < Ã1 < A−1 and A−2 < Ã1 < A+
2 . Because

z−(u, τ0) < z+(u, τ0), we can smooth out ẑ0 to obtain a smooth initial
profile z0 with 0 < z−(u, τ0) < z0 < z+(u, τ0) for 0 < u < 1. By Lemma 6.3,
z0 determines a complete rotationally symmetric metric g0 on Rn+1. It is
straightforward to check that g0 has bounded sectional curvatures. Since the
sectional curvatures depend smoothly on the metric, there is a neighborhood
Gn+1 of g0 in the C2-topology that corresponds to an open set of z all of
which lie between z−(u, τ0) and z+(u, τ0).

Let g0 ∈ Gn+1. There exists a unique solution g(t) to Ricci flow for
t ∈ [0, T0) with g(0) = g0 [40, 15]. By expression (2.1), g0 has a ψ-profile
function ψ(s, 0) < r0 for some constant r0 > 0. Since the metric g̃t =

ds2 + ψ̃(t)2gsph with ψ̃(0) ≡ r0 is a shrinking cylinder solution to Ricci flow

on R× Sn, ψ(t) ≤ ψ̃(t) where ψ̃(t)↘ 0 in finite time. So g(t) encounters a
global singularity.

The profile z(u, τ) of g(t) is the unique solution of equation (3.3) for
0 < u < 1 and τ ≥ τ0, with boundary conditions z(0, τ) = 1 and z(1, τ) = 0,
and initial condition z(u, τ0) = z0. The barriers z± satisfy the hypotheses
of Lemma 6.1, so z− ≤ z(u, τ) ≤ z+ by the comparison principle for τ0 ≤
τ <∞. So for 0 ≤ t < T = e−τ0 , g(t) corresponding to z(u, τ) is a complete
metric on Rn+1 by Lemma 6.3.

The sectional curvatures of g(t) at the origin O are

K|O = L|O = lim
x↘0

1− ψ2
s

ψ2
= lim

r↘0

1− z
r2

e(λ+1)τ =
C

(T − t)(λ+1)
,

where C is a positive constant depending on n. So part (1) of Theorem 1.1
is proved.

Since z− ≤ z(u, τ) ≤ z+ for any τ < ∞, the solution z(u, τ) exhibits
the asymptotic behavior of z±. Near the origin, z(u, τ) converges uniformly
to the Bryant soliton profile function for 0 < u < RDe

−λτ and τ ↗ ∞.
Near spatial infinity, u ↗ 1 while z(u, τ) ↘ 0. Thus, g(t) has asymptotic
behavior described in parts (2) and (3) of Theorem 1.1. �

7. Relation to the standard solutions

In [39], Perelman described a special family of Ricci flow solutions, the so-
called standard solutions, on R3. These solutions are complete rotationally
symmetric with nonnegative sectional curvature, and split at infinity as the
metric product of a ray and the round 2-sphere of constant scalar curvature.

Consider a rotationally symmetric metric g0 on Rn+1 with the following
properties:

(P1) Rmg0 ≥ 0 everywhere with Rmg0 > 0 at some point.
(P2) The curvature |Rmg0 | and its derivatives |∇i Rmg0 |, i = 1, 2, 3, 4

are bounded.
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(P3) There is a sequence of points yk →∞ in Rn+1 such that (Rn+1, g0, yk)
converges to R× Sn(r0), where r0 > 0 is some constant, in pointed
C3 Cheeger-Gromov topology.

Following [36], a Ricci flow solution g(t) whose initial condition satisfies
(P1)–(P3) is called a standard solution. A standard solution of Ricci flow is
unique up to the first singular time [36, 15].

Lemma 7.1. Let Gn+1 be as in Theorem 1.1. There is an open set G∗n+1 ⊂
Gn+1 of metrics that satisfy properties (P1)–(P3).

Proof. Define

G∗n+1 := {g0 ∈ Gn+1 : g0 satisfies P(1)–P(3)} .

We first show G∗n+1 is nonempty.
Let τ = τ0 correspond to t = 0. By the proof of Theorem 1.1, there exists

ẑ0 which is obtained by patching scaled copies of B and Z1. Let ĝ0 be the
metric determined by the profile function ẑ0. For ĝ0, K = −(zu/2u)eτ0 =

−(zr/2r)e
(λ+1)τ0 > 0 at the origin. Observe that the patching occurs in

RD ≤ r ≤ 2RD, where RD = D
√
A3/A2 for an arbitrary constant D > 0.

So by the continuity of K there exists D0 such that K > 0 for 0 < r ≤ 2R0,
where R0 := RD0 . On the other hand, where ẑ0 = A2u

−2(1 − u2)1+λ, we
have

K = −
−zψ
2ψ

= (−−zu
2u

)eτ = A2u
−4(1− u2)λ(1 + λu2)eτ > 0.

Hence, the piecewise smooth function ẑ0 determines a metric ĝ0 for which
K > 0 in the interior of Rn+1 where ĝ0 is smooth, and K ↘ 0 as u ↗ 1,
i.e., as one approaches spatial inifinity. Since z− < z+, we can smooth ẑ0
to obtain a smooth metric g0 for which K ≥ 0 everywhere with K > 0 at
the origin, and g0 ∈ Gn+1. Also for this metric g0, because L = (1− z)/ψ2,
L ≥ 0 everywhere with L > 0 at the origin, and L → 1/ψ2 as we approach
spatial infinity. Thus, g0 satisfies (P1).

To check (P2), we first note that |Rmg0 | is bounded by the proof of
Theorem 1.1. The derivatives ∇i Rmg0 , i ∈ N, are determined by ∂isK and

∂isL. Recall that s(u, τ) = e−τ/2σ(u) and z = 2(n− 1)u2σ, then at time τ0,

∂s

∂u
=
∂σ

∂u
e−τ0/2 = e−τ0/2

√
2(n− 1)
√
z0

.

Since 0 < z− < z0 < z+, arguing as in the proof of Lemma 6.3, there exists
u0 ∈ (0, 1) such that for u0 ≤ u < 1,

∂u

∂s
.
√
z+ext . (1− u2)(λ+1)/2, λ ≥ 1.(7.1)

By the chain rule that ∂s = (∂u/∂s)∂u, one checks that

|Ks| . (1− u2)(3λ−1)/2, |Ls| . (1− u2)(λ+1)/2 +O
(

(1− u2)(3λ+1)/2
)
.
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So Ks and Ls are bounded. Similarly, direct computation shows that |∂isK|
and |∂isL| are bounded for i = 2, 3, 4. If 0 < u ≤ u0, then we are looking
at a compact subset of Rn+1 where |∇i Rmg0 | are bounded for any i ∈ N
because g0 is smooth. Thus, g0 satisfies (P2).

To check (P3), we let yk to be a sequence of points whose s-coordinates
sk ↗ ∞ as k ↗ ∞. Let Uk := (−k,∞) × Sn(r0) be an exhaustion of the
cylinder R × Sn(r0). Then the translation map s 7→ (s + 2k) defines an
embedding ψk : Uk → Rn+1, Vk := ψk(Uk) = (k,∞) × Sn(r0). We need to
show for g0 = ds2 + ψ(s, τ0)

2gsph,

g0|Vk
C3

−→ gcyl on compact subsets of R× Sn(r0),(7.2)

where gcyl = ds2 + r20gsph is the standard metric on the round cylinder.
Without loss of generality, assume r0 = 1. For all sufficiently large k, the
u-coordinate of yk is bounded between u0 and 1. At initial time, ψ . u, so
∂isψ . ∂isu, i ∈ N. Then at τ = τ0, as sk ↗∞, ψ . u↗ 1, and hence from
(7.1), we obtain

ψs . us . (1− u2)
(λ+1)

2 ↘ 0,

ψss . uss . (1− u2)λ ↘ 0,

ψsss . usss . (1− u2)
(3λ−1)

2 ↘ 0.

This shows (7.2)2, and hence g0 satisfies (P3).
Therefore, g0 ∈ G∗n+1. Since the sectional curvatures depend smoothly on

the metric, there is an open set G∗n+1 of g0 in C6-topology such that any
g ∈ G∗n+1 satisfies P(1)–P(3). Hence, the lemma follows. �

We now prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 7.1, the Ricci flow solution g(t) on Rn+1

starting at g0 ∈ G∗n+1 is a standard solution. Since g0 ∈ Gn+1, Theorem 1.1
applies to g(t), and so Theorem 1.3 follows. �
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