ON TYPE-I SINGULARITIES IN RICCI FLOW ON R"+!

HAOTIAN WU

ABSTRACT. In each dimension n+1 > 3 and for each real number \ > 1,
we construct complete solutions to Ricci flow on R™*! which encounter
global singularities at a finite time 7. The singularities are forming
arbitrarily slowly with the curvature blowing up arbitrarily fast at the
rate (T'— t)f(’\“). Near the origin, blow-ups of such a solution converge
uniformly to the Bryant soliton. Near spatial infinity, blow-ups of such
a solution converge uniformly to the shrinking cylinder soliton. As an
application of this result, we prove that there exist standard solutions of
Ricci flow on R™"! whose blow-ups near the origin converge uniformly
to the Bryant soliton.

1. INTRODUCTION

An important phenomenon in Ricci flow is the formation of finite-time
singularities which occurs for a large family of initial metrics. Let (M, g) be
a complete Riemannian manifold and ¢(t) be a solution to the Ricci flow

0
ad = —2Ric(g)
for time ¢ > 0. Suppose g(t) becomes singular at time 7" < co. Then this
finite-time singularity is called Type-I if
sup_[Rm(, )] (T — 1) < 0,
Mx[0,T)

and it is called Type-1I if

sup |Rm(-,¢)[ (T —t) = oc.
Mx[0,T)

The simplest example of a Type-I singularity in Ricci flow is the shrinking
round sphere. In his seminal paper [27], Hamilton proved that Ricci flow on
a compact three-manifold with positive Ricci curvature develops a Type-1
singularity and shrinks to a round point. The same is true for Ricci flow on a
compact four-manifold with positive curvature operator [28]. By the works
of Hamilton [29] and Chow [I8], Ricci flow on S? with an arbitrary initial
metric always develops a Type-I singularity and shrinks to a round point. On
a compact n-dimensional manifold for n > 3, Bohm and Wilking [8] proved
that Ricci flow starting at a metric with 2-positive curvature operator (the
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sum of the two smallest eigenvalues of Rm is positive) develops a Type-I
singularity and shrinks to a round point. We note that the n = 4 case in
their result was known earlier [16]. Brendle [I0] generalized the result of
[8] under a much weaker assumption on the curvature operator. All these
Type-I singularities are global in the sense that the volume of a manifold
shrinks to zero at time 7.

In [30], Hamilton sketched intuitively the formation of local singularities
under Ricci flow. By local we mean that a singularity forms on a compact
subset of a manifold while the volume of the manifold remains positive at
time 7. Rigorous results on finite-time local singularites in Ricci flow were
obtained later. On a noncompact warped product R x ¢ S™, Simon [41]
showed that there are Ricci flow solutions that encounter finite-time local
singularities. For local singularities in Ké&hler-Ricci flow, the first exam-
ples were constructed on holomorphic line bundles over CP"~! using U (n)-
invariant shrinking gradient Kéhler-Ricci solitons [23].

Hamilton’s examples of local singularities are the so-called neckpinches
on a sphere. To describe them precisely, we recall the blow-up technique in
singularity analysis. We say that a sequence {(z;,t;)}32, of points and times
in a Ricci flow is a blow-up sequence at time T if ¢; /T and |Rm(x;, ;)| ~
oo as i ' oo. A blow-up sequence has a pointed singularity model if the
sequence of parabolically dilated metrics

gi(z,t) := [Rm(z;, t;)| g (w,ti + ]Rm(xi,ti)\*lt)

has a complete smooth limiting metric. A Ricci flow solution is said to
develop a neckpinch singularity at time 7' < oo if there is some blow-up
sequence at T whose pointed singularity model exists and is given by the
self-similarly shrinking Ricci soliton on the cylinder R x S™.

A neckpinch singularity is nondegenerate if every pointed singularity model
of any blow-up sequence at T is a shrinking cylinder soliton. A nonde-
generate neckpinch is a Type-I singularity. The first rigorous examples of
finite-time neckpinch singularities in Ricci flow on a compact manifold were
produced by Angenent and Knopf [3]. They exhibited a class of rotation-
ally symmetric metrics on S™*! (n > 2) which develop Type-I neckpinch
singularities under Ricci flow. In a subsequent paper [7], the same authors
proved the precise asymptotics for such neckpinch singularities.

A neckpinch singularity is degenerate if there is at least one blow-up se-
quence at T with a pointed singularity model that is not a shrinking cylinder
soliton. A degenerate neckpinch is expected to be a Type-II singularity. In
this paper, we construct Ricci flow solutions that encounter finite-time Type-
Il singularities, which can be regarded as global degenerate neckpinches on
R"™t1. Before stating our main theorem, we first recount the existing results
on Type-II singularities in Ricci flow.

Daskalopoulos and Hamilton [21] showed that on R? there exist complete
noncompact Ricci flow solutions that form Type-II singularities at the rate
(T —t)~2. Their proof is particular to dimension two, in which case the Ricci
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flow is conformal and the conformal factor u evolves by the logarithmic fast
diffusion equation u; = Alogu. Assuming rotational symmetry and addi-
tional constraints, Daskalopoulos and del Pino [20] gave a precise description
of the extinction profile of this maximal solution in R?: up to proper scaling,
it must be a cigar soliton in an inner region, and a logarithmic cusp in an
outer region. Daskalopoulos and Sesum [22] proved the same result without
assuming rotational symmetry. An extension of the results of [20, 22] was
obtained by Hui [31]. The formal asymptotics of the extinction profile were
derived by King [33].

In dimension three or higher, if one is willing to assume rotational sym-
metry of the metrics, then the Ricci flow is reduced to a parabolic equation
for a scalar function. Gu and Zhu [26] proved the existence of Type-II sin-
gularities on S"*!, although their work shed little light on the geometric
details of such solutions. Garfinkle and Isenberg [24, 25] have conducted
numerical investigations on the formation of Type-II singularities modeled
by degenerate neckpinches on 3.

In their recent works, Angenent, Isenberg, and Knopf [5, [6] demonstrated
the existence of rotationally symmetric Ricci flow solutions on S™*! that
develop finite-time Type-II degenerate neckpinches. Their solutions become
singular at the rate (T —t)~2*%/% for k € N and k > 3. Moreover, they were
able to describe the asymptotic profiles of these solutions. The techniques
in [5], [6] have been applied to study singularity formation in other geometric
flows. For example, Angenent and Veldzquez [I] studied the asymptotic
shape of cusp singularities in the curve shortening flow. The same authors
[2] constructed solutions with degenerate neckpinches to the mean curvature
flow.

In this paper, we consider rotationally symmetric Riemannian metrics on
R™"! (n > 2). We first note that Ricci low on R™™! can encounter finite-
time singularity. For example, take a metric on S™"*! as constructed in [3]
and conformally open up the north pole of the sphere. This produces an
initial geometry on R™*!, which one expects to develop finite-time Type-I
neckpinch singularity under Ricci flow. Similarly, one expects that there
are Ricci flow solutions that form finite-time Type-II singularities on R™*!,
Indeed, this happens on R? [21].

We now state our main result.

Theorem 1.1. In each dimension n+1 > 3 and for each real number A > 1,
there exists an open set of complete rotationally symmetric metrics Gpy1 on
R such that the Ricci flow starting at go € Gny1 has a unique solution
g(t) fort € [0,T), T < co. The solution g(t) develops a finite-time global
singularity at time T with the following properties.

(1) The singularity is Type-1I with

C
b, 1R, Ol = oo
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attained at the origin, where C' is a constant depending on n.

(2) If one rescales a solution so that the distance from the origin dilates
at the rate (T — t)_()“H)/Q, then the metric converges uniformly on
intervals of order (T — t)M1/2 to the Bryant soliton.

(3) If one rescales a solution at the parabolic rate (T —t)~'/2, then the
metric converges uniformly to the shrinking cylinder soliton near
spatial infinity.

Furthermore, the solutions exhibit the asymptotic behavior of the formal so-
lution described in Section [3.

Remark 1.1. The singular time T is determined only by the initial radius
of the asymptotic cylinder at spatial infinity. In terms of the rescaled time
70 (¢f. Proposition , T=e.

Theorem is inspired by [B5, 6]. To prove it, we begin by constructing
a family of formal solutions to Ricci flow on R"™! with curvature blow-
up rate of (T — t)~ Y near the origin for each A > 1, and of (T —t)~!
near spatial infinity. Using each formal solution, we construct upper and
lower barriers to the Ricci low PDE and prove a comparison principle.
Before the first singular time 7, the curvatures are bounded and so the
Ricci flow solution exists and is unique [40} [I5]. For all initial data between
the barriers, we obtain unique complete solutions to the Ricci flow whose
asymptotic properties are the same as those of the formal solution.

Our result is interesting in several aspects. First of all, this shows that
Type-II singularities in Ricci flow on R™*! can occur arbitrarily slowly with
curvatures blowing up at arbitrarily fast rate. This complements the works
of [5,6]. The A =1 case in Theorem can be viewed as a higher dimen-
sional version of the result of Daskalopolous and Hamilton [21] for rotation-
ally symmetric solutions. The asymptotics in Theorem can be compared
to those in [20, 22]. Secondly, solutions in [6] become singular at the set
of discrete rates (T — t)~2t2/F where k € N and k > 3. In contrast, the
curvature blow-up rates of the Ricci flow solutions in Theorem form a
continuum since A € [1,00). In particular, the A = 1 case can be thought
of as the limiting case of [6, Main Theorem] as k * co. Thirdly, the anal-
ysis in [24, 25 26] suggest that the formation of Type-II singularity on a
compact manifold is an unstable property. As a result, the proof in [6] uses
the somewhat indirect Wazewski retraction method. In comparison, we use
a comparison principle to give a direct proof of Theorem So one may
regard the formation of Type-II singularity on a noncompact manifold to be
a stable property.

Our solutions are modeled by the Bryant soliton near the origin. This
is reasonable because blow-ups of Ricci flow singularities are expected, and
in many cases proved, to be Ricci solitons. On R"! (n > 2), the Bryant
soliton is a rotationally symmetric gradient steady Ricci soliton with pos-
itive curvature operator [13, 19]. In dimension three, Bryant [13] showed
that there are no other rotationally symmetric steady Ricci solitons. Other
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non-rotationally symmetric solitons exist in higher dimensions [32]. Perel-
man [38] asked if any three-dimensional steady Ricci soliton is necessarily
rotationally symmetric. Brendle [12] answered this question affirmatively by
proving that on R?, any steady gradient Ricci soliton which is x-noncollapsed
and non-flat must be rotationally symmetric. Brendle [I1] also proved a
higher dimensional version of this theorem. There are other uniqueness
results for Bryant solitons under the additional assumption such as local
conformal flatness [14], or suitable asymptotics near spatial infinity [9], or
half conformal flatness [17].

In [39], Perelman described a special family of Ricci flow solutions on R3,
the so-called standard solutions, which are complete rotationally symmetric
metrics asymptotic to a round cylinder at spatial infinity. The standard
solutions are used to construct long-time solutions and to study Ricci flow
with surgery [39, [34]. We will see that a subset of Ricci flow solutions in
Theorem [1.1|are in fact standard solutions in the sense defined in [36]. More
precisely, we have the following result. We refer the reader to Section [7] for
the definition of a standard solution.

Theorem 1.2. Letn+ 1> 3. Let G, y1 be given as in Theorem . There
erists an open set G, .1 C Guy1 such that the Ricci flow starting at go €
G 1 has a unique standard solution g(t) on R fort € [0,T), T < oo.
Moreover, the solution g(t) satisfies all the properties described in Theorem

1
Bennett Chow and Gang Tian have conjectured [35] the following.

Conjecture 1.2 (Chow-Tian). Sequences of appropriately scaled standard
solutions (as defined in [36] ) with marked origins converge to Bryant solitons
in a suitable sense.

A corollary of Theorem gives evidence in favor of the Chow-Tian
conjecture.

Corollary 1.3. In dimension n+ 1 > 3, there exist standard solutions to
Ricci flow whose blow-ups near the origin converge uniformly (cf. part (2)
of Theorem to the Bryant soliton.

The paper is organized as follows. In Section 2, we describe the basic
set-up and the coordinates which we will use. In Section 3, we construct a
family of formal solutions with matched asymptotics. We construct sub- and
supersolutions to the Ricci flow PDE in Section 4, and use these functions
to construct upper and lower barriers in Section 5. In Section 6, we prove
a comparison principle for the Ricci flow PDE and use it to prove Theorem
In Section 7, we relate our solutions to the standard solutions and prove

Theorem [[.2

Acknowledgments. I sincerely thank my adviser Prof. Dan Knopf for
his mentorship and support, without which this work would not have been
possible. As usual, I appreciate Dan’s good humor.
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2. PRELIMINARIES

Let gspn be the metric of constant sectional curvature one on S™. We punc-
ture R"*! at the origin and identify the remaining manifold with (0, co) x S™.
For z € (0,00), we define a warped product metric

g = g(t,ﬂ?) = 902(t,93)dl‘2 + ,¢2(ta x)gsph-

The distance s to the origin is

X
s(t, @) = /0 o(t, y)dy.
In the s-coordinate, the metric becomes

(2.1) g =ds® +1* (s, 1) goph-

Extending the metric g to a smooth complete rotationally symmetric metric,
which we still denote by g, on R™*!, then 1) necessarily satisfy the boundary
conditions

limy =0 and limy,=1.

\0 ¥ z\,0 Vs

We let 04, and 0;|s denote taking time derivatives while keeping x and s
fixed, respectively. Then

(O], 0] = —nlffas.

In the s-coordinate, the Ricci flow is reduced to the scalar equation
143
P2
The function ¢, which is suppressed in the s-coordinate, evolves by
Vss
(8
Let K be the sectional curvature of a two-plane orthogonal to the sphere

{z} x S™, and let L be the sectional curvature of a tangential two-plane.
Then

(2.2) Otz = 1hss — (n — 1)

Ot|z(log @) =n

wss L= - 1/}32,
AN P2
In particular, | Rm|? = 2nK? + n(n — 1)L
Since il{‘% s = 1 and the metric is smooth, ¥ > 0 in a neighborhood of

K=—

the origin. So we can use 1 as a new coordinate there, writing

(2'3) g= 2(% t)_ldwz + wZQSpm

where z (1,t) := 92. Then the sectional curvatures are computed by
Zyp 1—=2

K:—@, L: 1!)2
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Under the Ricci flow, the metric (2.3) evolves by (cf. [6, Section 2.2])
(2.4) Ohlyz = Eylz],

where & is the purely local quasilinear operator

1 1-
Eplz] i= 22y — 525 +(n—-1- z)% +2(n — 1)(@522)2
We can split €, into a linear and a quadratic term:
Eulz] = Lyl + 9y,
where
2 z
2.5 Lylz] =(n—1 +2),
(25) il i= 0= (242
) 15 zzy 22
(2.6) Q2] == 22y — 2%~ o (n— 1)W
The quadratic part defines a symmetric bilinear operator
A 1
(2.7) a1, 2] 1= 5 2122y + 22(21)py — (21)y(22)y)
B 21(2’2)¢ + ZQ(Zl)w B 2(n B 1)2122‘
21 P2

In particular, Qu[z] = Qw[z, z].

Throughout this paper, we use Cy (k € N) to denote a constant that may
change from line to line. The expression “f < ¢” means f < Cig for some
constant CY.

3. THE FORMAL SOLUTION

We first briefly review the formal solution in [5] [6]. Introducing the coor-
dinates consistent with a parabolic cylindrical blow-up:

Y s
= 5 g =
V2(n —1)(T —t) T—t
then in these coordinates, equation (2.2]) becomes

(3.1) u: , 1= —log(T —1),

w—u1

2

2 |8

(3.2)  Orlot = gy — (% + nf[u]) Uy + F(n—1)

)

where
o, (A
Iu](o, 7) ::/ Md&.
o u(6,7)
For bounded o, the solution to equation ({3.2)) is approximated by

o
ur 1+ Z ame AT, (o),
m=0
where h,, is the m-th Hermite polynomial. In [5] [6], the authors assume a
nondegenerate neckpinch occurs at the equator of S**! in such a way that
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the Ricci flow solution does mot approach a cylinder too quickly. So the
term with m = k is dominant for some specified £ > 3. They then construct
a formal solution with matched asymptotics in four connected regions: the
outer, parabolic, intermediate, and tip regions. Their construction starts
in the parabolic region which models a nondegenerate neckpinch near the
equator of S"*!, and ends in the tip region which models a degenerate
neckpinch at one of the poles of S"*1.

In this paper, we are interested in solutions that approach a cylinder
“quickly”. This leads us to the following construction. We first build a
model for degenerate neckpinch near the origin of R"*!, we then work our
way out to the rest of the manifold. We will see that our formal solution
is defined in two connected regions: the interior and exterior regions. It
turns out, cf. the proof of Lemma these are enough to define complete
metrics on R”*1. One may compare to the compact case and think that in
the noncompact case the parabolic and outer regions are pushed to spatial
infinity.

3.1. Approximate solution in the interior region. In the interior re-
gion, which is to be specified in (4.2)), we expect u to be small and introduce
the variable

r:=eu,

where v > 0 is a constant to be specified.
In the u-coordinate, by the change of variable formulae:

d 1
Otz = {0r|uz + 2u (07 |pu) dit— = <87|u2 + 21&2'1/,) e,
1 T
Eple] = me Eulz],
equation (2.4)) becomes
1 1

where we have used ¥zy, = uz,.
In the r-coordinate, since

67—’7«2 - 67’“Z + Zu (aT‘Tu) = 67"“2 — YURy,  UZy = T2y,
Eulz] = €7E, 2],

equation (3.3)) becomes

where

(34) Tl im e {8T]rz + (; —|—”y> mr} _ 2(711_1)37[21.
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For sufficiently large 7, the term involving e 27" becomes neglible and the
equation T,[z] = 0 is approximated by
Er[z] =0,

whose solutions, subject to the boundary conditions z(0) = 1 and z(co0) = 0,
are the Bryant soliton profile functions

z(r) = B(ar),
where a > 0 is an arbitrary constant. Each member of the one-parameter
family of complete smooth metrics given by

g =B ar)dr® + T2gsph

is a scaled version of the Bryant soliton.
The function B(r) is smooth and strictly monotone decreasing for all
r > 0. Near r = 0, B(r) has the asymptotic expansion

(3.5) B(r)=1- bor? + bsrt +b3r® + -+ asr N\ 0,

where by’s are constants. In particular, bp > 0. Near r = oo, B(r) has the
asymptotic expansion

(3.6) B(r)=r2+cor t4+er 4+ asr Aoo,

where ¢i’s are constants. In this paper, we normalize B(r) by setting co = 1.
For more information on %B(r), we refer the reader to [5 Appendix BJ.

Refining the approximate solution by considering an expansion of the
form

(3.7) z=B(ar) + e BL(r) + e T Bo(r) -+,
where 7 > 0, then

z~a2r7 2 asT oo, T oo,
which, in terms of the u-coordinate, is

—2,-2y7,,—2

z~a as 7 " 0o, u small.

In Lemma we will use z = B(ar) + e 77 B1(r) with 4 = A, where A
is introduced in equation (3.8)), to construct sub- and supersolutions in the
interior region.

3.2. Approximate solution in the exterior region. We expect the ex-
terior region, which is to be specified in , to be a time-dependent subset
of the neighborhood of the origin where 1 > z > 0 and 0 < v < 1. In this
region, z evolves by equation (3.3)), i.e.,

1 1

Orluz = mé’u[z] - 5U%
To construct a formal solution to this equation, we try the series
(3.8) p=e M Z1(u) + e N L) =Y e Zy (u),

m>1
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where A > 0 is a constant to be chosen. We substitute this expansion into
the equation above and split €,[z] into linear and quadratic parts given in
(2.5) and respectively. By comparing the coefficient of e ™ in the
resulting equation, we find Z,,, must satisfy the ODE

m—1

Z QulZis Zmil.

=1

1 dZy, _
(3.9) 5(u 1—u)%+(u 24 m\) Zny = —

1
2(n—1)

When m = 1, equation (3.9)) is a linear homogeneous equation
1 Al

(310) 5('&71 — U)% + (U72 =+ )\) Z1 = 0,
whose solutions are
(3.11) Zy(u) = bu=2(1 — u?)tA,

where b is an arbitrary constant that will be determined by matching con-

siderations.
When m = 2, equation (3.9) becomes
1 dZs

(3.12) 5(u—1 —u) = (™2 +2)) Zy = Qu[Z1],

where
(3.13)  Qu[Z1] = 2b%u%(1 — u?)*M4 — n(1 — u?)?
+2u(A = 3) +ut(A - 1)H)}.
So the solutions of equation are
Zy(u) = u™?(1 = u?) " f(w),

where

4—n AN-1
2

—4(1 + \)? (log(1 — u?) — 2log u)

for an arbitrary constant Cf.
By direction computation, we have the following.

Lemma 3.1. If A > 1, then
liny ’ZQ(U)/Z1 (u)‘ — 0.
So for any A > 1,
2(u,7) ~ e Mhu2(1 — u?)TA + 0 (efQATZg(u)>

is a valid approximation for v 1 and 7 sufficiently large. Going in the
other direction, as u \, 0,

Zi(u) = bu"?,  Zs(u) = O(u™),
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so then
e M2 40 <€—2)\7—u—4> _
This approximation is valid as long as
e by~ > |e_2’\7u_4\,
which is when

usS> e—)\T/2’

or equivalently, in the r-coordinate,

r> (AT,
From now on, given A > 1, we choose v = /2.

3.3. Matching condition. We now match the formal solutions in the in-
terior and the exterior regions when 7 is sufficiently large. At r = A4 > 1,
the formal solution in the interior region is approximately

2(A) = B(ad) + e N B(A)
~ B(aA)
~ (aA)~2.
At u = e~*/2 A, the formal solution in the exterior region is approximately
P (e—)\T/QA) ~ e—)\Tzl (e—AT/2A>
A DA (1 — e A%
~ A2
Thus, matching the two expressions implies that for a given constant a > 0,

we ought to have

bra 2.
This relation is made more precise in Lemma [5.4]

3.4. Features of the formal solution. Our formal solution is valid for all
dimensions n+1 > 3, and it is defined in the interior and the exterior regions.
Cf. the proof of Lemmal6.3] the metric corresponding to the formal solution
is complete on R™*!, and one approaches spatial infinity as u 1. Also, as
u A1, z(uw) N\ 0, ie., s N\ 0, so the metric (2.1) is approaching that of a
round cylinder near spatial infinity. As v \, 0 and 7 7 o0, z(u) /1 and
the formal solution z is asymptotic to a Bryant soliton profile function.

The norm of the curvature tensor achieves its maximum value at the
origin O [0], where we have

C

| Rm(0, t)| = (T = 0D
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for some constant C' depending on n. Thus, the curvature of a Ricci flow so-
lution that asymptotically approaches this formal solution necessarily blows
up at the same rate.

4. SUB- AND SUPERSOLUTIONS

A metric of the form evolving under the Ricci flow is determined by
a profile function z which, in the u-coordinate, satisfies the quasilinear par-
abolic equation . In this section, we construct sub- and supersolutions
to this equation in the interior and the exterior regions, respectively.

4.1. In the interior region. In the r-coordinate, where r = e /2y, 2
satisfies the equation T,[z] = 0, where the operator T, is defined in (3.4]).
We call z a subsolution (supersolution) of T,[z] = 0 if T,.[2] <0 (> 0).

Lemma 4.1. Let A > 1. For any Ay > 0, there exist a bounded function
B :(0,00) = R, a sufficiently small By > 0, and a sufficiently large 71 < oo,
all depending only on Ay such that the functions

(4.1) s = B(Arr) £ e TB(r)

are sub- (z;,,) and super- (z},) solutions of T.[z] = 0 in the interior region
(4.2) Qint 1= {0 < 7 < B1e/?}

for all T > 1.

Proof. Let B(r) := B(Ayr). For z(r) = B(r) + e () to be a supersolu-
tion, it suffices to show T,.[z] > 0. Since B(r) solves &,[z] =0,

‘J’r [Z+] :6*)\7 {_LT‘[/B] +QQT[B,B] n A+ 1TB/}

int 2(n — 1) 2
—oAr A+1 Q, (8]
+e72 {—AB+ 5 r5—2(n_1)}.

Set A:=1+ %, and let 3 solve the linear inhomogeneous ODE
(4.3) L8] +29,[B, 8] = 2(n — 1) ArB/.

Using the definitions of £, and Q, in (2.5) and (2.6 respectively, equation
(4.3) becomes

(4.4) BB+ {"_1 B - B} g
T T

/ _— A
+ {B”— E+2(n— 1)1 2B},6:2(n— 1)ArB'.
T

r2
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Recall the asymptotic expansions of B(r) near » = 0 and r = oo given by

(3.5) and (3.6), respectively. Then near r = 0, equation (4.4]) is approxi-
mated by

g2y 202D o (>0,

whose solution is

r

Bo = 027‘1_” + 037‘2 - C47°4,

where Cs, C3 are arbitrary constants and CYy is a constant depending on Cf.
Discarding the unbounded solution and choosing C's = 1, then there exists
a solution (3, of equation (4.3)) with

Bp(r) = 2 +o(r?) asr\ 0.
Near r = oo, the ODE (4.4)) is a perturbation of the equation

~

1 p, on—1, 2n-1)  4n-1A
(Alr)Qﬁ + r pe r2 p= (A1r)?
whose general solution is
r 24
Boo(r) = Csre " + 061"/ p_2e_a(rz_p2)d,o L
1 1

with a = ”TAA% and arbitrary constants Cs,Cg. The second term in this
expression is O (7“_2). So every solution of equation (4.3)), in particular 5,(r)
given above, has the following asymptotic expansions:

B 2 4 o(r?) as 7\, 0,
(4.5) B(r) = { —2121/14% +o(1) asr 7 oo.

Also, the asymptotic expansions

ren C71r? + o(1?) as 1\, 0,
—rBi(r) = { Csr=2 +o(r=2) asr /oo,

imply that
—rB'(r) > Coymin{r?,r2}.
Then in view of (4.5)), we have for 0 < r <1,

A+1 9, (8]
2 " (n—1)

‘—Aﬂ + B — 5 ’ < Chor?,

and hence
T, [z+ ] > —e*/\T'rB'(r) — e 2 or?
> e T2 (Cg - 6_)\7010>
> 0,
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for all 7 > 7 with 7; sufficiently large. And for r > 1,

A+1 o, 9 [f]
ﬂ_z

IR R T

< Clla

so then
T, [#h] > —e MrB/(r) — e 270
> e (C’gr’Q _ 67,\7011)
> 0,
if r < B1e*/? with constant By := \/m.

Therefore, z& is indeed a supersolution. That z , is a subsolution is
proved similarly. O

4.2. In the exterior region. In the u-coordinate, z evolves by equation
(3.3), which we rewrite as D, [z] = 0, where
r _ Qulz
(4.6) Dylz] == 0r|uz — i(u Vw)zy — w2z — 2(:[_}1)
We call z a subsolution (supersolution) of D,[z] = 0 if D,[z] <0 (> 0).

Lemma 4.2. Let A > 1. Define Z;(u) := u=2(1 — u?)'**. Given Ay > 0,
there exist a function ¢ : (0,1) — R, a constant Ba > 0, a sufficiently large
Ty < 00, and a constant A3 < oo depending only on As such that for any
Az > A3, the functions

(4.7) 25 (u, ) = e Ag Zy (u) £+ €72 A3 (u)

are sub- (z,,;) and super- (21.,) solutions of Dy [z] = 0 in the exterior region

(4.8) Qeat == {Bm /%e—”/2 <u< 1} ,
2

for T > 1o where T depends only on Ay and As.

Proof. Since AyZ; is a solution of the ODE (3.10|), we have

1, _ _ A2
62)\TDU[Z;;t] = Aj {(u T w)C — (u 24 2)\)C} — 729u[21]

2 2(n—1)
AgAs o A A2
- ﬁe )\TQu[ZhC] - ni_gle ZATQU[C]'
Since 0 < u < 1, the definition of Z; implies that
Cl CQ
4.9 7| < ————7 7l < —"= -7
( ) ‘ 1’— u(l_ug) 1 ’ 1’— u2(1_u2>2 Ly

and from (3.13)),
(4.10)

Qu[Zl]’ < Cyu5(1 — u2)?,
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Let ¢ : (0,1) — R be a solution of the inhomogeneous ODE
1

(4.11) —5(1f1 —u)’ — (w24 20)¢ = u b1 — u?)*.

Then we solve the ODE to obtain
Cu) = u™(1 — u?)Ph(w),
where
h(u) = 1 — 2u* + Cyu*(1 — u?)
+ 2u*(1 — u?) [log(1 — u?) — 2log u]

for an arbitrary constant Cy. This implies that ¢ has the asymptotic behav-
ior
—4 -2
U +O(u logu) as u N\ 0,
(412) ¢(u) = {

~(1-u>)*+0 ((1 - u2)1+2/\ log(1 — u2)> asu 1.

We then have the following estimates. For 0 < u < 1/2,

A~

(4.13) 0,21, ]| < Cu™,

2,[¢]| < Cou.

For 1/2 <wu <1,

~

(414) |z | < G —uP (2,1 < Co1 - )R

Using the definition of ( and the estimate (4.10)), we have

Dy [2dy] > (A — C3A3) uw0(1 — w?)*
A2A3 AT |A AZ2’> —2)\T
- S0, (21,0 | - 2?0, (4 .

We choose A3 = 2C'3A%. Then for A3 > A3, we have the following. For
0 < u < 1/2, there exists a constant By < oo such that (4.13)) implies

ePTD, [z, ] > Cou™® (Ag s ApAgu2eM 06A§u74672)‘7)
>0

for e’ u? > B2 A3/As, that is,

A3 7)\ 1
Boy | =22 <y < 2
2 Age == 2
For 1/2 < u < 1, writing v := 1 — u?, then in view of (4.14),

] = Cio (A% — C7 A Age™ oM — CSAge*ZATUZ/\*)U?A
>0

2\ +
e TDU[Zext

if 7 > 1 with 7 sufficiently large.
Therefore, 2, is indeed a supersolution. That z_, is a subsolution is
proved similarly. O
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5. BARRIERS

We denote by zgrm the formal solution constructed in Section [3] A lower
(upper) barrier is a subsolution (supersolution) that lies below (above) Zform
in an appropriate space-time region. The main result of this section is the
following.

Proposition 5.1. There exist a sufficiently large 19 < co and positive piece-
wise smooth functions zi(u, 7), 0 <u <1 and T > 719, such that the follow-
ing are true.

(B1) 2% are upper (+) and lower (—) barriers to equation (3.3).

(B2) 27 (u,70) < Zform(u, 10) < 21 (u,79) for u e (0,1).
(B3) Near u=0, 2* =2 ; nearu=1, 25 =27,
(B4) At anyt € (19,00), lim 2~ = lim 2" =1, and lim 2~ = lim 2t = 0.
u\0 u\,0 u, u, 1
(B5) At any T € (79,00), there exists a constant K independent of T such
that
(5.1) ’zf/u|, }zfu’ < Ke,

+

at points where z= are smooth.

The proposition will follow from several lemmata. We first explain the
idea behind its proof. We properly order z(j;t and zijflt so that 2, < ziflt,
Zow < 25, We then patch together ziJ{lt and z, near the interior-exterior
interface to obtain an upper barrier. A similar patching argument yields a
lower barrier.

Lemma 5.2. Let 8 be defined as in Lemma . Let Af and A] denote the
constant Ay in z;;t and z;,, respectively. For A > A, there exists 73 > 71
such that

nt?
Zim = B(ATT) £V
are properly ordered in Qi for all T > 3.

Proof. For A] > AT, using the asymptotic expansions of B and 3 (cf. the
proof of Lemma we have the following. Near r = 0, with by > 0,

gt = 2 = {02 [(AD)? = (AD)?] + 21 + o()]e ™7 |12 + O(r*)
>0 asr\(0.

Nearrzoo,withfl:l—i—%,

Gt = = [(AD) 72 = (AD) 2 {2 = 2Ld + o))} + 0 ()

>0

for sufficiently large 7 and r. On any bounded interval ¢ < r < C and for
sufficiently large 7, it is straightforward to check that z;{lt > z.- Thus, the
lemma follows. (|



TYPE-T RICCI FLOW SINGULARITIES ON R"™+1 17

Lemma 5.3. Let Zy and ¢ be defined as in Lemma|.4 Let AT and A5

denote the constant Ag in 21, and z_,, respectively. For AT > A5, if we

relabel Az = max{A3(AJ), A3(A3)}, Ba := max{Bs(AJ), Ba(A;)}, 72 :=
max{72(A5), 72(A5)}, then there exists T4 > T2 such that

zeixt(u, T) = e_ATAétZl (u) + e_QATAgC(u)
are properly ordered in Qexﬂ for all T > 14.

Proof. For A > A, the asymptotic expansions (4.12) of ¢ imply the fol-
lowing. As u \,0, 2, > Zegt- Asu 1,

ext

Z+t _ Ze;t _ e—)\T(l _ u2)1+>\ {(Agr _ A;)u_2 _ 2A3€_>\T(1 _ u2)>\—1}

+e 270 <(1 —u?)* log(1 — u2))
>0

for all 7 sufficiently large. On any interval 0 < a < uw < b < 1 and for
sufficiently large 7, 2, > 2., by a direct computation. Thus, the lemma is

proved. O

For sufficiently large 7, Qint and eyt intersect. In below, we state and
prove a patching lemma for Zi—;t and z;(t. We omit the patching lemma
for z . and z_, since its statement and proof are entirely analogous. To

shorten notations, we write Af and A; as A; and As.

Lemma 5.4. Let Rp := D+/A3/As where D > 0 is arbitrary. Suppose A;
and As satisfy the following inequality

(5.2) (14 3D7)4y < AT < (14 ;D7) Ao
Then there exists 15 := max{7s, 74} sufficiently large such that
(5.3) zi <zh, atr=Rp,

(5.4) zi > zh, atr=2Rp,

for T > 1.

Proof. At the interface of the interior and the exterior regions, we have
the following when 7 > 75. From the interior region, as r * oo, B(r) =
=2+ cor~* 4+ O(r~%), and so

2t = AT T L AT T O ) 1 0(e7N) asr oo
From the exterior region, as u \, 0, using u = re~*"/2 and (4.12), we have
on any compact r-interval,

z;(t = Age*)‘Tu*Q(l — u2))‘+1 + Age ATyt (1 +0 (u2 log u))
= Aor™? + Agr™ + O(1e™7).

In the definition (2.8) of Qex we replace As with A5 since A > A .
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Then on bounded r-interval, one has
r? (zh — 28, = (A7 — Ag) + (02A1_4 +O0(r?) — A3)r 2 + O(re™7).

int

We can choose a constant €' so large that for

Ag > OAI4 and A3 > é\/ AQ,

CQAQ A% AQ
2 < ==
Az Al +0 (A§ =2

we have

Then at » = Rp,

2 + -2 24z A3 —2 AT
R ( lnt Zext) = (Al - A2) + A A4 + O A2 - A2 D + O(Te )

<A - (1 + 2D_2> Ay + O(1e7),
and at r = 2Rp,

_ A A2 D2 o
ARD (zihy — 2ehe) = (A7 = A2) + [14231424114-0 <A2> A2:| T+O(T€ ATY

> A7~ (1 + 2D2> Ay + O(1e7).

Now choose A; and Ag according to (5.2)), then the lemma follows for 7 >
Ts. O

Lemmata and allow us to construct barriers for equation
(3.3). From now on, we denote by 2™ a function defined by

S 0<u<eRy,
(5.5) z*’(u’T) = min{zi—gtvz;a}: if e*)\T/ZRD <u< 267/\T/2RD,
Zhts if 20 M2Rp <u < 1,

for 7 > 75. We define 2~ analogously using 2, and z.. In particular, for
e M2Rp <u<2eN2Rp, 27 = max{z, zon }-

Lemma 5.5. Let 7 € (75,00). There exists a constant K independent of T
such that
‘z;—L/u‘, ‘zfu‘ < Ke

+

at points where z* are smooth.

Proof. At a point where zT is smooth, 27 is either 2, or zf,.
Suppose 2+ is smooth at u € (0,2¢ */2Rp) and 2 = 2, then
= B(Air) + eV B(r)
= 1+C1r2 +o(r?) +e (7"2 +o(r?)) asT\,0,

=1+ C1eMu? + eMo(u?) +u? + o(u?)  as u \,0.
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So then
zb =M (Cou+o(u)) +u+o(u) asu\0,
zh =M (C3+0(1)+ 14 (0o(1) asu\0.
Thus, there exists a constant K such that for 0 < u < 2¢ /2R,
(5.6) | ful, 2] < Ko
Suppose z* is smooth at u € (e */2Rp,1) and 2+ = 2, then
2T = e N ALZy (u) + e P A3 (u),

where Z;(u) = u=2(1 — u*)™! for A > 1, and ((u) is a smooth solution to
the ODE (4.11). So then

|2 ful S €21 ul + eI ul,
2l S €I + eI,
From the definition of Z7, we compute
(5.7) Ziju= =2 (u"* + M ?) (1 —u?)?,
(5.8) Z¢ =21 —u) ! [Bu™ + 3N — Du™? + (20 — 1))] .
From equation , we have
1, (Q—-u>)P 1 w4
T T AW
Then using we obtain, writing v := 1 — u?,

—6 —4
T A +O(u logu) as u 0,
(5.9) ¢'/ul S { V271 4+ 0 (v logv) asu 1.

and similarly,

C.

_6 —4
"< u +O(u logu) as u 0,
(5.10) [P~ { 0?3~ 4+ O (v tlogv) asu N1

Thus, by (5.7)—(5.10)), there exist constants K5, K3 such that for e MI2Rp <
u <1,

|Z:_/u| < ng)‘T, \zi‘u| < K3e.

Choose K = max{Kj, Ky, K3}, then the lemma is true for z*. The proof
for z~ is similar. O

We can now prove Proposition [5.1

Proof of Proposition[5.1. Since li{n0 zE =125 >00n0<r <2Rp for
u

int
sufficiently small D. Since Z;(u) > 0, there exists a sufficiently large 79 > 75
such that 25, > 0 on e*/2Rp < u < 1. Thus, z* are positive piecewise
smooth functions for 0 < v < 1 and 7 > 79. The minimum (maximum)

of two supersolutions (subsolutions) is still a supersolution (subsolution), so
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(B1) is true. One checks (B2)-(B4) directly using the definition of z* and
the properties of 2= and 2Z,. (B5) follows from Lemma O

ext*

6. EXISTENCE AND UNIQUENESS OF COMPLETE SOLUTIONS

We first prove a comparison principle for equation ([3.3)). Similar results
have appeared in [4, [37].

Lemma 6.1. Let 7 € [r9,00) be arbitrary. Let z* be two nonnegative sub-
(+) and supersolutions (—) of equation (3.3) respectively. Suppose there
exists a constant K such that either |z Jul, |z,,| or |z] /u|, |25, are bounded
by Ke . Moreover, assume

(C1) 2z~ (u,70) < 27 (u,70) for 0 <wu < 1;

(C2) 27(0,7) < 2%(0,7), and 2= (1,7) < 2% (1,7) for all T € |19, 7.
Then z~ (u,7) < 2% (u,7) in [0, 1] X [70, 7).

Remark 6.2. In this lemma, we assume z*= are smooth. The result holds

for piecewise smooth 2. When applying the comparison principle, we will
only evaluate z* at “points of first contact with a given smooth function”
which are necessarily smooth points of z* for each T > 9.

Proof of Lemma[6.1. Suppose |z /ul, |zE,| < Ke*. For > 0 to be chosen
and arbitrary € > 0, define a function
w = e re (zt—27) +e.

Then w > 0 on the parabolic boundary of the evolution by assumptions (C1)
and (C2). We claim that w > 0 in (0,1) X [rp,7]. Suppose the contrary,
there must be an interior point u, and a first time 7, such that w(u, 1) =0
and w;(uy, 7+) < 0. Moreover, at (u., 7x), we have
2t =2 — 56_“6/\7—*, zt =z, Zh >
Then at (s, 7«),
0> el ™ w, = (zf —27) — Ape (zF—27)

Qulzt] — Qulz7]

=(z"—27) (u_2 - )\,ue’\T*> +

2(n—1)
+ /0 — ot T

— - + A AT (Zu /u) o ZT+ 2

(= z){ue + 2 —1) »

+ 27 (20 — Za)

r Ke\™ 1
> et Iyt - B 2 L
= {“e (n—1) u2}

Choose p so large that A\ > K/(n — 1) +u;2e ™, then at (u., Ty,
0> w; >0,

which is a contradiction. This proves the case |z /ul,|2z},| < Ke.
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The case when |z /ul, |2;,| < Ke is proved analogously because at the
interior first contact point (us, 7x), we have

- — + -
perTE — (= _ ot A ATx (zu /u) ~ Puu 2Tz -1
e wy = (27 —z ){u e+ 2 1) + 3

+ 2t (iju — z;u) .
Therefore, the lemma is proved. O
Now for any solution z of equation (3.3) we have the following.

Lemma 6.3. Suppose 0 < z < 2z, then z defines a complete rotationally
symmetric metric g := 2z~ diy? + ngsph on R,

Proof. By definition ¢ is rotationally symmetric. To see g is a complete
metric, it suffices to show that any radial geodesic 7 starting from the origin
has infinite length in the s-coordinate. The length of 1 in s-coordinate is a
function of u and 7 given by

s(u,7) = e ?o(u) = 6_7/2/ d—adﬁ.
0

Since z = 92 = 2(n — 1)u2, and 0 < z < 2T by hypothesis, we have

o(u) /“ 1 w1
_— > —du > ——du.
V2(n—1)  Ju, Vi T Jug Vet
Asu 71,

+ AT -2
Zagw =€ T AguT4(

1— u2)1+)\ + 672ATA3C(U),
— e—)\TA2u—2(1 _ u2)>\+1
+ e 2T Aq {—(1 —u?)? 40 ((1 —u?)PMog(1 — u2)>} i

So for ug and 7 sufficiently large, 2 = 21,

27 <e_)‘7u_2(17u2)1+)‘ 342 .
- 2

in [ug, 1) X [70,00) with

It follows that
W) o e 1 da:e_T/Q/ L

2(n—1) uw V2T o cht
1342 o—1yr2 [ i X
2 Te /uo —(1_ﬁ2)(1+/\)/2du.
Hence,
s(u, 1) S (A_el())‘:)Tﬂ {log(1 — ug) —log(1 —u?)}, A=1,
,/3(7’[/_1)14_2 - e()\fl){(l—UQ)(l—A)/2_(1_u(2))(1—>\)/2}’ >\> 1.

Therefore, for each 7 > 7, lifm1 s(u, T) = 0o, thus proving the lemma. O
u
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We are now ready to prove our main result.

Proof of Theorem[1.1]. Let Zy be the function obtained by patching together
%(12117“) and AsZ, (u), where Af < A < Al and A, < Ay < A;. Because
27 (u,79) < 27 (u,70), we can smooth out 2y to obtain a smooth initial
profile zp with 0 < 27 (u, 79) < 20 < 27 (u,79) for 0 < u < 1. By Lemma
2o determines a complete rotationally symmetric metric g% on R"*1. It is
straightforward to check that g° has bounded sectional curvatures. Since the
sectional curvatures depend smoothly on the metric, there is a neighborhood
Gnt1 of ¢gY in the C?-topology that corresponds to an open set of z all of
which lie between 2z~ (u, 79) and 27 (u, 7).

Let go € Gnt1. There exists a unique solution g(¢) to Ricci flow for
t € [0,Tp) with g(0) = go [40, [I5]. By expression (2.1)), go has a -profile
function ¥(s,0) < ro for some constant 79 > 0. Since the metric g =
ds® + @Z;(t)zgsph with ¢(0) = g is a shrinking cylinder solution to Ricci flow
on R x S™, () < (t) where 1(t) \, 0 in finite time. So g(t) encounters a
global singularity.

The profile z(u,7) of g(t) is the unique solution of equation for
0 <u < 1and T > 79, with boundary conditions z(0,7) = 1 and z(1,7) = 0,
and initial condition z(u,T9) = 2. The barriers z* satisfy the hypotheses
of Lemma so 2= < z(u,7) < 2zt by the comparison principle for 75 <
T <o0. Sofor 0 <t<T =e", g(t) corresponding to z(u, 7) is a complete
metric on R"*! by Lemma

The sectional curvatures of g(t) at the origin O are
1—y2 _ i L DT _ c
P2 ™o T2 (T — t)A+D)”
where C' is a positive constant depending on n. So part (1) of Theorem
is proved.

Since 2z~ < 2(u,7) < 2T for any 7 < oo, the solution z(u,7) exhibits
the asymptotic behavior of z*. Near the origin, z(u, ) converges uniformly
to the Bryant soliton profile function for 0 < u < Rpe " and 7 0.
Near spatial infinity, u 1 while z(u,7) N\, 0. Thus, g(¢) has asymptotic
behavior described in parts (2) and (3) of Theorem O

Klp=Llp =1
lo=Llo lim

7. RELATION TO THE STANDARD SOLUTIONS

In [39], Perelman described a special family of Ricci flow solutions, the so-
called standard solutions, on R3. These solutions are complete rotationally
symmetric with nonnegative sectional curvature, and split at infinity as the
metric product of a ray and the round 2-sphere of constant scalar curvature.

Consider a rotationally symmetric metric go on R™*! with the following
properties:

(P1) Rmy, > 0 everywhere with Rmg, > 0 at some point.

(P2) The curvature |Rmy, | and its derivatives |ViRmy, |, i = 1,2,3,4

are bounded.
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(P3) There is a sequence of points 3, — oo in R"! such that (R™*1, gg, y1.)
converges to R x S™(rg), where ry > 0 is some constant, in pointed
C? Cheeger-Gromov topology.

Following [36], a Ricci flow solution g¢(¢) whose initial condition satisfies
(P1)—(P3) is called a standard solution. A standard solution of Ricci flow is
unique up to the first singular time [36] [15].

Lemma 7.1. Let G, 11 be as in Theorem . There is an open set Gy | C
Gn+1 of metrics that satisfy properties (P1)—(P3).

Proof. Define
Ghi1:= {90 € Gny1 : go satisties P(1)-P(3)}.

We first show Gy , | is nonempty.

Let 7 = 19 correspond to t = 0. By the proof of Theorem there exists
Zo which is obtained by patching scaled copies of %6 and Z;. Let gy be the
metric determined by the profile function 2y. For go, K = —(z,/2u)e™ =
—(27/2r)eP D70 > 0 at the origin. Observe that the patching occurs in
Rp <r <2Rp, where Rp = D\/A3/As for an arbitrary constant D > 0.
So by the continuity of K there exists Dy such that K > 0 for 0 < r < 2Ry,
where Ry := Rp,. On the other hand, where 2y = Asu=2(1 — u?) A we
have

K = _Tzf —(— 2i“)eT = Apu~4(1 — 2 (1 + Mu2)e™ > 0.

Hence, the piecewise smooth function Zy determines a metric gy for which
K > 0 in the interior of R"*! where §o is smooth, and K \, 0 as u 1,
i.e., as one approaches spatial inifinity. Since 2~ < 2T, we can smooth 2
to obtain a smooth metric gg for which K > 0 everywhere with K > 0 at
the origin, and go € G,11. Also for this metric gg, because L = (1 — 2)/¢?,
L > 0 everywhere with L > 0 at the origin, and L — 1/4? as we approach
spatial infinity. Thus, gy satisfies (P1).

To check (P2), we first note that |Rmyg, | is bounded by the proof of
Theorem The derivatives V' Rmyg,, i € N, are determined by 9K and
JLL. Recall that s(u,7) = e~ /%0(u) and z = 2(n — 1)u2, then at time 79,

0s 670-6_70/2 _ 6—7'0/2 V 2(n - 1)

du Ou V70
Since 0 < 2~ < 79 < 2T, arguing as in the proof of Lemma there exists
ug € (0,1) such that for ug <u < 1,
0
(7.1) a%: <fedh A —u)XD2 N>,

By the chain rule that 9s = (0u/ds)0,, one checks that
|K,| < (1—u?)BAD2 0 L <1 —u®)MD2 40 <(1 _ u2)(3A+1)/2) '
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So K, and Lg are bounded. Similarly, direct computation shows that |01 K|
and |0'L| are bounded for i = 2,3,4. If 0 < u < ug, then we are looking
at a compact subset of R"™! where |V¢Rmyg, | are bounded for any i € N
because gg is smooth. Thus, g satisfies (P2).

To check (P3), we let y; to be a sequence of points whose s-coordinates
s Stooas k /oo, Let Uy := (—k,00) x S™(rg) be an exhaustion of the
cylinder R x S™(rg). Then the translation map s — (s + 2k) defines an
embedding ¥y, : Uy — R Vi := ¢ (Uy) = (k,00) x S™(rg). We need to
show for gy = ds?® + (s, 70)?gsphs

3
(7.2) golv, <, geyl On compact subsets of R x S™(rp),

where gey1 = ds® + rggsph is the standard metric on the round cylinder.
Without loss of generality, assume rg = 1. For all sufficiently large k, the
u-coordinate of y; is bounded between ug and 1. At initial time, ¢ < u, so
0% < O%u, i € N. Then at 7 = 79, as s, 00, ¥ < u 7 1, and hence from
(7.1), we obtain

A+

e Sus S (1—u?) "7 \,0,
Vss 5 Uss S (1 - UQ)A N O,

(3X—1)

Psss 5 Usss S (1 - UQ) 2 N\(0.

This shows 1} and hence go satisfies (P3).
Therefore, go € G, 1. Since the sectional curvatures depend smoothly on

the metric, there is an open set G, of go in CS-topology such that any
g € Gy satisfies P(1)-P(3). Hence, the lemma follows. O

We now prove Theorem

Proof of Theorem[1.3 By Lemma the Ricci flow solution g(t) on R™*!
starting at go € G, is a standard solution. Since go € Gp+1, Theorem |1.1
applies to g(t), and so Theorem follows. O
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