A QUANTITATIVE BUCUR-HENROT INEQUALITY

KUI WANG AND HAOTIAN WU

ABSTRACT. In this paper, we prove a quantitative version of the isoperimetric
inequality involving the second non-trivial eigenvalue of the Laplacian with Neu-
mann boundary condition established by Bucur and Henrot [5].

1. INTRODUCTION

Given a bounded open Lipschitz set  C R™ (n > 2), we consider the eigenvalue
problem

Au+pu=0, inQ

ou

— =0, on 0f).

v
On such domains, the Laplacian operator with Neumann boundary conditions has
discrete spectrum

0= 10 () < 1 () < 12 (Q) < ... = o0,

where the eigenvalues are counted with their multiplicities.
For each k£ > 1, the k-th Neumann eigenvalue has the variational characterisation

) fQ |Vu|2 dx
1.1 Q) = S0
- i) = B P
where 8, is the family of all k-dimensional subspaces in {u € H*(Q) : [, udz = 0}.
If Q is connected, then puy (€2) > 0.
The classical Szego-Weinberger inequality for pq(Q2) asserts that for any bounded
open Lipschitz set Q C R™ (n > 2), there holds

(1.2) QI 11(Q) < |B|7 i (B),

and if equality occurs, then Q = B a.e., where B is (any) ball. In 1954, Szego [9]
proved this inequality for simply connected smooth domains in R? by conformal
method. Using a topological degree argument to find the test functions for p;(2),
Weinberger [10] removed the topological constraint and the dimension restriction in
1956.

Concerning the second non-trivial Neumann eigenvalue, Girouard, Nadirashvili
and Polterovich [7] proved that in R2, the union of two disjoint, equal disks pro-
duces a larger p2(€2) than any smooth simply connected planar domain of the same
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measure, and this value is asymptotically attained by two disks with vanishing inter-
section. Building on Weinberger’s strategy, Bucur and Henrot [5] devised a degree
argument which enabled them to build test functions for the second non-trivial Neu-
mann eigenvalue ps(€2). This is no trivial task because the test functions must be
orthogonal to both the constant functions and the unknown first Neumann eigen-
functions on 2. Consequently, Bucur and Henrot [5] made the breakthrough on
the isoperimetric inequality for ps(€2) by showing that for an arbitrary domain € of
prescribed measure in R™ (n > 2), there holds

(1.3) Q07 ua(9) < (2|B))* i (B),

and if equality occurs, then €2 coincides a.e. with the union of two disjoint, equal
balls. In this paper, we refer to as the Bucur-Henrot inequality.

Concerning the stability of isoperimetric inequalities involving the Neumann eigen-
values, Nadirashvili [8] proved one of the first quantitative improvements of the
Szeg6-Weinberger inequality for simply-connected sets in the plane. Later, Brasco
and Pratelli [4] established the sharp quantitative Szegd-Weinberger inequality for
arbitrary open Lipschitz sets in R"™:

(1.4) B (B) — Q7 11(Q) > e, A(Q)?,

where ¢, is a constant depending only on the dimension n. The exponent 2 of A(Q)
in ((1.4) is optimal. Here, A(2) is the Fraenkel asymmetry of a set defined by

) QAB
A(Q) ::1nf{| Ql ‘:|B|:]Q|},

where Q2 A B denotes the symmetric difference between 2 and B. A related quantity
is the Fraenkel 2-asymmetry which measures the distance of €2 from the disjoint
union of two equal balls and is defined as

‘Q A (Bl U Bz)|
|€2]
We note that there is a universal constant ¢ > 0 such that A3(2) < c.
Inspired by the Bucur-Henrot inequality and the sharp quantitative Szegdo-

Weinberger inequality ((1.4) due to Brasco and Pratelli, we prove in this paper the
following quantitative Bucur-Henrot inequality.

Q
: ‘Bl ﬂBQ| =0 and ‘Bl‘ = ’BQ‘ = ’2|} .

(1.5)  Ay(Q) == inf{

Theorem 1.1. For every bounded open Lipschitz set Q C R", we have
2 2
(1.6) (2|Bl)7 1 (B) = |97 p2(Q) > e Ap(Q)"H,
where B is any ball in R™ and c, is a positive constant depending only on the
dimension n.

Let us relax the definition of the Fraenkel 2-asymmetry to

(17) Eals) = int { 2B 1) 1y = T
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and call Eo(Q2) the 2-error of the set Q in this paper. By definition, Fy(2) < A2(Q2).
As shown by Brasco and Pratelli (cf. [4, Lemma 3.3]), the 2-error controls the
Fraenkel 2-asymmetry:

(1.8) Ax(Q)" < e, Bo ()2
Theorem follows from the following theorem via (1.8)).

Theorem 1.2. For every bounded open Lipschitz set  C R™, we have
2 2
(1.9) (2|BI)" p1 (B) = [ p2(Q) > e B2(2)%,

where B is any ball in R™ and c, is a positive constant depending only on the
dimension n.

As we will see in Section |4} the exponent 2 of E5(£2) in the quantitative inequality
is sharp. In contrast, it is very likely that the exponent n 4+ 1 of A2(2) in the
quantitative inequality is not sharp, but we are not able to prove it here. We
expect the sharp exponent of A5(Q2) in to depend on the dimension n owing to
the example constructed by Brasco and Pratelli [4, Example 3.4]. We note that the
same phenomenon occurs in the quantitative Hong-Krahn-Szeg6 inequality for the
second non-trivial eigenvalue of the Laplacian with Dirichlet boundary condition,
cf. [4, Section 3] and [3, Section 7.6.1].

The study of the optimal value of ¢, in a quantitative isoperimetric inequality is
not at all trivial. To the best of the authors’ knowledge, such a study is the most
fruitful in dimension n = 2 [1,2,/6]. In this paper, we do not attempt to estimate
the constant ¢, in either inequality or inequality .

This paper is organised as follows. In Section [2] we fix the notation and collect
some preliminary facts. Section [3]is devoted to the proof of Theorem[I.2] In Section
we adapt the construction by Brasco and Pratelli in [4] to establish the sharpness
of the exponent 2 of E(2) in the quantitative inequality .

2. NOTATION AND PRELIMINARIES

Let B, denote a ball of radius r centred at the origin O € R"™ and w,, the volume
of B1. Then the first non-trivial Neumann eigenvalue rescales according to

(2.1) w1 (Br) = 1?1 (Br) .

We denote by g1 a non-negative, strictly increasing solution of the following ODE
boundary value problem on the interval (0, 1):

n—1
t2

" n—1,

22 a0+ " e+ (m(Bl) -

n > g1(t) =0, ¢1(0) = gi(l) =0.

Then the eigenfunctions of p;(B;) are given by

x; )
gl(|x])|?l‘, 1=1,...,n.
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Given a bounded open Lipschitz set Q2 C R™, we define

1
2\
2.3 =l—1 .
(23) "o (an
Then |By,| = [2]/2. We now define g : [0,00) — R by

o g1 (t/’r‘o), t <o,
as o={ " i

Then g is a non-negative, strictly increasing function on [0, 7], and ¢'(t) = 0 on
[ro,00). Since

are the eigenfunctions of p;(By,), (1.1)) implies

h(ro(z))dx
29 p () = ffjmgz (r(;(x)) dz’

where h : [0,00) — R is defined by
-1

(2.6) h(t) = (g/(0)" + = 5= 9°(0),

and 7;(y) denotes the Euclidean distance between z,y € R™. Let us also define

2 n—1
@) mo) = (1) + a0,
Then it follows from (2.2)) that h}(t) <0 for ¢ € [0,1]. We note that h rescales by
1 t
2.8 h(t) = —<hi | —
29) (0= (=)

for t € [0,79], and implies that
B 2
v =220 (g0 - A0 o () a0 0
<0

for t € [0,7¢]. If t > 7¢, then by definition

n—1

h(t) = 2 91(1)7

and hence h/(t) < 0 for ¢ > r.

Let us now recall some results from [5].

Given two different points A, B € R", let H4 and Hp denote the half-spaces
determined by the mediator hyperplane II4p of the segment AB and containing A
and B, respectively. We define the map Typ : R” — R" by

(2.9) Tap(v) = v —2 (% 0) ab,
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where c% = zﬁ/ ‘E

, and the map ¢4 : R* — R” by

{ g (ra(z)) Vra(z), x € Ha,
Tap (g (rp(x))Vrp(x)), =€ Hp.

Let {e;}!; be orthonormal basis vectors of R™ and u; a first eigenfunction of
the Neumann Laplacian on Q. A crucial step in [5], known as the centre-of-mass
theorem, states that there exist distinct points A, B € R™ such that

/gAB-eidx:/gAB-eiuldmzo foralli=1,...,n,
Q Q

(2.10) g*B(z) =

and that the second non-trivial Neumann eigenvalue satisfies
n

2
5 o9 (047 ) e
=

(2.11) na(@) < =
> fQ |gAB - ei‘Q dx
i=1

3. PROOF OF THEOREM

From now on, ¢, and ¢, denote constants which depend only on n but may change
from line to line.

Let Q4 :=QNH4 and Qp := QN Hp. Since Hy UIlapU Hg = R" and Q2 is a
bounded open Lipschitz set of positive measure, 24 and €2p cannot be both emptyﬂ
Recall the definition of ¢ in and that |B,,| = |9|/2.

Lemma 3.1. For every bounded open Lipschitz set Q C R™, we have

- 2 T — n AB‘G' 2 X.
B0) 0191 (Bo) = pa(@) 2 201 (Br) [ o= @3 [ 10" e

By,

Proof. We have

- 2
2411 (BTO)/ G*dx — po (Q) Z/ ‘gAB . ei‘ dx
Brg i=1 7%

=2u1 (By,) /BT g?dx — o (Q) </QA g (ra(z))dx + /QB g (rp(z)) dm)
= (B) = @) ([ P anaes [ K (ro(a) e

(1)

g — /Q ¢ (ra(z)) dz — /Q ¢ (r5(2) dx) .

(1)

+ 11 (Brg) (2 /Br

IThe proof in the rest of this section goes through if either 24 or Qp is empty.

0




6 KUI WANG AND HAOTIAN WU

We now estimate the term I. Since g is non-decreasing for r > 0, we have

I:/QAQZ (TA(x))dx+/ g* (rp(z)) dz

Qp
<[ Pt [ #ode
Q4 Qp
= ¢,|9Q|.
The last equality follows from that
g(ro) = ()" 3 J3 (/i (Bro)) = cu,

where J% is the standard Bessel function.
We now estimate the term II. Let B,, and B,, be balls centred at A and B,
respectively, such that

4] = [Brl, 928 = [Br,]|.

Without loss of generality, we assume r; < rg < 3. We note that
[ Bry| 4+ |Br,| = [ = 2|Br|

implies

(3.2) ry +ry =2ry.

Since g(t) is non-decreasing in ¢, we have

/Q g ra) de = /Q o P / ¢ (ra(2)) dz

QA\B'r‘l

> /Q . % (ra(e)) do + / ¢ (1) dz,

QA\B'rl
and
| fatande= [ goaydss [ Pa@)ds
Brl B'rl N4 Brl \Qa
< / gQ(TA(x))dx +/ g2(rl)dx.

Brl N4 Brl \QA

Because |Q24| = | By, |, the above two chains of inequalities yield

| #eaninz [ Poae)ds
Q4 Brl

T1
:an_l/ g (" at.
0

Similarly, there holds

/Q RACOUE / P (rp(z))da

By,

T2
=0p1 / g ()t at.
0
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As a result, we get the estimate

1= (2 /B gdi - /Q 9 (raa) de /Q K <rB<w>>dx>

70

T0 r1 T2
<op1 <2 / g ()t dt — / g ()" dt — / g2(t)t”1dt>
0 0 0
To T2
= 0p_1 ( / g ()" tdt — / gz(t)t"_ldt>
T1 To
0 T2
< op-1 </ g (ro) t"tdt — / g° (ro) t”_ldt)
T1 To

= wng” (ro) (2rg — 7 —15)
=0,

where the last equality follows from (3.2]).
Therefore, we have

= 2
2 (Bry) [ 01— n (@)Y [ [ il da
Brg i=1 79
- (Ml (BTO) - :U'Q(Q)) ’ (I) + (Bro) ’ (II>
< en Q] (1 (Bry) — p2(9))
which proves the lemma.
We now prove Theorem whence follows Theorem by (1.8).
Proof of Theorem[1.3. By (£2.1)), inequality (1.6) is equivalent to
2 2
(3.3) (2wn) ™ 1 (B1) = Q] p2() > e B2 ().
By Lemma we have
(3:4) 019 (1 (Bry) = pa(60) = 2 (Br,) |

B

gPdx — iz () Z/Q 675 - & da.
=1

We prove (3.3)) by estimating the right hand side of (3.4]).
From (22.5) and (2.11)) we deduce that

0

201 (Bry) [ gP(r()) do () > / 48 e da
> 2/&0 dx—Z/\v &) de.

Using the expression of g7 in (2.10]), we have that

- AB
;/QW(Q e)| dCC—/ Z|V (ra)Vra -e)|* dx

Q4 =1
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/Q Z’V Tap(g(rp)Vre) - &)|* dz.

B i=1

Since
n n

STV (gra)Vra-e)? = | (ra)(Vra - e:)Vra + g(ra)Vira(e:)|’
i=1 =1

= (/) + ")

and

Z IV (Ta((g9(rp)Vrs)) - €)]

= Zn: ‘V (9(TB)(V7“B ce;) — 29(7’3)(£ ’ VTB)(% ' ei)) ‘2

i=1
= Z\v (rB)Vrg) - &)

- h‘(TB)v

we then have that

- 2
2 (Bro)/ g*dz — 11z (Q) E / }QAB 6| dw
B’“o =1 Q

ZQ/B h(r(a:))da:—/QAh(rA(a:))dm—/QBh(rB(m)) dx

70

-/ At~ /| haE) o
+/BTO(B)h('rB(:L‘))dx—/QBh(TB(x))dx

:/ h(rA(:c))da:—/ h(ra(z))de
Bro (A)\Q4 Qa\Bry(4)

ro (A

+/ h(rp(x)) da:/ h(rp(x))dx
Bry(B)\Q5 Qp\Brq (B)

—. I11,

where B,,(A) and B,,(B) denote balls or radius 7o centred at A and B, respectively.
To estimate the term 111, we define r; and 79 such that

(3.5) | Bry(A) U Q| = wnr?,

(3.6) | Bro (A)\ Q| = wn (rg —17)

(3.7) 24\ Bro(A)| = wn (r3 —15)-
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Similarly, we define r3 and r4 such that

(3.8) |Br,(B) UQp| = wnry,

(3.9) |Bro(B) \ Q| = wn (rg —135),
(3.10) 28\ By (B)| = wn (1} — 7).
Then

Q4] + Q28| = [Q] = 2|By,|
implies
(3.11) Ty +ry +ry +ry =4y,

Since h(t) is non-increasing in ¢, we have

T0
/ h(ra(z)) da > o 1/ h(t)e =L,
Bry (AN
and/ h(ra(z))de < op_1 h " Ldt,
QA\BT()( )

and likewise,

/ h(rg(z))de > o, 1/ h(t)t"dt,

Bry(B)\Qz

and/ h(rg(z))de < o, 1/ h(t)t"Ldt.
Qp\Br (B)

As a result, we arrive at the estimate

ro 70 T2 T4
IIT > 0y (/ h(t)t"dt —i—/ h(t)t"tdt — / h(t)t" dt — / h(t)t"ldt>
1 T3 T0 0

— { / :0 (h(t) = h(ro)) "Nt + [ h(ro)t"_ldt}

+o0n_1 (h(t) — h tn 1dt+/ h ’I”() tn 1dt
L/ 73 T3 i
T2
— Op_1 / (h(t) — h(ro)) t"~ 1dt+/ h(ro)t"™ 1dt
LY T0
o
— Op1 / (h(t) — h(rg)) t"~ 1dt+/ h(ro)t"™ 1dt
)

o U (h(t) = h(ro)) " 1dt+/ (h(t) = h(ro)) " 1dt]

T1

— Op_1 [/: (h(t) — h(ro)) t"~ 1dt+/ o))t 1dt]
=: IV,
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where in the first equality we have used

_/Tot'fb—ldt_/Totn—ldt+/thn—ldt+/T4tn—ldt:T{L+7ﬂg+rg+r2_4rg:O

I 3 7o 7o n

because of (3.11)).

We continue the proof by estimating the term

IV =0 [ / " h(t) = hire)) " dt + / " (h(t) = h(ro)) t”ldt}

1 T3

o [ / P h(t) = hro)) £t + / " h(t) = hiro)) t”_ldt] .

T0 To

Recall that

ht) = (9'0)” + g0,
h(ro) = nr_g 192(7’0),

g(t) =g(ro) and g¢'(t)=0 for t>rg.

Then we have
n—1 n

- [ = nn et = [ ((00)* + MG R0 - " P ) et

T0 70 0

o
9 n—1 n—1\ , 4
= —_— = t T dt
o [ ()

since ¢'(t) = 0 for t > rg; similarly, there holds

_ /m (h(t) — h(ro)) " dt = g2 (ro) /” <” L i 1) (.

0 "o 5
So then
(3.12)
1> 1v
o U 0y = o) e tat+ [ (be) = hiro) tnldt]

/-1 n-1 /-1 n-1
+n-19%(ro) U <2 TR )tn_ldt +/ (2 - )tn_ldt] ‘
0 To 0 To

We note that all the integrands in I'V are non-negative.

The proof now proceeds in two cases.

Case 1. Let us suppose that |rg — ;| > 79/2 for some 7 € {1,2,3,4}.

Suppose that |ro—ri| > ro/2, i.e., 71 < ro/2. Then using and that A (t) <0
on [0, 1], we see that implies that

IIT>1V > /TO (h(t) — h(rg)) t"Ldt

T1
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o

1
/ (h(rot) — h(re)) t"~1dt

1/7o

Il
<

[ L L ) -y e

1/T0 TO

1
> 2 /1/2 (hi(t) — hi(1))t"Ldt

@
= Q.
0

Similarly, suppose that |rg — r3| > 79/2, i.e., r3 < 19/2, then we have

11 > q).
70
Suppose that |rg — ra| > r9/2, i.e., 72 > 3rg/2. Then from (3.12) we get

11
II1 > IV(n— 1)anlg2(rg)/ <2 - 2) t"at
70 To t

3
20 11

> (n— 1)%1(91(1))2/ <2 - 2> "t
T0 70 t

3/2 1
- cnrgz/ (1 — u2> u" L du
1

Similarly, suppose that |rg — r4| > 79/2, i.e., r4 > 3r¢/2, then we have

IIr > i’;my.
T
0

Combining the previous estimates with (3.4]) yields

Cn
19 (1 (Bry) = o () > 117 > 5
0

that is,

o

oﬁm‘ 3

p (Bro) — pa () >

where 7o = (||/(2wy))/™. Thus, by (2.1) we have
2
(2wn) " pa(Br) = Q7 > en > enEa(Q)?,

proving the stability inequality (3.3) in Case 1.
Case 2. Let us suppose that |rg — ;| < rg/2 for i =1,2,3,4.

11
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The goal is to estimate
(3.13)

IV =0, [ / () = hro)) "Vt + / () = h(ro) t”_ldt}

T1 T3

”/m—-1 n-1 ™ /in—1 n-—1
+ Un_ng(TO) [/ (2 _ tQ) tnfldt —|—/ (2 — o) ) tnldt:| .
70 To 70 To

By the Mean Value Theorem, we have

1

/ P h(t) = h(rg)) "= dt = 11 / (h(tro) — h(ro)) £"~Ldt

r1 r1/T0

1
= rg/ (W (&)(t — 1)rg) " dt

1/7o

for some £ € (r1,79). Recall that h(t) defined by (2.6) rescales according to (2.8)).
So h(t) and h'(t) rescale according to

)

respectively, and hence there exists 6 = £/rg € (1/2,1) such that

7o
_ 2
_ _7“15’ [_w (gfl(e) - glée)) + 21 (B1>91(9>9/1<9)]
<%
7o

for some constant c¢,. It then follows that
1

/ro (h(t) — h(ro)) "L > Tg/ c%(l _ t)r(]tn_ldt.

T1 r1/To 7’0

Since r1/ro > 1/2 and ¢, (1 — t) > 0, it then follows that

0 c 1
/ (h(t) _ h(’l“o)) Lt > 2nn1T82/T (1 — t)dt

'r1 1/70
c
= 3 (ro = )%
To
that is,
"o n—1 Cn n 2
(3.14) / (h(t) — h(rp)) t""dt > e (ro—mr1)°.
1 0

Similarly, we have

(3.15) / " ((t) — hlro)) 7t > S (o — r)?

3 0
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To estimate the remaining integrals in (3.13)), we let u(t) := (n — 1)/t2. Then
again the Mean Value Theorem implies that for some & € (1,r2/r¢), there holds

gZ(ro)/: <n_21 - "tQ 1) "Lt = g%( 0)/T2 (u(ro) — u(t)) t" Ldt

o T0

ra/To
= g*(ro)ry (u(ro) — u(rot)) "~ Ldt

ra/T0

u' (€)(1 — t)rot™ tdt

|
Q
)
—
=
=)
S~—
S
o
»—\»\

for some constant c,; that is,

2 n—1 n-1
(3.16) g% (ro) / (”Z — >tn_1dt > 0 (v — )7
T o t o
Likewise, we have
"p—1 n—1
(3.17) 92(7“0)/ (n — - ) e > S (rg — ra)?
0 ) t Ty

Estimates (3.14)—(3.17)) imply that

~ n 2

20190 (11 (Bry) — 12(Q)) = 241 (Byy) /B P(r)de — 12 () S /Q 048 ;| du
0 =1

>IIT > 1V

]

o
3

-
o

By (2.3), || = 2w, r{, so then

i

c
(3‘18) 241 (Bm) % ro — Tz
"o 1:1
To estimate the right hand side of (3.18]), we use (3.6) to get
| Bro(A) \ Qa| = wp (ro —11)"
< cnrg_l (ro—r1),

where the inequality follows from the assumption |rg — ri| < r/2 in Case 2. So we
have proved the following inequality

Bry(A)\ Sl _ o=

3.19 n
(3.19) 0l <
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Similar estimates hold for the remaining terms on the right hand side of (3.18)):
04\ Bry(A) _ 120

3.20 . ’
(3.20) 9l < -
’BTO(B)\QB| o — T3
21 e |
Q5 \ Bry(B)| T4 — 10
3.22 e |
( ) |Q’ o To
Thus, from (3.18)—(3.22) we deduce
11 (Bry) — pa(Q) > 2 |Bro(A) AQa| + | By (B) AQp[\?
K - )
> 1By (),
|2~

where p1 (By,) = p1(B1)/r3 and rg = (|Q]/(2wn))1/n. Therefore, we have
2 2
(2wn) ™ 1 (Br) = Q[ p2(Q) > enB2()?,
proving the stability inequality (3.3)) in Case 2.
The proof of Theorem [I.2]is now complete. O
4. SHARPNESS OF THE EXPONENT OF FE(2) IN ([1.9)

In [4], Brasco and Pratelli proved the sharp quantitative Szegd-Weinberger in-
equality

2 2
B p1(B) — Q] pa(2) = enA(2)%.

The authors established, through non-trivial work, the sharpness of the exponent 2
of A(2) by exhibiting setsﬂ B, C R" for € > 0 small such that

(4.1) B.|= B,
(42) A(B.) ~ 'BﬁB' — 0(e),
(43) i (B) — m(B.) = 0(2).

We now adapt the Brasco-Pratelli construction in [4] to show that the exponent
2 of E5(Q2) in the quantitative inequality is sharp. Let B!, B? be two disjoint
balls of unit radius in R™ such that the distance between B! and B? is large (e.g.,
> 20). We take B; in the Brasco-Pratelli construction and define

Q. = Bl UBZ,

where B!

= B? = B.. Since B! and B? are far away from each other, we have
BlnB2=.

2In |4, Section 6], |B| — |B.| = O (£%). Rescaling Bc so that (4.I)) holds introduces error O (¢?)
to (&) and ([53).
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Lemma 4.1. There holds the following equality

(4.4) 1 (B2) = p2 () -

Proof. We first note that
po (2e) = 0 with eigenfunction ug = xp1,
1 () =0 with eigenfunction ug = x g2,

where xq is the characteristic function on €.
On the one hand, let u§ be an eigenfunction for ps (£2.), then

0= /QE us(z)ug(x)de = /B; us(x).

So u$ is a test function for yy (D?), and hence

s V(@)

M1 (Be) = PSRN
[e l5(@)]

On the other hand, let v be an eigenfunction of s (Bl) and define

g
o5(2) = v (@)X

= p2 ().

Then we have

/Q 5 o5 (2)u§ (2)dx = / o (2)dz = 0,

BZ

[ wsuits = [ i@ =o.
Q. B!
So v§ is a testing function for us (£2.), and thus
Jo, IVus@)P [ V05 (@)
,LL2 (QE) S c 2 = e 2
fQS (v5(2)) fBel (vi(2))

Therefore, the lemma is proved.

= m (B:) -

By construction, we have

Q- AQ

By (4.3]) and Lemma we have
p1(B) = pi2 () = pu(B) — i (B:) = O(?).
Therefore, the exponent 2 of FEy(£2) in inequality ((1.9) is sharp.
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