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Abstract We review here theoretical as well as practical aspects of the 0-1 test for

chaos for deterministic dynamical systems. The test is designed to distinguish be-

tween regular, i.e. periodic or quasi-periodic, dynamics and chaotic dynamics. It

works directly with the time series and does not require any phase space recon-

struction. This makes the test suitable for the analysis of discrete maps, ordinary

differential equations, delay differential equations, partial differential equations and

real world time series. To illustrate the range of applicability we apply the test to

examples of discrete dynamics such as the logistic map, Pomeau-Manneville inter-

mittency maps with both summable and nonsummable autocorrelation functions,

and the Hamiltonian standard map exhibiting weak chaos. We also consider exam-

ples of continuous time dynamics such as the Lorenz-96 system and a driven and

damped nonlinear Schrödinger equation. Finally, we show the applicability of the

0-1 test for time series contaminated with noise as found in real world applications.

1 Introduction

The 0-1 test for chaos was developed in a series of papers [19, 20, 22] to distinguish

between regular and chaotic dynamics in deterministic dynamical systems. Rather

than requiring phase space reconstruction which is necessary to apply standard Lya-

punov exponent methods to the analysis of discretely sampled data, the test works

directly with the time series and does not involve any preprocessing of the data. The

test requires only a minimal computational effort independent of the dimension of
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the underlying dynamical system under investigation.

The test has found applications in a wide range of fields. Besides general stud-

ies of dissipative [35, 12, 67] and Hamiltonian [72] dynamical systems and multi-

agent systems [39], the test has found its way into as disparate areas as engineering

[42, 43, 55], electronics [65], finance and economics [36, 69, 68, 70, 38, 37, 28],

geophysical applications [48, 47, 60, 7], hydrology [32, 40], epidemology [50, 8, 9]

and traffic dynamics [34]. In particular its application to non-smooth processes

[42, 43, 2], to systems with fractional derivatives and delays [3, 71, 5], and to non-

chaotic strange attractors [18] are notable as those are not amenable to standard

methods employing Lyapunov exponents. The test has also been used to analyse

systems with non-local operators in integro-differential equations [62] and integro-

partial differential equations [10]. Moreover, it has been used to analyse experimen-

tal data and observations [13, 33, 34, 38, 37].

The remainder is organised as follows. In Section 2 we briefly describe the test.

The algorithm is then presented in Section 3 where we discuss several implementa-

tions of the test. The theoretical underpinning of our test is explained in Section 4.

This is followed by numerical results in Section 5 illustrating the efficiency of our

test to deal with intermittent maps, chaos in thin separatrix layers in Hamiltonian

systems, partial differential equations and data contaminated by observational noise.

We conclude with a summary in Section 6.

2 Description of the test

The input of the test is a one-dimensional time series φ(n) for n = 1,2, . . . We use

the data φ(n) to drive the 2-dimensional system

p(n+ 1) = p(n)+φ(n)coscn,

q(n+ 1) = q(n)+φ(n)sincn , (1)

where c ∈ (0,2π) is fixed. Define the (time-averaged) mean square displacement

M(n) = lim
N→∞

1

N

N

∑
j=1

(

[p( j+ n)− p( j)]2 + [q( j+ n)− q( j)]2
)

, n = 1,2,3, . . .

and its growth rate

K = lim
n→∞

logM(n)

logn
.

Under general conditions, the limits M(n) and K can be shown to exist, and K

takes either the value K = 0 signifying regular dynamics or the value K = 1 signi-
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fying chaotic dynamics.

A brief explanation of the rationale behind the test is as follows. (The mathe-

matics is described more carefully in Section 4.) In the regular case (periodic or

quasiperiodic dynamics) the trajectories for the system (1) are typically bounded,

whereas in the chaotic case the trajectories for (1) typically behave approximately

like a two-dimensional Brownian motion with zero drift and hence evolve diffu-

sively (i.e. with growth rate
√

n). A convenient method for distinguishing these

growth rates, bounded or diffusive, is via the mean square displacement M(n) which

accordingly is either bounded or grows linearly. The diagnostic K ∈ {0,1} captures

this growth rate.

To summarise, we have the following two scenarios:

Underlying dynamics Dynamics of p(n) and q(n) M(n) K

regular bounded bounded 0

chaotic diffusive linear 1

In the following Section we describe the test in more detail focusing on the prac-

tical issues in the implementation of the 0-1 test.

3 Description of the algorithm

The test can be readily implemented in a few lines of code. We briefly describe its

implementation and refer the reader to [22] for more details. Given a time series

φ( j) for j = 1, . . . ,N we perform the following sequence of steps:

1. For c ∈ (0,π), we solve the system (1) to obtain

pc(n) =
n

∑
j=1

φ( j)cos jc, qc(n) =
n

∑
j=1

φ( j)sin jc (2)

for n = 1,2, . . . ,N. Typical plots of p and q for regular and chaotic dynamics are

given in Figure 1 which clearly illustrates the bounded motion of p and q for

underlying regular dynamics and asymptotic Brownian motion for underlying

chaotic dynamics.

2. To analyse the diffusive (or non-diffusive) behaviour of pc and qc we compute

Mc(n) =
1

N

N

∑
j=1

([pc( j+ n)− pc( j)]2 + [qc( j+ n)− qc( j)]2) . (3)

To assure the limit N → ∞ we require n ≪ N. Hence we calculate Mc(n) only for

n ≤ N0 where N0 ≪ N. In practice we find that N0 should not be chosen much
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Fig. 1 Plot of p versus q for the logistic map xn+1 = µxn(1 − xn). Left: Regular dynamics at

µ = 3.55; Right: Chaotic dynamics at µ = 3.97. We used N = 5000 data points.

larger than N/10.

In [23] a modified mean square displacement

Dc(n) = Mc(n)−Vosc(c,n) (4)

was derived which exhibits the same asymptotic growth rate as Mc(n) but with

better convergence properties. The correction term

Vosc(c,n) = (Eφ)2 1− cosnc

1− cosc

is readily estimated from the time average of the observable

Eφ = lim
N→∞

1

N

N

∑
j=1

φ( j) .

Note that the asymptotic growth rates of Mc(n) and Dc(n) are the same.

In Figure 2 we show the two mean square displacements Mc(n) and Dc(n) for the

logistic map xn+1 = µxn(1− xn) with µ = 3.97 (which corresponds to chaotic

dynamics) and an arbitrary value of c = 0.9. The subtraction of the oscillatory

term Vosc(c,n) clearly regularizes the linear behaviour of Mc(n). This allows for

a much better determination of the asymptotic growth rate Kc of the mean square

displacement which is described in the next step.

3. The contrasting behaviour of the translation variables pc and qc as seen in Fig-

ure 1 can be distinguished by the asymptotic growth rate Kc of the mean square

displacement (or of the modified mean square displacement Dc(n)). We present

here two different methods to compute Kc, namely the regression method and the

correlation method.
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Fig. 2 Plot of the mean square displacement versus n for the logistic map with µ = 3.97 corre-

sponding to chaotic dynamics. We used N = 2000 data points and computed Mc(n) and Dc(n) for

n = 1, . . .,200 and an arbitrary value of c = 0.9.

Regression method: The regression method consists of linear regression for the

log-log plot of the mean square displacement (cf. Figure 2). For the original

mean square displacement Mc(n), the asymptotic growth rate Kc is given by the

definition

Kc = lim
n→∞

logMc(n)

logn
.

Numerically, Kc is determined by fitting a straight line to the graph of logMc(n)
versus logn through minimizing the absolute deviation1. It is recommended to

minimize the absolute deviation rather than employing the usual least square

method as the latter assigns a higher weight to outliers. Outliers are typical of

small values of n since the linear behaviour of the mean square displacement is

only given asymptotically.

As seen in Figure 2, Dc(n) exhibits far less variance than Mc(n) so it is natural

to apply the regression method to Dc(n). However, since Dc(n) may be negative

due to the subtraction of the oscillatory term Vosc(c,n), we need to set

D̃c(n) = Dc(n)+ a min
1≤n≤N0

|Dc(n)| ,

where a > 1 (in the simulations presented here we chose a = 1.1) to obtain the

asymptotic growth rate

Kc = lim
n→∞

log D̃c(n)

logn
.

1 One may either use off the shelf routines provided for example in Numerical Recipes [61] or

build-in routines in MATLAB [49].
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Again, Kc can be determined numerically by regression (minimizing the absolute

deviation) for the graph of log D̃c(n) versus logn.

Correlation method: In the correlation method, we form vectors ξ =(1,2, . . . ,N0)
and ∆ = (Dc(1),Dc(2), . . . ,Dc(N0)) (alternatively, Mc(n) could be used instead

of Dc(n)). Recalling the definition of covariance and variance of given vectors x,

y of length q

cov(x,y) = 1
q ∑

q
j=1(x( j)− x̄)(y( j)− ȳ), where x̄ = 1

q ∑
q
j=1 x( j) ,

var(x) = cov(x,x) ,

we define the correlation coefficient

Kc = corr(ξ ,∆) =
cov(ξ ,∆)

√

var(ξ )var(∆)
∈ [−1,1] .

This quantity measures the strength of the correlation of Dc(n) with linear

growth. The correlation method greatly outperforms the regression method (see

Figures 3 and 4 below), but assumes that the dynamics is such that with proba-

bility 1 we have Kc = 0 or Kc = 1. This is justified for large classes of dynamical

systems [23].

4. Steps 1–3 need to be executed for various values of c. In practice, 100 choices of

c is sufficient. We then compute the median of these values of Kc to compute the

final result K = median(Kc). The values of c are chosen randomly in the inter-

val c ∈ (π/5,4π/5) to avoid resonances. Resonances occur when the dynamics

involves a periodic component with frequency ω implying a term in the Fourier

decomposition of the observable φ proportional to exp(−iωk). In this case there

is a resonance at c =ω leading to pc(n)∼ n and qc(n)∼ n and hence Mc(n)∼ n2

(and Dc(n)∼ n2) implying Kc = 2 for the regression method and Kc ≈ 1 for the

correlation method. Note that for c = 0 the test would yield a resonance irrespec-

tive of the underlying dynamics (which is why this value should be excluded).

See [19, 22] for more details on resonances. In Figure 3 we show Kc versus c for

the logistic map for regular and chaotic dynamics. Resonances are clearly visible

for the periodic case, with Kc = 2 for the regression method and Kc ≈ 1 for the

correlation method.

Our test states that a value of K ≈ 0 indicates regular dynamics, and K ≈ 1 in-

dicates chaotic dynamics. This is exemplified in Figure 4 where K is shown as a

function of the parameter µ of the logistic map.

Remark on finite size problems: There are finite size issues that are inherent to all

methods for chaos detection, namely that the length of the time series is sufficiently

long to capture the dynamics across the whole of the attractor. Specifically, for the

0-1 test the determination of the mean square displacement requires n ≤ N0 ≪ N,

and the test relies on asymptotic behaviour of the (non)-diffusive behaviour of p and

q which for too small time series data length may not yet be dominant. Concerning

the latter point it is pertinent to mention that even in cases of time series which are
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Fig. 3 Plot of Kc versus c for the logistic map calculated using the regression method (top) and

correlation method (bottom). We used here N = 5000 data points, and 1000 equally spaced values

for c. Left: µ = 3.55 corresponding to regular dynamics; Right: µ = 3.97 corresponding to chaotic

dynamics.

too short to allow for convergence of K to either 0 or 1, strong indications for the

presence or absence of chaos can be found by looking at the behaviour of K with

Fig. 4 Plot of K versus µ
for the logistic map with

3.5 ≤ µ ≤ 4 increased in

increments of 0.001. We

used N = 2000 data points.

Shown are results when K is

calculated via the regression

method (dashed line, blue)

and when K is calculated

via the correlation method

(continuous line, red). The

horizontal lines indicate the

limiting cases K = 0 and

K = 1. We used 100 randomly

distributed values of c, and

the mean square displacement

was determined using Dc(n).
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the length of the time series used to determine K. Figure 5 shows typical decreas-

ing/increasing behaviour of K near parameter values of the logistic map at the so

called edge of chaos, indicating regular or chaotic dynamics, respectively. This was

discussed at length in [21, 22].

1000 2000 3000 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

N

K

0.5 1 1.5 2
x 10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

N

K
Fig. 5 Plot of K versus the length of the time series N for the logistic map near the edge of chaos.

We used 100 randomly distributed values of c, and the mean square displacement was determined

using Dc(n) with N0 =N/10, and the correlation method was used to determine Kc. Left: µ = 3.569

corresponding to regular dynamics; Right: µ = 3.571 corresponding to chaotic dynamics.

4 Theoretical framework for the 0-1 test

Systems of the type (1) were studied extensively in [56, 1, 14, 52, 53]. The motiva-

tion there was to understand growth rates of trajectories in systems with Euclidean

symmetry. A large class of discrete time systems with planar Euclidean symmetry

are given by skew product equations of the form

x(n+ 1) = f (x(n)),

ϑ(n+ 1) = ϑ(n)+ h(x(n)), (5)

p(n+ 1) = p(n)+Φ(x(n))cos(ϑ(n))−Ψ(x(n))sin(ϑ(n)),

q(n+ 1) = q(n)+Φ(x(n))sin(ϑ(n))+Ψ(x(n))cos(ϑ(n)).

Here f : X →X defines the base dynamics (perpendicular to the symmetry variables)

while ϑ(n) represents two-dimensional rotations and (p(n),q(n)) represent planar

translations. It is assumed that the functions h,Φ,Ψ : X → R are smooth. In [56],

it was shown that if the dynamics on X is periodic or quasiperiodic, then typically

the translation variables p(n),q(n) remain bounded. However, sufficiently chaotic

dynamics on X leads to diffusive behaviour in the translation variables. (See [14, 53]

for the case of uniformly hyperbolic dynamics, and more recently [25] for nonuni-

formly hyperbolic dynamics.) Using these results, and computing the growth rate K
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of the mean square displacement as described in Section 2, we obtain with probabil-

ity one the growth rates K = 0 and K = 1, respectively in these two situations. It is

pertinent to stress that the test does not rely in anyway on a possible exponential de-

cay of the auto-correlation function; the test holds for polynomial decay as well and

even does not require summability of the auto-correlation function [24, 25] (see also

Section 5.1.1). Also it is irrelevant whether the dynamics is mixing. For example, in

the case of the logistic map mentioned in Section 5.1, the attractor is almost always

a periodic sink or a strongly chaotic attractor consisting of a finite union of intervals

permuted cyclically by the dynamics. In both cases, the attractor is mixing up to a

finite cycle but is generally nonmixing. More importantly, in the case of continuous

time dynamics, it is rarely the case that mixing can be established but the 0-1 test is

still valid.

It should be noted that a similar dichotomy holds in the absence of the rota-

tion variables, except that the bounded/diffusive behaviour is superimposed on a

linear drift. The rotation symmetry kills off the linear drift [56, 15], rendering the

bounded/diffusive dichotomy more readily detectable.

The idea behind the 0-1 test is to adjoin rotation and translation variables ϑ , p,

q to a given (but unknown) dynamical system f : X → X generating data φ(n), thus

producing a system with Euclidean symmetry to which the above theoretical results

apply. Note that choosing h ≡ c, Ψ ≡ 0 and making the identification Φ(x(n)) =
φ(n) reduces the skew product system (5) to the 2-dimensional system (1) used in

the 0-1 test.

The original version of the test [19] used “generic” choices of h so that certain

theoretical results of [15] could be applied in justifying the test. The current version

is much more effective for noisy data [20] but the original theoretical justification

for the test no longer applies. Nevertheless, it transpires that the simplified nature of

the equations in (1) enables certain improvements to the theoretical underpinnings

for the test, as described in [23]. The structure of the simplified equations means

that they are amenable to techniques from Fourier analysis. In particular, there are

connections with power spectra as described in the next subsection. In the afore-

mentioned cases of periodic/quasiperiodic dynamics and uniformly/nonuniformly

hyperbolic dynamics, we typically obtain K = 0 and K = 1, respectively. Here “typ-

ically” is in the sense of probability one: for almost every choice of c. As mentioned

previously, we take the median value of K, computed with 100 randomly chosen

choices of c, to circumvent the issue regarding bad choices of c. Moreover, the con-

siderations in [23] lead directly to the modified mean square displacement Dc(n)
which we have seen leads to improved results (there is no analogue of this modifi-

cation for the original test).

4.1 Connection with the power spectrum

Consider a discrete dynamical system f : X → X with ergodic invariant measure µ .

Given a square-integrable observable v : X → R, the power spectrum S is defined to
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be the square of the Fourier amplitudes of v◦ f j per unit time2

S(ω) = lim
n→∞

1

n

∫

X

∣

∣

∣

n−1

∑
j=0

ei jωv◦ f j
∣

∣

∣

2

dµ , ω ∈ [0,2π ]. (6)

It was proven in [51] that the power spectrum has a broadband nature and is nowhere

zero for a large class of dynamical systems, including slowly mixing systems such

as Pomeau-Manneville maps provided the auto-correlation function is summable.

(For a discussion of recent results in the case of nonsummable autocorrelations,

see 5.1.1.)

A simple short calculation shows that

S(c) = lim
n→∞

1

n

∫

X
|

n−1

∑
j=0

ei jcv◦ f j|2 dµ = lim
n→∞

1

n
Mc(n) , (7)

implying that

Mc(n) = S(c)n+ o(n) . (8)

This may give the wrong impression that the 0-1 test for chaos is simply evaluating

the power spectrum. From (8) one can only conclude that if the power spectrum is

nowhere nonzero (S(c) 6= 0 for all c), then the asymptotic growth rate of the mean

square displacement becomes Kc = 1 for all c. On the other hand, if S(c) = 0 for all

c, it does not automatically follow that Kc = 0 (for example, the o(n) term could be

of the form n/ log(n) implying Kc = 1). However in [23] it was rigorously proven

that for a large class of dynamical systems, the o(n) terms are such that for chaotic

dynamics one obtains Kc = 1 and for regular dynamics Kc = 0.

It is pertinent to mention the computational advantage of the 0-1 test which ex-

tracts in a single number K the property of the power spectrum which is relevant for

underlying chaotic or regular dynamics, i.e. whether it is everywhere or nowhere

nonzero. The test completely bypasses the explicit computation of the power spec-

trum which would require considerably more data. Moreover, K can be plotted

against a parameter of the system as in Figure 4 and the convergence of K can be

seen against the number of iterates N as in Figure 5. There do not exist analogous

plots for the power spectrum.

5 Numerical examples for the 0-1 test

We now illustrate the applicability of our test to be able to distinguish regular dy-

namics from chaotic dynamics in discrete and continuous time systems, dissipative

and Hamiltonian systems, noise free and noise contaminated data.

2 One may use e2πi jω/n rather than ei jω for a rescaled domain.
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5.1 Discrete time systems

One of the simplest families of dynamical systems that exhibits regular and chaotic

dynamics is the logistic map f : [0,1] → [0,1] given by f (x) = µx(1− x). Here,

µ ∈ [0,4] is a parameter. It is well-known that there is a unique attractor for each

value of µ and that the basin of attraction is of full measure in [0,1]. For almost every

value of µ , the attractor is either a periodic orbit or a strongly chaotic attractor.

Throughout the earlier Sections, this family of maps was used as an illustrative

example for various features of the 0-1 test, see Figures 1, 2, 3, 4 and 5.

We now proceed to explore two further families of discrete time systems.

5.1.1 Pomeau-Manneville map

A prototypical family of maps exhibiting intermittency and weakly chaotic dynam-

ical systems with “sticky” equilibria are Pomeau-Manneville intermittency maps

xn+1 = f (xn) with f : [0,1]→ [0,1] given by

f (x) =

{

x(1+ 2γxγ ) 0 ≤ x ≤ 1
2

2x− 1 1
2
≤ x ≤ 1

(9)

where γ is a parameter [59, 44]. For γ ∈ [0,1) there exists a unique absolutely contin-

uous invariant probability measure (SRB measure) ρ . When γ = 0 the map reduces

to the doubling map with exponential decay of correlations. For γ ∈ (0,1) the de-

cay of correlations is polynomial with rate 1/n(1/γ)−1 which is summable for γ < 1
2

and nonsummable for γ ∈ [ 1
2
,1) [30]. For γ > 0 the fixed point at 0 is indifferent

( f ′(0) = 1) and plays the role of the “sticky” regular dynamics leading to laminar

behaviour interspersed with intermittent chaotic bursts. This is illustrated in Fig-

ure 6, where we show a trajectory of the Pomeau-Manneville map in the strongly

chaotic case with γ = 0.2, where the correlations are summable, and in the inter-

mittent weakly chaotic case with γ = 0.7, where the correlations are nonsummable.

It is well-known [17] that for such intermittent systems the usual central limit the-

orem breaks down for γ ∈ ( 1
2
,1) leading to fluctuations of Lévy type rather than of

Gaussian type. For mathematically rigorous results on this, see [27, 54, 74]. Despite

this, our test for chaos is still able to detect chaos in the weakly chaotic case with

nonsummable correlations. A proof of this statement is currently work in progress,

but the underlying reason, as discussed in related results in [24, 25], is that the

anomalous diffusion is suppressed due to the rotation symmetry induced by the

presence of c in (2). As a result of this, when the dynamics is trapped near the in-

different fixed point, the dynamics appears regular and therefore leads to bounded

dynamics of the translation variables p and q as seen in Figure 7 for φn = 1+ xn. In

Figure 8 we show the asymptotic growth rate as a function of γ .
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Fig. 6 Time series of the Pomeau-Manneville map (9). Left: Strongly chaotic case with γ = 0.2.

Right: Weakly chaotic case with γ = 0.7.
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Fig. 7 Typical plots of the translation variables p and q driven by an observable φn = 1+ xn of

the Pomeau-Manneville map (9) for c = 2.1375. Left: Strongly chaotic case with γ = 0.2. Middle:

Weakly chaotic case with γ = 0.7. Right: Zoom for weakly chaotic case with γ = 0.7 showing the

trace of the laminar phases of the Pomeau-Manneville dynamics in form of bounded circles.

Fig. 8 Plot of K as a func-

tion of γ for an observable

φn = 1+ xn of the Pomeau-

Manneville map (9), using the

regression method (crosses)

and the correlation method

(circles). We used N = 10,000

data points and 100 randomly

distributed values of c.
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5.1.2 Standard map

We now consider the area-preserving Standard map [6, 41]
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πn+1 = πn +κ sin(θn) (10)

θn+1 = θn +πn+1 . (11)

Figure 9 shows the trajectories of 100 randomly chosen initial conditions after a

transient of 10,000 iterates for κ = 0.9. The phase space consists of regular islands

embedded in chaotic layers. In contrast, at κ = −0.3 there is a hyperbolic fixed

point at the origin and the asymptotic dynamics occurs in a thin separatrix layer

as seen in Figure 10 for 100 randomly chosen initial conditions π0 ∈ [0,0.03] and

θ0 ∈ [−0.03,0.03]. This thin separatrix layer contains complex structures with many

tiny islands embedded within a chaotic sea [29]. This case exhibits weak chaos in the

sense of [73] with small Lyapunov exponents which may be difficult to distinguish

from those corresponding to regular orbits.

In Figures 11 and 12 we show how the 0-1 test is able to detect regular and chaotic

orbits, even in the weakly chaotic case. We have chosen 1,0002 initial conditions

and run them for 10,000 steps. We used the correlation method and applied it to the

modified mean square displacement Dc(n).

Fig. 9 Standard map (11)

exhibiting chaos with κ = 0.9. θ

π

−π −

π
2

0 π
2

π−π

−

π
2

0

π
2

π

5.2 Continuous time systems

We have so far formulated the 0–1 test for discrete time systems. For continuous

time series φ(t), we obtain a discrete time series φ(t1), φ(t2), φ(t3), . . . for given

discrete times 0 < t1 < t2 < t3 < · · · to which the test for chaos may be applied as

in previous sections. The sequence t j, j ≥ 1, has to be chosen in a deterministic

manner to assure that the time series φ(t j) is deterministic. One may choose the t j

as the intersection times with a cross-section. In this case the time series φ(t j) cor-

responds to observing a Poincaré map. A second, perhaps more usual, approach is
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Fig. 10 Standard map (11) exhibiting weak chaos in a small separatrix layer with κ =−0.3. The

right figure is a zoom near the hyperbolic point showing the enlarged stochastic layer.

Fig. 11 Contour plot of K for

the standard map (11) exhibit-

ing chaos with κ = 0.9. We

used 1,0002 equally spaced

initial conditions and calcu-

lated K via the correlation

method from Dc.

to take t j = jτs where τs > 0 is the sampling time. The time series φ(t j) = φ( jτs)
corresponds to observing the “time-τs” map associated with the underlying contin-

uous time system. Contrary to the case of observing a Poincaré map, in the latter

approach one is faced with a well-known oversampling issue: If τs is too small,

then the system is oversampled and this often leads to incorrect results [22]. Al-

though oversampling is a practical problem for data series of finite size, it should

be emphasized that theoretically the test works for all sampling times τs in the limit

N → ∞. We now present numerical results for an ordinary differential equation and

a partial differential equation where care has to be taken to overcome the issue of

oversampling for the realistic case of finite data series.

5.2.1 Rössler equations

To illustrate how the issue of oversampling manifests itself in the 0–1 test for chaos

and how to overcome it, as proposed in [22], we consider here the 3-dimensional
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Fig. 12 Contour plot of K for

the standard map (11) exhibit-

ing chaos with κ =−0.3. We

used 1,0002 equally spaced

initial conditions and calcu-

lated K via the correlation

method from Dc.

Rössler system [64]

ẋ =−y− z

ẏ = x+ ay

ż = b+ z(x− d) . (12)

For the values a= 0.432, b= 2 and d = 4, the system exhibits chaos with a maximal

Lyapunov exponent of about λmax ≈ 0.1 (we use the natural logarithm). We have

integrated this system with a fourth-order Runge-Kutta scheme with variable step-

size and recorded 100,000 data points each ∆ t = 0.01 (ie. 1,000 time units) after

disregarding a transient behaviour of 50 time units to allow for the dynamics to settle

on the attractor. A plot of the dynamic in the x-y-plane is provided in Figure 13.

Figure 14 shows an oversampled and a sufficiently coarsely sampled observable

for the Rössler system (12). The finely sampled time series (τs = 0.05) yields K ≈ 0

whereas the coarsely sampled data (τs = 0.35) yields K ≈ 1 already despite using

only 1/7th of the data.

A good choice of the sampling time τs can often be obtained by visual inspection

as in Figure 14. A more quantitative method is to use the e-folding time of the auto-

correlation function or to use the first minimum of the mutual information [16, 31].

For the data depicted in Figure 14 these method yield τs = 1.15 and τs = 1.50, re-

spectively. However, we observed here, that the smaller sampling time τs = 0.35

already yields K ≈ 1 with the advantage of being a longer data set. In general, the

optimal sampling time will depend on the dynamical system and the time series

under consideration. We refer the reader to [31] for a discussion on optimal time

delays in the context of phase space reconstruction.

In the following we show how the issue of oversampling arises in the 0–1 test. For

continuous time systems, the (time-averaged) mean square displacement is defined

as



16 Georg A. Gottwald and Ian Melbourne

-4 -2 0 2 4 6
-6

-4

-2

0

2

x

y

Fig. 13 Phase portrait for the Rössler system (12). The short trajectory segment (blue) was sampled

at τs = 0.5.
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Fig. 14 Plot of the observable φ (t) = x(t) for the Rössler system (12). The finely sampled data

(crosses) are sampled at τs = 0.05 time units. The coarsely sampled data (filled circles) are sampled

at τs = 0.35 time units.

Mc(t) = lim
T→∞

1

T

∫ T

0
(p(t + τ)− p(τ))2 + (q(t + τ)− q(τ))2 dτ ,

which, for a time series sampled with sample time τs, is approximated by

Mc(n) = lim
N→∞

1

N

N

∑
j=1

(

[pτs( j+ n)− pτs( j)]2 + [qτs( j+ n)− qτs( j)]2
)

τ2
s .
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Similarly the power spectrum for the time-continuous case discretizes to

S(ν) = lim
n→∞

1

n
E

∣

∣

∣

n−1

∑
j=0

e
2π i ν

νs
jφ( j)

∣

∣

∣

2

τ2
s , (13)

where νs = 1/τs is the sample frequency. For chaotic systems the power spectrum

decays for large frequencies ν , and so for frequencies larger than some νmax the

power spectrum is zero for all practical purposes.

Comparing (13) with the power spectrum (6) for discrete-time data, we identify

c = 2π
ν

νs

, ν ∈ [0,νmax] . (14)

Sampling at the Nyquist rate with ν⋆
s = 2νmax corresponds to c ∈ (0,π) as before.

However, oversampling at a higher frequency νs > ν⋆
s , restricts the effective choices

of c to c∈ (0,c⋆) where c⋆ =
ν⋆

s
νs

π < π . In this case, the test for chaos may incorrectly

classify the dynamics of a chaotic system as regular, since it is possible that more

than half of the randomly chosen values of c ∈ (0,π) will lie in (c⋆,π) yielding a

median K = 0. Note that the problem of oversampling is not related to the length N

of the time series.

We illustrate this using the Rössler system (12) sampled with τs ranging from

τs = 0.05 up to τs = 1. In Figure 15 the median of the asymptotic growth rate K is

shown as a function of the sample time. For data that is too finely sampled, we obtain

K = 0 although the dynamics is actually chaotic. Figure 16 illustrates how the range

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

τs

K

 

 

correlation method
regression method

Fig. 15 Plot of K as a function of the sample time τs for the Rössler system (12). At the finest

sampling rate τs = 0.05 we recorded N = 100,000 data points. Results are shown for the correlation

method (circles) and the regression method (crosses).

of effective values of c depends on the sampling time τs. The linear scaling of the

range of c for which Kc ≈ 1 as suggested by (14) is clearly seen. The pronounced

dips of Kc for certain values of c are caused by near resonances which occur in

the chaotic Rössler system for our parameter values caused by regularly appearing
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revolutions of the dynamics as illustrated in Figure 13. Note that the presence of

resonances does not affect the value of the median K as seen in Figure 15.

0
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0.6

0.8

1

c

K
c

0 π
2

π

Fig. 16 Plot of Kc as a function of the frequency c for the Rössler system (12). From left to right we

used τs = 0.15, τs = 0.25 and τs = 0.35. The corresponding values of the growth rate (calculated

using the correlation method) are K = 0.005, K = 0.5 and K = 0.97, respectively. At the sampling

rate τs = 0.05 we recorded N = 100,000 data points.

5.2.2 Partial differential equations

We apply now our test to the driven and damped nonlinear Schrödinger equation

ıqt + qxx + 2|q|2q =−ıγq+ εeı(ωt+σ),

which describes a plasma resonantly driven by a capacitor with frequency ω and

damped via collisions [57, 11, 4]. For q = Qexp(ı(ωt +σ)) we solve

ıQt +Qxx + 2|Q|2Q = ωQ− ıγQ+ ε . (15)

It is well known that for given system length L the system (15) undergoes a

period doubling bifurcation route into chaos [57] for increasing values of the driving

amplitude ε . We present here results for a system with length L = 80, γ = 0.11,

ω = 1 for ε = 0.095 and ε = 0.2 for regular and chaotic dynamics, respectively.

The system (15) is integrated with a second-order in space and time finite difference

Crank-Nicolson solver where the nonlinear term is treated with an Adams-Bashforth

scheme. We use nx = 256 grid points and an integration time step of dt = 0.0001 and

evolve from an initial condition q =−ı
√

2+0.1cos(kx) with k = 15 with reflective

(von Neumann) boundary conditions. In Figure 17 we show Hovmöller diagrams of

|Q(x, t)| for regular and chaotic dynamics. We construct observables by evaluating

the field Q(x, t) at spatial locations x j = jdx with dx = L/nx and j = 1, · · · ,nx. In

particular, we consider the following observables
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Fig. 17 Hovmöller diagram of |Q(x, t)| for regular dynamics with ε = 0.095 (left) and chaotic

dynamics with ε = 0.2 (right) for the driven and damped Schrödinger equation (15).

φ1(t) =
nx

∑
j=1

|Q(x j, t)|,

φ2(t) = |Q(L/2, t)|,

φ3(t) =
5

∑
j=1

|Q(x j⋆ , t)|.

For the last observable φ3(t) we randomly choose 5 locations x j⋆ from the nx = 256

spatial gridpoints at time t = 0.

The observables φ1,2,3 are sampled time every 0.3 time units with a total of 10,000

snapshots taken. This sampling time is sufficiently large to avoid the oversampling

effects for continuous time systems which would lead to K ≈ 0 irrespective of the

underlying dynamics, as discussed in Section 5.2.1 (see also [22]). Using the cor-

relation method on Dc(n), for each of the three observables we obtain values of K

smaller than 0.0017 in the regular case with ε = 0.095, and values of K within 0.003

from K = 1 for the chaotic case.

We note that although the nonlinear Schrödinger equation (15) is formally infinite-

dimensional, its dynamics evolves on a finite dimensional attractor [11].

5.3 Data contaminated by noise

For a test for chaos to be able to analyse real world data one needs to show its

capability to be able to process observations contaminated by noise. In the following

we revisit the example of measurement noise in an 8-dimensional Lorenz-96 model

studied in our previous work [20]. There it was shown that our 0-1 test for chaos is

far superior to traditional methods using phase space reconstruction and Lyapunov

exponents [66, 63], without preprocessing the data with standard noise reduction

methods [31].
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5.3.1 Lorenz-96 system

We revisit the tough test case of analysing quasi-periodic dynamics with measure-

ment noise [20]. In particular we study the Lorenz-96 system [45]

żi = zi−1(zi+1 − zi−2)− zi +F i = 1, · · · ,D (16)

with periodic zi+D = zi. This system is a toy-model for midlatitude atmospheric

dynamics, incorporating linear damping, forcing and nonlinear transport. In the at-

mospheric context one usually uses D = 40. This particular value for D is chosen

such that the spacing between adjacent grid points zi roughly equals the Rossby ra-

dius of deformation at midlatitudes where the circumference of the earth is roughly

30,000 km. The dynamical properties of the Lorenz-96 system have been investi-

gated, for example, in [46, 58]. We use D = 8 modes where quasi-periodic windows

were found to alternate with chaotic dynamics [58].

In the previous examples, the test was able to distinguish sharply between regular

and chaotic dynamics in noise free data. However such good performance of the test

for noise free data is detrimental for noise contaminated data — even small amounts

of noise would be detected and noisy regular dynamics would be falsely classified as

chaotic. The sensitivity of our test was enhanced by the subtraction of the oscillatory

term (cf. equation (4) and Figure 2), and the application of the correlation method.

In [20] our test employed directly the mean square displacement Mc(n) including

the oscillatory term) rather than the modified version Dc(n). Furthermore, it used

the regression method rather than the correlation method to calculate Kc from the

mean square displacement Mc(n). We showed that in this case our test greatly out-

performs methods involving phase space reconstruction and Lyapunov exponents in

distinguishing quasi-periodic dynamics from chaotic dynamics when 10% measure-

ment noise was added to the observations.

Here we will revisit our test including a method to deal with measurement noise

proposed in [22]: If we assume that the noise is independent of the dynamics, i.e.

pure measurement noise, and also independent of the forcing F , we can decompose

the linear part of the modified mean square displacement as

Dc(n) = (Sdyn(c)+ Snoise(c))n+ o(n) . (17)

Here Sdyn(c) is the variance associated with the underlying deterministic dynamics

to be analysed and Snoise(c) is the variance associated with the measurement noise.

We can estimate the variance associated with the measurement noise Snoise(c) by

estimating Dc(n) from the noisy observations at a parameter F where the dynamics

is known to be regular with Sdyn(c) = 0. We then estimate Snoise(c) to compensate

for the linear growth of Dc(n) due to the noise. We remark that this is not always

possible and requires (at least) that gauge experiments can be performed. For ex-

ample, this method cannot help with studying the regularity of planetary motion for

noisy observations. If gauge experiments are not possible, our test can still be used

to analyse noise-contaminated experimental data using the formulation proposed in
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reference [20] as done, for example, in [13, 33, 34, 38, 37]. Once Snoise(c) is esti-

mated the test can proceed with

D̂c(n) = Dc(n)− Snoise(c)n (18)

as described in the previous sections. In particular we can employ the more sensi-

tive correlation method. Note that the linear growth term of the mean-square dis-

placement will not be entirely eliminated (unless by chance Snoise(c) is correctly

estimated from the data) but the proposed scheme controls its magnitude. This

allows the test to analyse observational data of finite length; for unlimited noise-

contaminated data, one would, of course, obtain K = 1, irrespective of the underly-

ing deterministic dynamics.

In Figure 18 we show results of our test using first Mc(n) and the regression method

as in [20] and second using D̂c(n) and the correlation method. We use a fourth-order

Runge-Kutta scheme with a time step of dt = 0.05 to generate observations

φ(t) = (1+ ζ )(z2 + z3 + z4) . (19)

The measurement noise ζ = ηu is drawn from a uniform distribution u ∼U [−1,1].
In Figure 18 we show results for noise-free observations with η = 0, and for mea-

surement noise levels of 10% and 20% with η = 0.1 and η = 0.2, respectively.

Observations are taken every 2.5 time units and a total of N = 100,000 observations

are taken.

We gauge the variance due to the noise at F = 5.25. We obtain Snoise = 0.3 and

Snoise = 0.62 for a noise level η of 10% and 20% observational noise, respectively.

Both methods detect the quasi-periodic windows well for 10% measurement noise

(we remark that methods relying on phase space reconstruction and maximal Lya-

punov exponents were not able to accurately distinguish quasi-periodic dynamics

from chaotic dynamics [20]). The distinction between quasi-periodic dynamics and

chaotic dynamics with a noise level of 20% is less clear in the test employing Mc(n)
but still remarkably good when using D̂c(n). We propose this example which in-

volves noise contaminated quasi-periodic dynamics as a challenge for other tests.

6 Summary

We have described the 0–1 test for chaos, focusing on its implementation and several

practical issues as well as on the theoretical justifications outlining the realm of

validity of the test. We have illustrated the versatility and efficiency of our method

by treating the notoriously difficult case of weakly chaotic separatrix layers in the

standard map as well as analysing measurement noise contaminated data.

The advantage of our method lies in a) its computational low cost and ease of

implementation, b) its generality of applicability independent of the nature of the

dynamical system and its dimension, c) its working directly with the time series

without the need for phase space reconstruction, d) its ability to detect weak chaos
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Fig. 18 Plot of K versus F for the Lorenz-96 system (16) for 5.25 ≤ F ≤ 5.5 increased in in-

crements of 0.005. We used N = 100,000 data points sampled at 2.5 time units. Top: Noise free

data; Bottom left: 10% measurement noise; Bottom right: 20% measurement noise. K is calculated

via the regression method for Mc(n) (crosses, blue) and for the correlation method for Dc(n) with

subtracted noise variance (circles, magenta). The horizontal lines indicate the limiting cases K = 0

and K = 1. We used 100 randomly distributed values of c.

and e) its ability to detect regular behaviour within noisy data. In particular, we men-

tion the 8-dimensional Lorenz-96 model contaminated by noise (see Section 5.3).

We are not aware of any other method that comes close to matching the effectiveness

of our test for this example.

The theoretical justification of the 0-1 test depends on the nature of attractors for

general smooth (or piecewise smooth) dynamical systems. In [23] we challenged

the skeptical reader to construct a robust smooth example where the test fails. So

far, no such example has come to light. This was explored further in [26] where

we formulated a conjecture which, roughly speaking, states that for typical smooth

dynamics, either Kc = 1 for almost every c or Kc = 0 for almost every c.
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