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Abstract. Stochastically perturbed Korteweg-de Vries (KdV) equations are
widely used to describe the effect of random perturbations on coherent solitary
waves. We present a collective coordinate approach to describe the effect on co-
herent solitary waves in stochastically perturbed KdV equations. The collective
coordinate approach allows one to reduce the infinite-dimensional stochastic partial
differential equation (SPDE) to a finite-dimensional stochastic differential equation
for the amplitude, width and location of the solitary wave. The reduction provides
a remarkably good quantitative description of the shape of the solitary waves and
its location. Moreover, the collective coordinate framework can be used to estimate
the time-scale of validity of stochastically perturbed KdV equations for which they
can be used to describe coherent solitary waves. We describe loss of coherence by
blow-up as well as by radiation into linear waves. We corroborate our analytical
results with numerical simulations of the full SPDE.

1. Introduction

The Korteweg-de Vries equation has been a cornerstone for the description of coher-
ent waves. Originally derived to describe shallow water waves of long wavelength and
small amplitude (Korteweg and de Vries, 1895), it is now used to describe, amongst
others waves in plasmas as well as propagation of waves in electrical transmission
lines (Crighton, 1995). The KdV equation is an integrable equation which supports
coherent solitons with particle like behaviour (Zabusky and Kruskal, 1965; Gardner
et al., 1967). A natural question to ask is how is this remarkable property of coherence
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affected by random perturbations? Several stochastically perturbed KdV equations
were proposed to model various effects. We consider here stochastically perturbed
KdV equations of the form

du = (6uux − uxxx) dt+ σR(u) dW, (1)

where W denotes Brownian motion. In particular we consider here spatially ho-
mogeneous additive perturbations R(u) = 1 (Wadati, 1983), fluctuating dissipation
R(u) = u leading to space-dependent multiplicative noise (Herman, 1990) and sto-
chastic velocity fluctuations R(u) = ux in weakly-dispersive environments leading
to space-dependent multiplicative noise (Herman, 1990). In the deterministic case
R(u) = 0 a solution to the KdV equation is the famous one-parameter soliton solu-
tion

u(x, t) = −2κ sech2 (w(x+ φ)) , (2)

with amplitude κ = w2 and location φ = 4w2t and w controls the width of the soli-
ton. The effect of random perturbations onto such coherent solitary waves in the KdV
equation has been studied by means of the inverse scattering transformation (Karp-
man, 1979; Garnier, 2001), adiabatic perturbation theory (Herman, 1990) and by col-
lective variable approximations (Arévalo et al., 2003); see also (Abdullaev, 1994; Bass
et al., 1988; Kivshar and Malomed, 1989) for a review. We consider here the frame-
work of the collective variable approximation, where the effect of the perturbation is
assumed to render the parameters parametrizing the soliton solution time-dependent
(Whitham, 1974; McLaughlin and Scott, 1978; Anderson et al., 1988; Scott, 2003).
This reduces an infinite-dimensional stochastic partial differential equation (SPDE)
into a finite-dimensional stochastic differential equation (SDE) for the parameters.
The collective coordinate approach typically makes use of the geometric structure of
the integrable KdV equation by substituting the ansatz into the Lagrangian of the
system and assumes that the perturbations vary slowly compared to typical time and
spatial scales of the soliton. Here we instead apply the collective coordinate frame-
work developed in (Cartwright and Gottwald, 2019) which, instead of working within
the Lagrangian, views the restriction of the solution u(x, t) to be of a soliton form
with time-dependent parameters as a Galerkin approximation, minimizing the error
associated with such an ansatz.

The framework developed in (Cartwright and Gottwald, 2019) was designed to de-
scribe travelling waves in dissipative equivariant SPDEs. It relies on a decomposition
of the dynamics into the dynamics along the group and the dynamics orthogonal to
it. In (Cartwright and Gottwald, 2019) it was argued that the noise can freely move
along the neutrally stable group orbit, implying a Brownian motion of the front inter-
face, whereas it is controlled in the strongly contracting hyperbolic shape dynamics.
This argument has since been made rigorous (Hamster and Hupkes, 2020). This
method has also been successfully applied to describe travelling waves in determinis-
tic dissipative partial differential equations (Gottwald and Kramer, 2004; Menon and
Gottwald, 2005, 2007, 2009; Cox and Gottwald, 2006) and to describe the dynamics

2



of deterministic and stochastic phase oscillators (Gottwald, 2015, 2017; Hancock and
Gottwald, 2018; Yue et al., 2020; Smith and Gottwald, 2019, 2020). It is hence in-
teresting to see if the collective coordinate framework, as formulated in (Cartwright
and Gottwald, 2019), can be applied to conservative SPDEs which lack any hyper-
bolicity in the shape dynamics, and hence where the noise directly affects the shape
parameters.

Perturbations to the KdV equations typically lead to the radiation of linear waves
from the soliton which may non-trivially interact with it. This effect is per con-
struction not captured by collective coordinate approaches. Here we introduce an
additional perturbative approach to the collective coordinate approach, motivated by
our point of view of performing the collective coordinate reduction within a Galerkin
approximation framework. This allows us to determine a coherence time of the solu-
tion beyond which the solution ceases to have a well-defined coherent shape.

The paper is organised as follows. In Section 2 we review the framework of sto-
chastic collective coordinates. The following sections are concerned with the various
stochastically perturbed KdV equations. Section 3 considers additive noise R(u) = 1,
and we show that our collective coordinate approach reduces to the analytical solution
found in (Wadati, 1983). Section 4 is concerned with the case of fluctuating dissipa-
tion R(u) = u and contains an extension of the collective coordinate framework to
incorporate, to first order, the effect of radiation. Section 5 deals with the case of
fluctuating velocities R(u) = ux, where we show that collective coordinates accurately
describe the blow-up of this ill-posed SPDE, hence providing a time-scale for which
this equation may describe the effect of the perturbation on coherent structures. We
present numerical results illustrating the ability of our approach to capture the effect
of additive and multiplicative noise on the dynamics of solitary waves. We conclude
in Section 6 with a discussion and an outlook.

2. Method of stochastic collective coordinates

We briefly review the method of stochastic collective coordinates proposed in
(Cartwright and Gottwald, 2019). We formulate the method for general SPDEs of
the form

∂tu(x, t) = F (u) + η̇(u, x, t), (3)

with noise η(u, x, t) = σR(u)Wt with one-dimensional Brownian motion Wt and
x ∈ Ω. For the stochastic KdV equation (1) we have F (u) = 6uux − uxxx. For
multi-dimensional noise the reader is referred to (Cartwright and Gottwald, 2019).
The underlying assumption of collective coordinates is that the solution can be ap-
proximated by some ansatz function û(x, t; c) for some time-dependent, so called
collective coordinates c ∈ Rn. For the stochastically perturbed KdV equation (1) a
natural choice is

u(x, t) ≈ û(x, t; c) = −2κ(t) sech2 (w(t)(x− φ(t))) + β(t) (4)
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with now time-dependent parameters c = {κ,w, φ, β}. We allow here for a nonvanish-
ing background β(t) which will be used for the additive noise R(u) = 1 in Section 3.
Note that we allow here for all collective coordinates to evolve independently and do
not impose any algebraic relationships between them. For general SPDEs, the ansatz
function û(x, t) would need to be judiciously chosen to capture the character of the
solution of the SPDEs, for example through matching numerical simulations.

The dynamics of the infinite-dimensional SPDE is encoded in the temporal evolu-
tion of the finite-dimensional collective coordinates c(t). We present in this section
the derivation in the general form. In the subsequent sections we then evaluate the
resulting evolution equations for our special case of the stochastic KdV equation (1)
with F (u) = 6uux − uxxx with ansatz solution (4) and c = {κ,w, φ, β}, and con-
sider several perturbations R(u). We assume that the collective coordinates evolve
according to SDEs which we write as

dc = ac(c) dt+ σc(c) dB(t), (5)

where dBt is one-dimensional Brownian motion. Here the subscripts in the drift terms
ac and in the diffusion terms σc(c) refer to the collective coordinates; i.e., acj and
σcj denote the drift and diffusion term, respectively, for the collective coordinate cj.
Inserting the ansatz function û(x, t; c) into the SPDE we obtain, upon employing Itô’s
formula, the error

dE(x, t; c) =
∂û

∂cj
dcj +

1

2
dcl

∂2û

∂cl∂cj
dcj − F (û) dt− σR(û) dW (t),

associated with restricting the solution space to the ansatz function (5) spanned by the
collective coordinates c, where we used Einstein’s summation convention to simplify
notation. In the language of Galerkin approximations the error dE is referred to as
residual. Substituting (5) and collecting only terms up to order dt we obtain, using
the independence of the Brownian motion,

dE(x, t; c) =

[
∂û

∂cj
acj +

1

2
σcl

∂2û

∂cl∂cj
σcj − F (û)

]
dt+

[
∂û

∂cj
σcj dBt − σR(û) dW (t)

]
.

To maximize the degree to which the collective coordinates approximate solutions
of the SPDE, we require that the residual dE does not project onto the subspace
spanned by the collective coordinates. Hence we require that the residual dE lies in
the orthogonal complement to the tangent space of the solution manifold spanned
by ∂u

∂ci
, i = 1, · · · , n. Projecting the residual eliminates the spatial dependency and

we obtain a system of n algebraic equations for the drift and diffusion coefficients,
determining the temporal evolution of the collective coordinates. These orthogonality
conditions can be separated into terms corresponding to drift and to diffusion, i.e.
terms which are multiplied by dt or by

√
dt, respectively. The n drift contributions

are given by

〈 ∂û
∂ci

∂û

∂cj
〉acj +

1

2
σclσcj〈

∂û

∂ci

∂2û

∂cl∂cj
〉 − 〈 ∂u

∂ci
F (û)〉 = 0 (6)
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for i = 1, · · · , n and the n diffusion contributions, which balance the Brownian motion
of the SPDE with the Brownian motion of the collective coordinate system, are given
by

σcj〈
∂û

∂ci

∂û

∂cj
〉 dBt = σ〈 ∂û

∂ci
R(û)〉 dW (t) (7)

for i = 1, · · · , n. Note that we can (in principle) achieve pathwise approximation of
the solutions with dBt = dWt. Together with the n equations for the drift coefficients
aci (6) this determines the drift and diffusion coefficients in the evolution equation for
the collective coordinates (5). We evaluate all relevant inner products for the particu-
lar case of the ansatz function (4) for the stochastic KdV equation (1) in Appendix A.

We remark that our collective coordinate approach is different to the variational
Lagrangian approach adopted in (Whitham, 1974; Anderson et al., 1988; Bass et al.,
1988; Kivshar and Malomed, 1989). Whereas therein the variational form of the
KdV equation is directly exploited we here view the collective coordinate approach
as a Galerkin approximation, minimizing the residual. In Appendix B we show
how the two approaches differ, even in the case of deterministic perturbations. In
particular, we illustrate that the additional structure provided by the Lagrangian
is beneficial when considering small perturbations, however our approach provides
a better approximation for larger perturbations. Since stochastic noise introduces
with nonvanishing probability large perturbations, our approach is preferable for
stochastically perturbed variational SPDEs.

In the following we apply this general framework to the various stochastic KdV
equations introduced in the previous section.

3. KdV equation with spatially homogenous additive noise R(u) = 1

As the simplest stochastic perturbation of the KdV equation (1), we consider
R(u) = 1 with

du = (6uux − uxxx) dt+ σ dB. (8)

This SPDE with additive spatially homogeneous noise supports an analytical solution
(Wadati, 1983). Performing a Galilean transformation

X = x+m(t)

with

m(t) = 6

∫ t

0

B(s) ds,

where B(t) =
∫ t
0

dB, we obtain the deterministic KdV equation

Ut − 6UUX + UXXX = 0,

5



for

u(x, t) = U(X, t) +B(t).

Hence a solution of (8) is given by

u(x, t) = −2w2 sech2

(
w(x− φ(t)) + 6w

∫ t

0

W (s) ds

)
+W (t), (9)

where φ(t) = φdet with the location of the unpeturbed KdV soliton

φdet = x0 + 4w2t (10)

for some initial position x0 and parameter w.

We now show that our collective coordinate approach recovers the analytical solu-
tion (9). We employ the ansatz solution (4) where the evolution equations (5) for the
collective coordinates c = {κ,w, φ, β} are written as

dκ = aκ dt+ σκ dW,

dw = aw dt+ σw dW,

dφ = aφ dt+ σφ dW,

dβ = aβ dt+ σβ dW.

Since β 6= 0, u does not vanish at infinity and we perform integrations over a finite
interval of length 2L to ensure that

∫
∂û
∂β
β dx =

∫
β dx is well defined. Let 〈. . .〉 =∫ L

−L . . . dx. Then, dropping the hats for ease of exposition, the contributions (7) from
the diffusion terms are evaluated as(

σκ

〈(
∂u

∂κ

)2
〉

+ σw

〈
∂u

∂w

∂u

∂κ

〉
+ σβ

〈
∂u

∂κ

〉)
dW = σ

〈
∂u

∂κ

〉
dB, (11)(

σκ

〈
∂u

∂κ

∂u

∂w

〉
+ σw

〈(
∂u

∂w

)2
〉

+ σβ

〈
∂u

∂w

〉)
dW = σ

〈
∂u

∂w

〉
dB, (12)

σφ

〈(
∂u

∂φ

)2
〉

dW = 0, (13)(
σκ

〈
∂u

∂κ

〉
+ σw

〈
∂u

∂w

〉
+ 2Lσβ

)
dW = 2Lσ dB. (14)

From (13) we conclude σφ = 0. The remaining three equations form a linear system
for the remaining three diffusion terms σκ,w,β which is solved by σκ = σw = 0 and
σβ = σ under the condition of equal noise dW = dB.
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Similarly, upon dropping the hats, we evaluate the contributions (6) from the drift
terms as 〈(

∂u

∂κ

)2
〉
aκ +

〈
∂u

∂w

∂u

∂κ

〉
aw +

〈
∂u

∂κ

〉
aβ = 0,

〈
∂u

∂κ

∂u

∂w

〉
aκ +

〈(
∂u

∂w

)2
〉
aw +

〈
∂u

∂w

〉
aβ = 0,〈(

∂u

∂φ

)2
〉
aφ =

〈
(6uux − uxxx)

∂u

∂φ

〉
,〈

∂u

∂κ

〉
aκ +

〈
∂u

∂w

〉
aw + 2Laβ = 0.

which is solved by aκ = aw = aβ = 0 and aφ =
〈

(6uux − uxxx) ∂u
∂φ

〉
/

〈(
∂u
∂φ

)2〉
= 4w2.

Performing the limit L→∞, we recover the exact solution (9) with

φ(t) = 4w0t− 6

∫ t

0

β(s) ds

β(t) = σW (t)

and constant w(t) = w0 and constant κ(t) = w2
0 for initial position x0 and parameter

w0.

4. KdV equation with multiplicative noise R(u) = u

We now consider the stochastically perturbed KdV equation with multiplicative
noise R(u) = u,

du = (6uux − uxxx) dt+ σu dB, (15)

which was introduced to study fluctuating damping (Herman, 1990). We first show
that this equation can in fact be transformed into the following KdV equation

dv = (6µ(t)vvx − vxxx) dt (16)

with time-dependent random coefficient

µ(t) = e−
σ2

2
t+σW (17)

evolving according to geometric Brownian motion. This is achieved by the trans-
formation v = µ−1(t)u and subsequent application of Itô’s formula with dv =
µ−1 du + u dµ−1 − σ2µ−1u dt and dµ−1 = σ2µ−1 dt − σµ−1 dW . The deterministic
KdV equation with time-dependent coefficients is well studied in (Kivshar and Mal-
omed, 1989; Ko and Kuehl, 1978) under the assumption of slowly varying coefficients.
The random coefficient µ(t), however, is not slowly varying and hence adiabatic per-
turbation theory cannot be employed here.
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The transformation u = µ(t)v implies that the solution of (15) involves an overall
time-dependent factor of geometric Brownian motion µ(t). Note that the transformed
equation (16) conserves energy Ev =

∫
v2dx. Figure 1 shows the time evolution of

the solution u(x, t) for the stochastically perturbed KdV equation (15) with σ = 0.5
for a soliton solution (2) with w = 0.5 at time t = 0. Figure 2 shows the same for the
solution v(x, t) of the transformed KdV equation with random coefficient (16). The
SPDE is solved numerically in the spatial domain by finite differencing with periodic
boundary conditions, by splitting the deterministic part and the stochastic part. The
deterministic part is solved by a Crank-Nicolson method for the linear terms and an
Adams-Bashforth discretisation for the nonlinearity. The stochastic term is solved
by an Euler-Maruyama step (Lord et al., 2014). For further details of the numerical
scheme see Appendix C. We choose here a spatial discretisation step of ∆x = 0.15
and a temporal integration step ∆t = 5 · 10−4. We show both the solution u as well
as v = u/µ(t) to eliminate the overall geometric Brownian motion. It is seen that
the initial solitary wave disintegrates into radiation and loses coherence. The energy
of the solitary waves is pumped into the radiation field. This exchange of energy
and the interaction with a radiation field cannot be described by standard collective
coordinate approaches which only capture the coherent part. The coherent part,
however, as seen in Figure 1 becomes less dominant in time. We now present results
of our collective coordinate approach and show how we can incorporate the effect
of radiation to estimate the time when the solitary wave loses coherence and ceases
to be well approximated by the ansatz solution (4) and the collective coordinates
c = {κ,w, φ}.

We again seek the temporal evolution for the collective coordinates c = {κ,w, φ}
which we write as

dκ = aκ dt+ σκ dW,

dw = aw dt+ σw dW,

dφ = aφ dt+ σφ dW.

The projection of the residual as described in Section 2 leads to the drift contributions
of O(dt)

2aκ −
κ

w
aw = 0, (18)

− κ
w
aκ + 2aw = 0, (19)

aφ = −4

7

(
5w2 − 12κ

)
, (20)
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Figure 1. Top: Solution of (15) for a fixed realisation of the noise with
σ = 0.5. Bottom left: Initial condition u(x, t = 0) with w(0) = 0.5.
Bottom right: Snapshot of the solution at t = 5. Note the different
scale.

and to the diffusion contributions of O(
√
dt)(

2σκ −
κ

w
σw

)
dW = 2κσ dB,(

− κ
w
σκ + 2σw

)
dW = −κ

2

w
σ dB,

κ2wσφ dW = 0.
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Figure 2. Top: Solution of (16) for a fixed realisation of the noise with
σ = 0.5. Bottom left: Initial condition v(x, t = 0) with w(0) = 0.5.
Bottom right: Snapshot of the solution at t = 5.

This can be solved for dW = dB to yield

dκ = σκ dW, (21)

dw = 0, (22)

dφ =
4

7

(
12κ− 5w2

)
dt, (23)
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which can be analytically solved with

κ(t) = µ(t)w2, (24)

φ(t) = φdet(t) +
48

7
w2

∫ t

0

(µ(s)− 1) ds, (25)

w(t) = w0, (26)

for parameter w0, µ(t) given by (17) and the location of the unperturbed determin-
istic soliton φdet(t) = 4w2t (see (10)). Hence, our collective coordinate approach
captures the overall amplitude factor µ(t) of the geometric Brownian motion. We
remark that for this it is necessary to allow for the amplitude κ and the inverse width
w to evolve independently, rather than by requiring κ = w2 as implied by collective
coordinate approaches relying on a Lagrangian formulation of the KdV equation (see
Appendix B). However, the shape is solitonic at all times t with κ(t) = κ0 = w2

0 in
expectation. Moreover, the collective coordinate approximation (24)–(26) suggests
that the noise affects only the position φ(t); the width remains constant and the
amplitude only contains a scaling of the geometric Brownian motion µ(t).

Figure 3 shows a comparison of our collective coordinate approach (24)–(26) with a
numerical simulation for the stochastically perturbed KdV equation (15) with σ = 0.5
for one realisation of the noise. To extract the values for the collective coordinates
from the direct numerical simulation of the SPDE we perform a nonlinear least square
fit to the ansatz solution (4). We see that the collective coordinate approach yields a
remarkably good approximation for some time until it deteriorates after t ≈ 1.5. The
deterioration is first seen in the inverse width w. Note that at t = 5 the solitary wave
has significantly lost coherence by radiation (cf. Figure 1). As discussed above the
loss of coherence is caused by the solitary wave pumping energy into the radiation
field and then strongly interacting with it. We now describe how to estimate the
coherence time above which the solution ceases to be described by the ansatz function
(4), or in other words the time for which an initially coherent solitary wave remains
coherent such that it can be captured by our collective coordinate reduction (24)–(26).

We first note that the collective coordinate system reproduces the energy E =∫
u2dx = µ2(t)Ev exactly. However, whereas in the full SPDE (15) this energy is

pumped from the solitary wave into the radiation field, this energy is assumed to
remain contained within the solitary wave û(x, t) = û(κ,w, t) (4). We hence need
to expand our ansatz function to allow energy to flow outside of the solitary wave.
Linearising the unperturbed KdV equation around the solitary wave suggests that we
consider as ansatz function

ũ(x, t; c) = û(x, t) + αûx(x, t) (27)

with collective coordinates c = {κ,w, φ, α}. The correction αûx can be viewed as a
term coming from a Taylor expansion around the location φ of a solitary wave which
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we write as α(t) ∼ δ(t)/w with

δ(t) = w|φ(t)− φdet(t)| =
48

7
w

∣∣∣∣∫ t

0

(
κ(t)− w2

)
ds

∣∣∣∣ , (28)

where we normalised by the characteristic length scale w−1 of the solitary wave. We
now define a coherence time as the time when the perturbation to the solitary wave
starts to become dynamically important, i.e. as the time τc such that δ(τc) exceeds a
threshold δθ, which we formalise as

τc = arg min
t
|δ(t)− δθ|. (29)

The threshold δθ is set as the difference in location exceeding one quarter of the
natural length scale λ of the solitary wave which we define to be as the width of the
soliton at half-amplitude with λ = 1.76/w. Hence we set δθ = λ/4 ≈ 0.44.

Figure 4 illustrates how the criterion (29) translates into the ability of our collective
coordinate reduction (24)–(26) to capture the true solution of the stochastically
perturbed KdV equation (15). Figure 4 shows the relative error of the collective
coordinate predictions for κ, w and φ compared to the values obtained by a
nonlinear least square fit to (4) to the solution of (15) at time τc. It is seen that
the relative errors for the amplitude κ and the inverse width w are unimodally
distributed around mean values of 1.6% and 3.0%, respectively. The error in position
is decaying approximately monotonically and has a mean error of 2.1%. Hence
on average the criterion corresponds to these mean errors in the collective coordinates.

To illustrate how the criterion (29) can be used to determine the onset of the loss
of coherence entirely from information of the collective coordinates only, we show in
Figure 5 a comparison of the histograms of τc as estimated from collective coordinates
using (29) as well as a histogram of t?, where t? is defined as the time for which the
relative error in the inverse width w first exceeds a 3.0% using simulations of the
actual SPDE (15). The two histograms, each obtained from 2, 500 realisations, are
remarkably close. The figures clearly show that the loss of coherence of solutions of the
SPDE (15) can be determined entirely from information of the collective coordinates.
The form of the histogram in Figure 5 suggests that the break up times are a Poisson
process with cumulative probability distribution function

P (τc) = 1− exp(−τc
τ̄c

),

with mean time of coherence τ̄c. This is confirmed in Figure 6. Linear regression
suggests a mean coherence time of τc = 1.30 which is reasonably close to the
empirical mean of the coherence times of 1.49.

We remark that one could perform the collective coordinate approach outlined
in Section 2 for the collective coordinates c = {κ,w, φ, α}. One then recovers the
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expression (28) in the limit of small α. We present the calculations in Appendix D
together with numerical simulations for completeness.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0 1 2 3 4 5
0.42

0.44

0.46

0.48

0.5

0.52

0 1 2 3 4 5
0

1

2

3

Figure 3. Amplitude κ, inverse width w and location φ of a solitary
wave ansatz function (4) for the stochastically perturbed KdV equation
(15) as a function of time. Continuous lines (online blue) are obtained
from a direct simulation of (15). The dotted lines (online red) are the
results from the collective coordinate approach (24)–(26). Parameters
as in Fig 1.

Figure 4. Empirical histograms of the errors of the collective coordi-
nates κ, w and φ compared to the values obtained by a nonlinear least
square fit to (4) to the solution of the full stochastically perturbed KdV
equation (15) at time τc determined by (29). Parameters as in Fig 1
and the histogram was obtained from 2500 realisations.

5. KdV equation with multiplicative noise R(u) = ux

We now consider the stochastically perturbed KdV equation with multiplicative
noise R(u) = ux,

du = (6uux − uxxx) dt+ σux dB, (30)

which was introduced to study fluctuating velocities (Herman, 1990). This equation
is ill-posed and solutions blow up in time. This blow-up can be readily understood by
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Figure 5. Empirical histogram of τc defined in (29). Parameters as in
Fig 1 and the histogram was obtained from 2500 realisations. Note that
the slight peak at τc = 5 is due to the simulations being run until t = 5.
Empirical histogram of t∗ (no outline, online blue) is superimposed for
comparison.

applying the Galilean transformation U = u(X, t) with X = x + σB(t), which leads
to the unstable deterministically perturbed KdV equation with negative diffusion

Ut = 6UUX − UXXX −
1

2
σ2UXX . (31)

The energy

E(t) =

∫
U2(X, t)dx

grows according to

d

dt
E = σ2

∫
u2x dx.

Despite this blow up, the stochastically perturbed KdV equation (30) has been
used to study solitary waves in random environments with fluctuation dissipation
(Herman, 1990; Bass et al., 1988), often in situations where the noise is spatially
confined with σ = σ(x) (Lin et al., 2006). If the spatial extent of the region in
which σ(x) 6= 0 is sufficiently small such that the time of travel of a coherent solitary
wave through the fluctuating environment is smaller than the time to develop
the instability, equation (30) may still be used to model the effect of the random
fluctuations on the coherent wave, despite being ill-posed. We shall use collective
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Figure 6. Log plot of the empirical normalised cumulative proba-
bility density function p(τc) of coherence times calculated from (29).
Parameters as in Figure 1. The linear part has a slope of 1.24 which is
close to the empirical mean of 1.49.

coordinates to provide an estimate for the time we expect the solitary wave to
remain coherent and not blow up. This may serve as a rough guide to modellers to
determine the range of validity of their unstable model.

We remark that by adding diffusion to (30) as in

ut = (6uux − uxxx + σux + γuxx) dt+ σux dB

one may obtain for γ = σ2/2 the integrable deterministic KdV equation after
applying the Galilean transformation. For γ = σ2/2 solutions then inherit the
constant shape of the deterministic soliton but experience Brownian motion in their
position. For γ > σ2/2 solutions will experience decay in energy.

We again numerically solve the SPDE (30) using finite differences with periodic
boundary conditions as described in Section 4. We employ here a spatial discretisa-
tion of ∆x = 0.15 and an integration time step of ∆t = 1 · 10−6. We show in Figure 7
the solution evolving from an initial soliton solution (4) to an increasingly peaked
solution, losing coherence by developing short-wave radiation which is amplified by
the multiplicative noise involving the derivative of the solution. We remark that for
finite discretisation ∆t and ∆x the scheme will develop numerical instabilities and
the simulations develop machine-infinity at t ≈ 5 (not shown).
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Figure 7. Top: Solution of (30) for a fixed realisation of the noise with
σ = 0.5. Bottom left: Initial condition u(x, t = 0) with w(0) = 0.5 and
κ(0) = w2(0). Bottom right: Snapshot of the solution at t = 1.7.

We now perform the collective coordinate approach outlined in Section 2 for
the collective coordinates c = {κ,w, φ}. We will see that the collective coordinate
approach exhibits finite-time blow up with entirely deterministic dynamics for
the amplitude and the inverse width and diffusive behaviour of the location of
the coherent wave, as suggested by the Galilean transformation leading to (31).
Furthermore, we show that we can estimate the time for which (30) can be used to
describe coherent solitary waves.
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We again seek the temporal evolution for the collective coordinates c = {κ,w, φ}
which we recall as

dκ = aκ dt+ σκ dW,

dw = aw dt+ σw dW,

dφ = aφ dt+ σφ dW.

The projection of the residual as described in Section 2 leads to the same drift con-
tributions (18)–(20) of O(dt) as for R(u) = u. The diffusion contributions of O(

√
dt)

are evaluated as (
2σκ −

κ

w
σw

)
dW = 0,(

− κ
w
σκ + 2σw

)
dW = 0,

σφ dW = −σ dB.

Setting dW = dB we obtain

dκ =
2σ2 (15 + 4π2)

5 (4π2 − 15)
κw2 dt, (32)

dw =
24σ2

4π2 − 15
w3 dt, (33)

dφ =
4

7

(
12κ− 5w2

)
dt− σ dW. (34)

As for the full SPDE (30) the amplitude and inverse width evolve deterministically
and the noise only enters the position. The deterministic equations for κ and w can
be solved analytically to obtain

κ(t) = κ0(1− 2aw2
0σ

2t)−b, (35)

w(t) = w0(1− 2aw2
0σ

2t)−
1
2 , (36)

with a = 24/(4π2 − 15) ≈ 0.98 and b = (15 + 4π2)/120 ≈ 0.45 and initial amplitude
and inverse width κ0 and w0, respectively. This implies a blow up in finite time at
t = tb = 1/(2aw2

0σ
2). The blow-up time, however, is far greater than the times in

which the numerical scheme remains stable for the discretisation steps ∆x and ∆t
used here.

Note that the evolution of the shape parameters κ and w is deterministic and the
noise only enters the location φ of the solution. This is linked to the transformation of
the stochastically perturbed KdV equation (30) to the nonconservative deterministic
PDE (31) and mirrors the case of travelling waves in dissipative SPDEs discussed in
(Cartwright and Gottwald, 2019). The strong expansion of the PDE (31) dominates
the shape dynamics. The noise is however free to move along the neutrally stable
translational symmetry group.
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Figure 8 shows a comparison of the collective coordinate approach (35)–(36) with a
numerical simulation for the stochastically perturbed KdV equation (30) with σ = 0.5
for one realisation of the noise. The deterministic behaviour of the amplitude κ and
the inverse width w is clearly contrasted to the diffusive dynamics of the location
φ. The values the collective coordinates corresponding to the solution of the direct
numerical simulation of the SPDE are again obtained via a nonlinear least square fit
to the ansatz solution (4). The collective coordinate approach yields a remarkably
good approximation for some time until it deteriorates after t ≈ 1.7. The location φ(t)
is particularly well described by the collective coordinate equation (36) and tracks the
location of the solitary wave in the full SPDE for much longer times than achieved
by the amplitude and inverse width. The reason for this is that the dynamics of φ
(34) is noise-dominated.

Figure 9 shows that the energy E is very well tracked by the corresponding energy
of the collective coordinate ansatz

Ecc(t) =

∫
û2(x;κ,w, φ) dx

=
16κ20
3w0

(
1− 2aw2

0σ
2t
) 4b−1

2 ,

with κ0 = κ(0) and w0 = w(0). Note that the energy tracks the energy of the SPDE
for longer times than the amplitude and inverse width individually.

We estimate the time for which coherence is ensured in the sense that the solution
of (30) can be well approximated by a coherent solitary wave of the form (30), by
estimating the time for which the energy, as calculated by the collective coordinates,
has grown to a value of 10% of its initial value. We hence define the time of coherence
τc as Ecc(τc) = 1.1Ecc(0), leading to

τc =
1− 1.1

2
1−4b

2aw2
0σ

2
≈ 0.106

w2
0σ

2
. (37)

Figure 7 shows the solution at t = τc = 1.7 for σ = 0.5 and w0 = 0.5. For t > 4 the
exponential growth of the high wavenumbers generated by the steepening of the wave
will have amplified to destroy the solution.

6. Conclusion

We presented a collective coordinate framework to study the dynamics of solitary
waves in stochastically perturbed Korteweg-de Vries equations. Different to previous
collective coordinate approaches which were developed in the deterministic context
and had a hard-coded constraint between the amplitude of the traveling solitary wave
and its inverse half width, we treat them as independent parameters. This was shown
to deal better with larger perturbations which occur in stochastically driven KdV
equations.

We studied homogeneous additive noise as well multiplicative noise. Our collective
coordinates was able to recover the well-known analytical solution for the additive
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Figure 8. Amplitude κ, inverse width w and location φ of a solitary
wave ansatz function (4) for the stochastically perturbed KdV equation
(30) as a function of time. Continuous lines (online blue) are obtained
from a direct simulation of (30). The dotted lines (online red) are the
results from the collective coordinate approach (35)–(36). Parameters
as in Fig 7.
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Figure 9. Normalized Energy E(t)/E(0) calculated from a numeri-
cal simulation of the stochastically perturbed KdV equation (30) (con-
tinuous lines, online blue) and calculated using collective coordinates
(dotted lines, online red). Parameters as in Fig 7.

noise (Wadati, 1983). The case of multiplicative noise with R(u) = u leads to the
solitary wave loosing coherence via radiation. This effect is typically not described
by collective coordinate approaches which focus on the coherent part. The case of
multiplicative noise with R(u) = ux leads to an ill-posed SPDE. It is nevertheless used
to model waves with fluctuating velocities in situations where the noise is confined to
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sufficiently small spatial domains. In this case, coherence is lost by increasing energy
and by small-scale features getting amplified.

We used the reduced description of the collective coordinates to design diagnostics
which allowed us to quantify the time of coherence of a solitary wave experiencing
stochastic perturbations. The diagnostics is dependent on the way coherence is lost.
For the case R(u) = u we monitored coherence by quantifying the systematic noise-
driven deviation from the deterministic location of the solitary wave. For the ill-posed
case R(u) = ux we monitored the increase of the energy as estimated by the collective
coordinates. In both cases the estimate of the coherence time can be achieved by only
using information of the reduced collective coordinate dynamics.

From a modelling perspective our collective coordinate framework can be used to
determine the time of validity. If a modeller is interested in studying the effect of
random perturbations on a coherent wave, then our decoherence time can be used to
estimate the time-scale for which models invoking coherent solutions are valid.
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Appendix A. Explicit formulae for the collective coordinate
projections

We list here several integrals which appear in the evaluations of the projection
when using the ansatz function (4) for the solitary wave, which we recall here

û(x, t) = −2κ(t) sech2 (w(t)(x− φ(t))) + β(t).

Using ûx = −∂û
∂φ

, ûκ = û
κ
, ûκw = 1

κ
∂û
∂w

, ûκφ = − 1
κ
∂û
∂x

, ûxxx = −∂3û
∂φ3

, and ûβ = 1, we

evaluate (omitting the hats for ease of exposition)

〈u2〉 =
16κ2

3w
, 〈u ∂u

∂w
〉 = − 8κ2

3w2
, 〈

(
∂u

∂w

)2

〉 =
16π2κ2

45w3
, 〈

(
∂u

∂x

)2

〉 =
64κ2w

15
,

〈u〉 = −4κ

w
, 〈 ∂u

∂w
〉 =

4κ

w2
, 〈∂u

∂x

∂2u

∂w∂x
〉 =

32κ2

15
, 〈∂u

∂x

∂3u

∂x3
〉 = −256

21
κ2w3,

〈u∂u
∂x
〉 = 〈 ∂u

∂w

∂u

∂x
〉 = 〈u ∂2u

∂w∂x
〉 = 〈 ∂u

∂w

∂2u

∂w∂x
〉 = 0,

〈u∂
3u

∂x3
〉 = 〈 ∂u

∂w

∂3u

∂x3
〉 = 〈u2∂u

∂x
〉 = 〈u∂u

∂x

∂u

∂w
〉 = 〈∂u

∂x
〉 = 0.

We further list integrals that appear in the calculations for the Lagrangian varia-
tional framework outlined in Appendix B. Here we have ψx = u, i.e.

ψ(x, t) = −2κ

w
tanh (w(x− φ)) .
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Then ψκ = ψ
κ

, ψφ = −∂ψ
∂x

= −u, ψκw = 1
κ
∂ψ
∂w

, ψκφ = − 1
κ
∂ψ
∂x

= −u
κ

and ψwφ = − ∂2ψ
∂w∂x

=
−uw, and we evaluate

〈
(
∂ψ

∂x

)3

〉 = 〈u3〉 = −128κ3

15w
, 〈

(
∂2ψ

∂x2

)2

〉 = 〈u2x〉 =
64κ2w

15
,

〈ψ∂ψ
∂x
〉 = 〈∂ψ

∂x

∂ψ

∂w
〉 = 〈∂ψ

∂x

∂2ψ

∂w2
〉 = 0.

Appendix B. Collective coordinate approach within a Lagrangian
variational framework

We provide here a stochastic version of the well-known variational collective
coordinate approach within a Lagrangian formulation for deterministic perturbations
(Whitham, 1974; Anderson et al., 1988; Bass et al., 1988; Kivshar and Malomed,
1989; Scott, 2003), which to the best of our knowledge has not been presented in the
literature. We then present a numerical illustration of a deterministically perturbed
KdV equation illustrating the differences between our approach, based from the
point of view of Galerkin approximations, and the Lagrangian approach.

Consider perturbations P (u, x, t) of the KdV equation in the form

ut − 6uux + uxxx = P (u, x, t). (38)

Here P (u, x, t) may be a deterministic or stochastic perturbation, with the obvious in-
terpretation. The integrable KdV equation with P ≡ 0 is variational with Lagrangian
density

L =
1

2
ψtψx − ψ3

x −
1

2
ψ2
xx (39)

with ψx = u. The solution for the KdV equation is given by (2) which we recall here

u(x, t) = −2κ sech2 (w(x+ φ)) , (40)

with amplitude κ = w2 and location φ = 4w2t. Assuming that the collective coordi-
nates c = {κ,w, φ} are time-dependent, upon substitution of the ansatz solution (40)
the Lagrangian can be evaluated as

L =

∫
Ldx = −8

3
[
κ2

w
φ̇+

κ

w
κ̇φ̇− 1

2

κ2

w2
ẇφ̇− 48

15

κ3

w
+

12

15
κ2w]. (41)

The relevant integrals used to obtain (41) are listed in Appendix A. Note that we
included quadratic terms of time-derivatives to adhere to Itô calculus for eventual
stochastic perturbations; for deterministic perturbations these quadratic terms are to
be discarded. For simplicity we did not include β as a collective coordinate here.
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The Euler-Lagrange equations for a collective coordinate cj is calculated as

d

dt

(
∂L

∂ċj

)
− ∂L

∂cj
=

∫ (
∂L
∂ψ
− ∂

∂t

∂L
∂ψt
− ∂

∂x

∂L
∂ψx

+
∂2

∂x2
∂L
∂ψxx

)
∂ψ

∂cj
dx

=

∫
P (u, x, t)

∂ψ

∂cj
dx

For the Lagrangian (41) the Euler-Lagrange equations become

2κκ̇− κ2

w
ẇ + 2κ̇2 + 2

κ2

w2
ẇ2 − 4

κ

w
κ̇ẇ − 1

2

κ2

w
ẅ = 〈R(u)

∂ψ

∂κ
〉 (42)

φ̇− 4

5
(6κ− w2)− 1

2
φ̈ = 〈R(u)

∂ψ

∂w
〉 (43)

φ̇− 4

5
(4κ+ w2)− 1

2
φ̈ = 〈R(u)

∂ψ

∂φ
〉. (44)

Again terms containing two time derivatives originate from the application of Itô
calculus, and have to be discarded for deterministic perturbations.

One can now proceed again by assuming

dκ = aκ dt+ σκ dW,

dw = aw dt+ σw dW,

dφ = aφ dt+ σφ dW,

to determine the drift and diffusion terms for each of the collective coordinates as
done in Section 2. The second time-derivatives in (42)–(44) contain contributions
dW 2 = dt, which we write here in differential form as

d(dw) =

(
∂σw
∂κ

σκ +
∂σw
∂w

σw +
∂σw
∂φ

σφ

)
dt+ o( dt),

d(dφ) =

(
∂σφ
∂κ

σκ +
∂σφ

∂w
σw +

∂σφ
∂φ

σφ

)
dt+ o( dt).

The resulting equations are different to those derived in Section 2 which did not
make explicit use of the variational structure of the KdV equation. For example, note
that from (43) and (44) we conclude that κ = κ(w, φ) is algebraically constrained and
hence the dynamics evolves in a two-dimensional subspace. This is in stark contrast
to our framework where the collective coordinates evolve in R3. To illustrate further
the differences we consider now the deterministic perturbation of a linearly damped
KdV equation with P (u, x, t) = −νu = νψx. Since 〈P (u, x, t)ψκ〉 = 〈P (u, x, t)ψw〉
and 〈P (u, x, t)ψφ〉 = 16

3
ν κ

2

w
, the evolution equations for the collective coordinates

(42)–(44) become, upon discarding the terms involving two time-derivatives,

κ̇ = −4

3
νκ2 (45)

φ̇ = 4w2 (46)
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with the unperturbed algebraic solitary wave constraint κ = w2.
Our collective coordinate approach on the other hand yields, evaluating the inte-

grals in Section 2,

κ̇ = −νκ (47)

ẇ = 0 (48)

φ̇ =
4

7

(
12κ− 5w2

)
. (49)

Hence the variational framework forces a solitonic shape with κ = w2.
In Figures 10 and 11 we compare the predictions of the two different collective co-

ordinate approaches to results from a numerical simulation of the partial differential
equation (38) with P (u, x, t) = −νu. We extract the collective coordinates from the
simulation by a nonlinear least square fitting to solutions of the form (40). Figures 10
and 11 show results for a small perturbation with ν = 0.001 and a larger pertur-
bation with ν = 1, respectively. Interestingly, the results suggest that respecting
the additional variational structure is advantageous for small perturbations, where
the Lagrangian collective coordinate approach outperforms our Galerkin approxima-
tion based collective coordinate framework. Once the perturbations, however, are
sufficiently large such that one cannot view the equation as a perturbed variational
equation, the performance reverses and our approach becomes superior as clearly seen
in Figure 11. It is pertinent to mention that the Lagrangian approach is not able to
capture the reversal in propagation experienced by the perturbed solitary wave (cf.
(46), which our approach captures (cf. (49)), albeit too strongly. The discrepancy
is caused, we suspect, by the solitary wave now being able to interact strongly with
linear waves which is not captured by the collective coordinate approach.
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Figure 10. Plot of the collective coordinates for deterministic damp-
ing P (u, x, t) = −νu with ν = 0.01 as determined by our collective co-
ordinate approach (47)–(49) (dotted lines, online red), the Lagrangian
collective coordinate approach (45)–(46) (dashed lines, online yellow).
The continuous line (online blue) depicts results of a simulation of the
full perturbed KdV equation (38).
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Figure 11. Plot of the collective coordinates for deterministic damp-
ing P (u, x, t) = −νu with ν = 1 as determined by our collective co-
ordinate approach (47)–(49) (dotted lines, online red), the Lagrangian
collective coordinate approach (45)–(46) (dashed lines, online yellow).
The continuous line (online blue) depicts results of a simulation of the
full perturbed KdV equation (38).

Appendix C. Numerical scheme

Here we outline the numerical scheme used to solve (1), based on the scheme
given in (Lord et al., 2014). We use a spatial discretisation of size ∆x and a
temporal discretisation of time ∆t with periodic boundary conditions. We denote the
numerical solution at time tn = n∆t as Un, where Un = [Un

0 , U
n
1 , . . . , U

n
k , . . . , U

n
N ]T

and Un
k = U(xk, t

n) where xk = −L+ k∆x and N = 2L/∆x+ 1 denotes the number
of spatial gridpoints. We use centred finite difference schemes that are second order
in space for the operators ∂x and −∂xxx. The associated N ×N matrices we denote
by D and L, respectively. We further define the vector N (Un) = 6Un ∗ DUn,
where the product is done element-wise. The multiplicative noise factor is either
R(Un) = Un or R(Un) = DUn.

To initialize, we employ a simple Euler-Maruyama step as the first time step with

U1 = U0 + ∆t
(
LU0 +N (U0)

)
+ σR(U0)∆W,

where ∆W = ξ
√

∆t and ξ ∼ N(0, 1). For all subsequent time steps, we solve the
deterministic part by using a Crank-Nicolson method for the linear term and Adams-
Bashforth for the nonlinear term, resulting in the scheme for n > 1

Un+1 =

(
I − ∆t

2
L
)−1 [(

I +
∆t

2
L
)
Un +

∆t

2

(
3N (Un)−N

(
U (n−1)

))
+ σR(Un)∆W

]
.

Appendix D. Perturbative collective coordinate ansatz

Here we present results for the perturbative ansatz (27) for the stochastically per-
turbed KdV equation (1) with R(u) = u, which we recall here

ũ(x, t; c) = û(x, t) + αûx(x, t),
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with c = (κ̃, w̃, φ̃). Note that the location of û is labelled here by φ̃ as opposed to φ
in the collective coordinate ansatz (4); the additional odd function ûx leads to a shift

in the position of the maximum of ũ(x, t) with φ̃ 6= φ. Similarly, the amplitudes and
inverse widths are altered as well, and we label them here κ̃ and w̃. In addition to
the collective coordinates κ, w and φ this ansatz contains the collective coordinate
α. This implies an additional projection of the error onto ∂ũ/∂α according to (6)–
(7). This yields the following rather unwieldy evolution equations for the collective
coordinates

dκ̃ =
64α̃κ̃w̃2

35 ((240π2 − 1260)α̃2w̃2 + 84π2 − 805)

(
35(w̃2 − κ̃)(15 + 4π2)

+4w̃2((w̃2 − κ̃)(100π2 − 1309) + 784w̃2)α̃2
)

dt+ σκ̃ dW, (50)

dw̃ =
768α̃w̃3 (42α̃2κ̃w̃2 + 25(w̃2 − κ̃))

5 ((240π2 − 1260)α̃2w̃2 + 84π2 − 805)
dt, (51)

dφ̃ =
4

(240π2 − 1260) α̃2w̃2 + 84π2 − 805

(
4α̃2w̃2

(
−4
(
40π2 − 259

)
(w̃2 − κ̃) +

(
60π2 − 511

)
w̃2
)

−112
(
2π2 − 15

)
(w̃2 − κ̃) + 7

(
12π2 − 115

)
w̃2
)

dt, (52)

dα̃ =
16

7 ((240π2 − 1260)α̃2w̃2 + 84π2 − 805)

(
35(w̃2 − κ̃)(15− 4π2)− 4w̃2α̃2((w̃2 − κ̃)(128π2 − 553)

+343w̃2)− 80w̃4α̃4((w̃2 − κ̃)(4π2 − 70) + 49w̃2)
)

dt. (53)

For completeness we list the evaluations of the projections involved in deriving
(50)–(53)

〈u2〉 =
16κ̃2 (4α̃2w̃2 + 5)

15w̃
, 〈u ∂u

∂w̃
〉 =

8κ̃2 (4α̃2w̃2 − 5)

15w̃2
, 〈u∂u

∂α̃
〉 =

64α̃κ̃2w̃

15
,

〈
(
∂u

∂w̃

)2

〉 =
4κ̃2 (16 (5π2 − 21) α̃2w̃2 + 28π2)

315w̃3
, 〈 ∂u

∂w̃

∂u

∂α̃
〉 =

32α̃κ̃2

15
,

〈
(
∂u

∂x

)2

〉 =
64

105
κ̃2w̃

(
20α̃2w̃2 + 7

)
, 〈∂u

∂x

∂u

∂α̃
〉 =

64κ̃2w̃

15
, 〈

(
∂u

∂α̃

)2

〉 =
64κ̃2w̃

15
,

〈u∂u
∂x

∂u

∂w̃
〉 =

1024

225
α̃3κ̃3w̃2, 〈u

(
∂u

∂x

)2

〉 = −512

105
κ̃3w̃

(
4α̃2w̃2 + 1

)
, 〈u∂u

∂x

∂u

∂α̃
〉 = −512

105
κ̃3w̃,

〈∂
3u

∂x3
∂u

∂x
〉 = −256

105
κ̃2w̃3

(
28α̃2w̃2 + 5

)
, 〈∂

3u

∂x3
∂u

∂α̃
〉 = −256

21
κ̃2w̃3,

〈u∂u
∂x
〉 = 〈 ∂u

∂w̃

∂u

∂x
〉 = 〈u2∂u

∂x
〉 = 〈u∂

3u

∂x3
〉 = 〈∂

3u

∂x3
∂u

∂w̃
〉 = 0.
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For |α| � 1, the evolution equations for the collective coordinates (50)–(53) become
upon neglecting terms of O(α2),

dκ̃ = σκ̃ dW + α̃
64 (15 + 4π2)

84π2 − 805
κ̃w̃2

(
w̃2 − κ̃

)
dt, (54)

dw̃ =
3840

84π2 − 805
α̃w̃3

(
w̃2 − κ̃

)
dt, (55)

d̃̃φ =

(
4w̃2 − 64 (2π2 − 15)

12π2 − 115
(w̃2 − κ̃)

)
dt, (56)

dα̃ =
80 (4π2 − 15)

805− 84π2

(
w̃2 − κ̃

)
dt. (57)

It is readily seen that the magnitude α̃(t) of the perturbation to the sech2-profile of
the solitary wave û(x, t) is proportional to δ(t)/w (cf. (28)). Comparing with (23),
we obtain as expected for a Taylor expansion in the location, that the location φ of
the sech2-profile û(x, t) is recovered by φ = φ̃− α̃.

In Figure 12 we show numerical results of the perturbative collective coordinate
equations (50)–(53) and compare them with the results of the collective coordinate
without including the perturbative term with amplitude α̃, e.g. (24)–(26). Note that

in the perturbative ansatz (27) the location of the solitary wave is not given by x = φ̃
as in the original collective coordinate ansatz (24)–(26); the additional term αûx leads
to a shift of the maximum. Therefore to compare with the full solution we perform at
each time a nonlinear least square fit of the ansatz function (27) to the sech2-function
(4). Whereas in the original collective coordinate ansatz the inverse width is constant
in time (cf. (25)), w̃ is now temporally varying and better captures the dynamics of
the full SPDE. The perturbative collective coordinates closely follow the evolution of
the coherent solitary wave up to times t ≈ 1.8.
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