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Abstract

We study a one-dimensional filamental model of a chaotically stirred excitable

medium. In a numerical simulation we systematically explore its rich bifurcation

scenarios involving saddle-nodes, Hopf bifurcations and hysteresis loops. The bifur-

cations are described in terms of two parameters signifying the excitability of the

reacting medium and the strength of the chaotic stirring, respectively. The solution

behaviour, in particular at the bifurcation points, is analytically described by means

of a nonperturbative variational method. Using this method we reduce the partial

differential equations to either algebraic equations for stationary solutions and bifur-

cations, or to ordinary differential equations in the case of non-stationary solutions

and bifurcations. We present numerical simulations corroborating our analytical

results.
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1 Introduction

Excitable media are abundant in nature, with many examples in biology and chemistry.
Examples of excitable media in biological systems include action potential propagation
along axons in neural tissue [20], action potential propagation in cardiac tissue [31, 8],
cAMP waves in slime moulds [43], calcium waves on the surface of fertilized eggs [26] and
plankton dynamics [46]. Examples from chemistry include CO-oxidation on platinum [21]
and the Belousov-Zhabotinsky reaction [42, 22]. In addition to biological and chemical
contexts excitable media occur in a number of physical systems such as elastic excitable
media [5], semiconductor lasers with optical feedback [13] and shock-driven star formation
in spiral galaxies [27, 41].

The abundance of excitable media in biological systems is linked to two main charac-
teristics. First, excitable media exhibit threshold behaviour. In zero-dimensional geom-
etry perturbations below a certain threshold immediately decay back to the rest state,
whereas super-threshold perturbations grow and decay back to the rest state only after a
long excursion. This is crucial for neural and cardiac systems, for example, which would
otherwise constantly fire when triggered by small noisy fluctuations rather than by a large
stimulus, such as the coordinated stimulation from the sino-atrial node in cardiac dynam-
ics. Second, the decay back to the rest state ensures that the same response of an excitable
medium can be expected for a later stimulation, also vital for neural and cardiac function.

In one-dimensional media pulses and wave trains are generic solutions. It is well known
that these solutions exhibit a saddle-node bifurcation [34]. When approaching the saddle-
node by varying a parameter (usually the excitability), the pulse decreases in width until
it becomes too narrow and small to activate the neighbouring medium. This saddle-node
bifurcation is responsible for propagation failure in excitable media. In addition, a Hopf
bifurcation and a spatial period-doubling bifurcation, which appear close to the saddle-
node, were identified as generic bifurcations in excitable media [16].

Active processes such as chemical or biological reactions are often embedded in a fluid
flow. This has been well studied in industrial applications such as mixing of reactants
within continuously fed or batch reactors [10, 3] and flame filamental structures in combus-
tion systems [40], as well as in several natural contexts such as for the increased depletion
of ozone by chlorine filaments [9] and in the development of plankton blooms and the
occurrence of plankton patchiness induced by oceanic stirring [47, 1, 28, 29, 30, 19]. A
time-dependent and stirring fluid flow can cause interesting effects, which are absent in
the unstirred reaction. In particular, the presence of hyperbolic regions of compression
and expansion, typical in chaotic flows, results in the evolution of reactants into long thin
filaments. This substantially changes the reaction dynamics. The filamentation leads
to an increased surface area of the reacting components and associated with this is an
increase of the reaction output. If, however, the stirring is too strong the increased thin-
ning of the filaments may lead to a termination of the reaction for the same reasons as in
the case of propagation failure in excitable media mentioned above. The corresponding
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flow-mediated saddle-node bifurcation has been reported in [36, 24, 23, 32, 7, 33], and
in particular for excitable media in [35, 37, 38, 18]. It was observed that the bifurcation
scenario of chaotically stirred excitable media was much richer than that of the corre-
sponding unstirred system. However, no systematic analysis of the observed bifurcation
scenarios was given.

Our starting point is the question: How are the parameter space and the bifurcations
of a chaotically stirred excitable system organized by the two different saddle-nodes cor-
responding to stirring and to the excitability?

In principle, this problem could be studied by integrating the full two- or three-
dimensional reaction–advection–diffusion system. However, this would be computation-
ally very expensive, and an analytical treatment is out of question. In order to describe
the behaviour of a stirred reaction-diffusion system one typically resorts to simplified
models. In so called filamental or lamellar models [39, 28, 35, 6], the two-dimensional
problem of reacting tracers is replaced by a one-dimensional problem of the form

∂

∂t
ui − λx

∂

∂x
ui = Di

∂2

∂x2
ui + Fi(ui; ki) , i = 1, . . . , n, (1)

for n reacting tracers ui with diffusion coefficients Di, reaction rates ki and stirring rate λ.
Lamellar models have been employed to study autocatalytic, bistable and excitable media
in several physical, chemical and biological contexts [28, 29, 30, 35, 36, 37, 18, 24, 23, 32,
33, 7]. Filamental models such as (1) can be phenomenologically justified by the following
picture: The chaotic advection implies hyperbolic regions of stretching and compression
as sketched in Fig. 1. Along the stretching direction the concentration is rapidly homoge-
nized leaving no spatial gradients along the filaments. This motivates one to formulate a
one-dimensional equation for the direction of compression, i.e. across the filament, only.
The compression is parameterized by λ which can be be thought of as the Lagrangian
mean strain in the contracting direction, and may be argued to be given by the absolute
value of the negative Lyapunov exponent or the (slightly larger) topological entropy. For
a different approach to this problem see [44, 45]. The validity of such simplified models
has been numerically investigated in [6].

In this paper we aim at providing a systematic numerical and theoretical analysis of
the bifurcation scenario of chaotically stirred excitable media. We find supercritical and
subcritical Hopf bifurcations and a hysteresis loop besides the well known saddle-node
bifurcations associated with propagation failure of excitable media at large Da and at
small Da for sufficiently strong stirring. We find that the two saddle-nodes organize the
parameter space and the additional bifurcations. Moreover, using a nonperturbative vari-
ational approach developed in [15] we analytically investigate the different bifurcations.

In Section 2 we introduce the stirred excitable medium considered in this work. Sec-
tion 3 provides a thorough numerical investigation of the bifurcation scenario of this
model. In Section 4, we review the nonperturbative method to be used to analytically
describe the bifurcations and the solutions in terms of equation parameters. This is per-
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Figure 1: Sketch of a filament in a chaotic flow. An initial blob of reactant (dotted circle)
is stretched and compressed by the hyperbolic flow.

formed in Section 5 where we compare the solutions with those of numerical simulations
of the full stirred excitable lamellar model. We close with a summary in Section 6.

2 The Model

In this paper we study a filamental model of a chaotically stirred Barkley model [4]

∂u

∂t
= Du

∂2u

∂x2
+ λx

∂u

∂x
+ u(1 − u)(u − us − v) , (2)

∂v

∂t
= Dv

∂2v

∂x2
+ λx

∂v

∂x
+ ε (u − a v) . (3)

Here u is the fast activator and v the slow inhibitor. Note that we used a slightly modified
formulation of the Barkley model [15]. We expect other one-dimensional excitable media
models such as the Fitzhugh-Nagumo model [12] to behave similarly. Here λ denotes the
stirring rate, Du,v the respective diffusion constants, us the decay rate towards the stable
homogeneous rest state (u, v) = (0, 0) along the activator directions, and ε a along the
inhibitor direction. Note that in the absence of the inhibitor v this equation is a bistable
equation. Moreover, the zero-dimensional model including the inhibitor becomes bistable
for a > 1/(1 − us).

In contrast to the unstirred equation, i.e. when λ = 0, equations (2)–(3) support
stationary solutions. This is readily understood by the following phenomenological argu-
ment. An initial super-threshold perturbation of the activator at x = 0 would develop in
the unstirred case into two counter-propagating traveling pulses with a well-defined speed
c0. In the presence of stirring, which is directed towards the origin x = 0 with velocity
cstir = −λx, these waves are stopped when the two velocities are equal. The wave fronts
of this stationary solution are then located roughly at x̄ = ±c0/λ.

It is customary to rescale the equation and introduce the Damköhler number Da = k/λ
where k is a typical reaction rate of the process. The Damköhler number measures
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the ratio of the reaction rate and the stirring rate. Systems with a small Damköhler
number are stirring dominated and those with very high Damköhler numbers are reaction
dominated. Scaling t = t′/λ and x = x′Du/

√
λ we write, omitting the primes,

∂u

∂t
=

∂2u

∂x2
+ x

∂u

∂x
+ Da u(1 − u)(u − us − v) , (4)

∂v

∂t
= δ

∂2v

∂x2
+ x

∂v

∂x
+ Da ε (u − a v) , (5)

where δ = Dv/Du. We will be looking for solutions which are symmetric around x = 0
and vanish at x → ∞.

In the following we assume δ ≪ 1. This case describes chaotically stirred excitable
systems where the activator diffuses at a much faster rate than the inhibitor. A physical
realization of this condition may be a chaotically stirred chemical excitable medium such
as a stirred Belousov-Zhabotinsky reaction [42, 22] in which the inhibitor is fixed to starch
or a gel-like medium. The case δ = 0 is the classic situation in cardiac dynamics. Here
the inhibitor consists of (relatively) immobile ion channels. Constant advecting velocities
for excitable media in the context of cardiac dynamics is well known for spiral wave drift
when subjected to periodic wave trains [25, 11, 48, 14]. An imposed chaotic advecting
velocity may be introduced in an analogous way to model the effect of spatially and tem-
porarily random excitations. The source of such random excitations could be either local
incoherent stimuli or the cumulative effect of spiral wave chaos.

The steady state solutions (∂/∂t = 0) of the system (4)-(5) are

d2u

dx2
+ x

du

dx
+ Da u(1− u)(u − us − v) = 0, (6)

δ
d2v

dx2
+ x

dv

dx
+ Da ε (u− a v) = 0. (7)

The equation for the inhibitor is linear and can be solved for given u. In the limiting case
δ = 0, the inhibitor v(x) can be explicitly calculated for a given activator u(x) as

v(x) = −2α

a
x2α

∫ x

−∞

ζ−1−2αu(ζ)dζ, (8)

with α = Da ε a/2. Note that v inherits the boundary conditions of u.

2.1 Asymptotic solution for small Da

For decreasing values of Da the solution becomes increasingly dominated by stirring until
we reach a critical value Dac where the compression is too strong and below which no
non-trivial steady-state solution exists. Below Dac all initial conditions decay to zero.
We now describe the form of the solution close to this stirring induced saddle-node. For
small Da we expand u and v as

u(x, t) = u0(x, t) + O(Da2) and v(x, t) = v0(x, t) + O(Da2) .
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In this limit the system (4) is solved at leading order by

u0(x, t) = f0(t) exp(−w2(t)x2) ,

with f0(t) → 0 and w(t) → 1/
√

2 for t → ∞. The temporal decay of the amplitude f0(t)
captures the behaviour for Da < Dac. This is analogous to the bistable case described in
[7]. In Fig. 2 we show the solution of u and of v, which is slaved via (5) to u, for small
Da confirming the bell-shaped character of the solution close to the saddle-node. Note
that although Dac is an O(1) quantity the full solution is still well approximated by the
shape given by the asymptotic solution. We will use this result later in our variational
nonperturbative approach in Section 4 and in Section 5.
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Figure 2: Steady state solution of (6)-(7) for the activator u(x) (stars) and the inhibitor
v(x) (dashed line) at Da = 6.5 close to the critical stirring induced saddle-node Dac. The
continuous line is a Gaussian fit to the data. Other parameters are us = 0.1, a = 0 and
ε = 0.005.

2.2 Asymptotic solution for large Da

For large Damköhler numbers we expect the system to behave like the unstirred system.
Indeed, by zooming into the the small spatial scale ξ =

√
Dax we may transform (4)–(5)

into the unstirred steady-state equations up to O(1/Da). The location of the steady-state
solution is given, as discussed above, by the balance of the outward directed diffusion and
the inward directed compression of the flow. This location is located at some ν =

√
Daw̄

where w̄ is some O(1) quantity. Hence we scale

ξ =
√

Da(x −
√

Daw̄) , (9)

to obtain

∂2u

∂ξ2
+ w̄

∂u

∂ξ
+ u(1 − u)(u − us − v) = O(Da−1) , (10)

δ
∂2v

∂ξ2
+ w̄

∂v

∂ξ
+ ε (u − a v) = O(Da−1) . (11)
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This is the equation for an unstirred Barkley model in the frame of reference moving with
a constant speed c0 = w̄. This is accordance with the phenomenological argument pre-
sented above that the spatial location of the steady-state solution is given as the balance
of the stirring velocity and the velocity c0 of the unstirred system.

We observe numerically that the profile of the steady-state solution is close to the one
of the unstirred case when shifted and spatially scaled according to (9), see Fig. 3.
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Figure 3: Steady state solution of the plateau like activator u(x) and the inhibitor v(x)
at Da = 10, 000, us = 0.1, a = 0.22 and ε = 0.01. The crosses denote the solution of the
stirred system (4)–(5). The continuous lines depict the solution of the rescaled unstirred
system (10)–(11) at the same parameters, confirming the asymptotic limit for large Da.

3 Numerical simulations of the model equation

In this Section we present results from a numerical investigation of the full system (4)–(5).
This system exhibits two saddle-nodes, one induced by increasing the excitability ε over
a threshold value εc for fixed (large enough) Damköhler number, and one induced by the
stirring when decreasing Da below a critical value Dac for a given (small enough) ε. We
therefore study the solution behaviour in the Da-ε parameter space to investigate the
effect of stirring and excitability. We will see that interesting bifurcations and solution
behaviour arises due to the way these two saddle-nodes connect.

We numerically integrate the system (4)–(5) using a semi-implicit Crank-Nicolson
scheme where the nonlinearities are solved by an Adams-Bashforth method. The case of
a non-diffusive inhibitor δ = 0 is numerically problematic as it implies a singular deriva-
tive of the inhibitor at x = 0 when the activator u is a bell-shaped function which is the
case near the saddle-node bifurcations (cf. (8)). We therefore choose for our numerical
simulations a value of δ = 0.001 to avoid numerical instabilities. We have numerically
checked that the solution of the small diffusion limit converges to the case δ = 0 by ob-
serving that the difference of the solutions scales as δ.
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A comprehensive picture of the solution behaviour in the Da-ε parameter space is
given in Fig. 4.

Hopf

H
ysteresis

N
o S

olution

ε

D
a

No Solution 0 0.007 0.021 0.035 0.043
0

10

20

30

40

50

60

70

ε

D
a

BT
1

BT
2

εH1
εH2

(a) (b)

Figure 4: Solution behaviour in Da-ε parameter space for the system (4)-(5). (a) Sketch
of the solution behaviour. The filled circles represent some of the high codimension points
observed in the system. (b) Results of numerical simulations for a = 0. The lower and
upper stability branches, which are represented by stars, correspond to the saddle-node
bifurcations arising from the stirring and propagation failure respectively. The branch of
the stirring induced saddle-node is found to end at around ε ≈ 0.0329, while the branch of
the saddle-node due to propagation failure asymptotes for Da → ∞ to ε ≈ 0.044, which is
the critical value for unstirred media. A region of stable oscillatory solutions arising from a
Hopf bifurcation (represented by crosses) is located between two high codimension points
at εH1

= 0.013 and εH2
≈ 0.028. In the region ε ∈ (0, εH1

), two branches, represented by
circles, enclose a region of hysteresis where two stable stationary solutions coexist. These
two branches connect with the two branches of the Hopf bifurcation at ε = εH1

. These
Hopf branches connect with the lower and upper saddle-node branches in a Bogdanov-
Takens bifurcation at ε ≈ 0.0329 and ε ≈ 0.03 respectively (marked as BT). The box
around εH2

encloses a region with a number of different solution behaviours, which is seen
in more detail in Fig. 11.

In the following we will explore the different dynamical regions depicted in Fig. 4. We
fix us = 0.1 and a = 0, however the dynamical scenarios we report are robust with respect
to changes in these parameters.

We first discuss the case of large Damköhler numbers. In Section 2.2 we showed that
the solution of the stirred system behaves asymptotically like the unstirred system. Far
away from the saddle-node, the solution for large Damköhler numbers consists of two well
separated pulses symmetric around x = 0 as seen in Fig. 5. The profile of these large
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Damköhler number solutions is the same as in the scaled unstirred system (see Fig. 3).
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Figure 5: Activator u(x) (continuous line) and inhibitor v(x) (dashed line) for a = 0,
ε = 0.02 at Da = 200 obtained from the numerical simulation of (4)-(5).

Since the system (4)-(5) behaves for large Damköhler numbers like the unstirred sys-
tem, in this regime we expect the generic saddle-node bifurcation of excitable media [16].
For each sufficiently large Damköhler number there exists a critical value εc(Da) such that
there are no solutions for ε > εc(Da). Close to this saddle-node each of the two pulses
assumes a bell-shaped character [15]. As we approach εc(Da), the separation between the
two pulses decreases. The stability boundary corresponding to this saddle-node is shown
in Fig. 4. This saddle-node has been extensively studied [49, 34, 15].

Besides the saddle-node for large Damköhler numbers which is inherent to excitable
media, an additional saddle-node occurs which is induced by the compressive effects of
the stirring. For each ε ∈ (0, 0.0329) there exists a critical Damköhler number Dac(ε)
such that there are no solutions for Da < Dac(ε). The stability boundary is shown in
Fig. 4. For small values of ε near this saddle-node bifurcation, the solution profile of u(x)
is approximately bell-shaped for both stable and unstable solutions. Upon increasing
Da the solution shape of the stable solution becomes plateau-like, while the unstable
solution will remain bell-shaped (as seen in Fig. 6a). For larger values of ε, the stable and
unstable solutions near the saddle-node split into a pair of slightly separated pulses due
to the increased influence of the inhibitor v(x). On increasing Da the profiles for both
solutions will split further into a pair of slightly separated pulses (as seen in Fig. 6b).
This had previously been observed in the case of equal diffusion coefficients for activator
and inhibitor [18].
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Figure 6: The numerical solutions of u(x) for the steady system (6)-(7) for a = 0. The
stable solutions (solid lines) and unstable solutions (dashed lines) are both shown for
logarithmically spaced values of Da. (a) For ε = 0.005, we take 20 values between
Da = 25 and Da = 6.44 (≈ Dac). (b) For ε = 0.03, we take 15 values between Da = 14
and Da = 9.65 (≈ Dac).

At moderate to large Damköhler numbers we observe for ε ∈ (0, 0.013) a hysteresis
loop between two critical values of the Damköhler number, which we denote as Dahys1

(ε)
and Dahys2

(ε) for the lower and upper values respectively. In this region, represented by
circles in Fig. 4b, we find that two distinct stable solutions coexist as shown in Fig. 7a.
For Da . Dahys1

(ε) the solution consists of one single pulse centred at x = 0, while for
Da & Dahys2

(ε) the solution consists of two separated pulses. The hysteresis manifests
itself as follows: Increasing the Damköhler number from Da < Dahys1

(ε) the solution
remains plateau-like until Da = Dahys2

(ε) above which the solution rapidly changes to
a pair of two separated plateaus. Conversely, decreasing the Damköhler number from
Da > Dahys2

(ε) a pair of separated plateaus is observed until Da = Dahys1
(ε) at which

point we find a rapid transition to the single plateau-like solution. We find that both
Dahys1

and Dahys2
are asymptotic to ε = 0, and the difference between Dahys1

and
Dahys2

increases as we approach ε = 0.
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Figure 7: (a) Profiles of the two stable solutions of u(x) observed for a = 0, ε = 0.0375
and Da = 65 obtained from the numerical solution of (4)-(5). The plateau-like solution
(represented by a solid line) is obtained using an initial condition of a solution profile
below Dahys1

, while the two separated pulses (represented by a dotted line) are obtained
with an initial condition of a solution profile above Dahys2

. (b) The two branches of the
hysteresis loop for a = 1 in Da-ε parameter space.

This existence of a hysteresis loop is robust against changes of the parameters a and
us. In fact the hysteresis becomes increasingly pronounced as we approach the bistable
limit a = 1/(1− us). Comparing the extent of the hysteresis loop in Fig. 4b and Fig. 7b,
the difference between Dahys1

(ε) and Dahys2
(ε) for a = 1 (see Fig. 7b) much larger than

for corresponding values of ε for a = 0 (see Fig. 4b). The existence of a hysteresis region
in a stirred excitable medium can be explained by the simultaneous limit of Da → ∞ in
which the system (4)-(5) becomes an unstirred excitable medium, and of ε → 0 in which
the system becomes bistable. The two solutions within the hysteresis loop approach the
limiting solution types of each limit, with the single plateau-like solution being associated
with the bistable equation and the two separated solutions being associated with the un-
stirred excitable medium. (Note that we use “bistable” here in two ways. The bistable
region refers to bistable behaviour within the stirred excitable medium, whereas the limit
ε = 0 or a = 1/(1−us) refer to the equations becoming the so called “bistable equation”.)

For moderate Damköhler numbers and ε ∈ (0.013, 0.03) we observe stable oscillations.
For fixed ε the oscillations occur for a finite range of Damköhler numbers between DaH1

and DaH2
> DaH1

. Unlike in unstirred excitable media these oscillations arise through a
supercritical Hopf bifurcation [16]. The Hopf bifurcation is mediated through the inter-
action of the inhibitors of the two pulses across x = 0. Close to the Hopf bifurcation the
solution consists of two closely neighbouring pulses (see Fig. 8).
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Figure 8: (a) The activator u(x) and inhibitor v(x) close the Hopf bifurcations. Parame-
ters are a = 0, ε = 0.025. (a) Da = 16.9 . DaH1

. (b) Da = 18.5 & DaH2
.

At ε = 0.013 the region of stable oscillations connects with the hysteresis loop in a
higher codimension bifurcation. At larger values of ε the Hopf bifurcation connects in
two Bogdanov-Takens bifurcations with the saddle-nodes described above (see Fig. 11).

In Fig. 9 we show the time periodic amplitudes for different values of ε and Da. We
see clearly that when approaching the high-codimension point at ε = 0.013, where the
Hopf bifurcation coalesces with the hysteresis loop, the period of the oscillations diverge
indicating a homoclinic bifurcation. In Fig. 10a, the profiles of the solution of u(x) and
of v(x) at the crest and trough of the oscillations in Fig. 9a are shown. We see that the
outer sides of the solution u(x) are virtually unaffected during the oscillations, while the
region near the origin at x = 0 changes significantly, indicating the weak interaction with
the tails of the inhibitor.
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Figure 9: Plots of the maximal amplitude of u(x) as a function of time, obtained from
the numerical solution of (4)-(5), for parameters a = 0 and (a) ε = 0.025, Da = 17.5, and
(b) ε = 0.015, Da = 24.5.
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Figure 10: Snapshots of the activator u(x) and the inhibitor v(x), obtained from the
numerical solution of (4)-(5) for a = 0, ε = 0.025 and Da = 17.5. The solid/dashed-
dotted line shows u(x)/v(x) at the crest of the oscillation of the solution represented in
Fig. 9a, while the dashed/dotted line shows u(x)/v(x) at the trough of the oscillation.

In the region where the Hopf bifurcation coalesces with the saddle-node bifurcations
we observe a complex unfolding of bifurcations, as illustrated in Fig. 11. In this region we
observe two Bogdanov-Takens points where the two branches of the Hopf bifurcation meet
the two saddle-node branches. We find that a number of different solution behaviours are
possible in this region, and here we present some of the main observed behaviours. We
note that this list is non-exhaustive, and we expect that this system exhibits even more
regions of different solution behaviour near the high-codimension points.

We first note that near ε ≈ 0.028 a small region exists where stable oscillatory solutions
coexist with stable stationary solutions. This region of bistability is labelled C in Fig. 11
and is characterised by a hysteresis loop. If we start with the profile of the stable stationary
solution obtained at a value of Da just above this region (i.e. from region A in Fig. 11),
then we obtain stable stationary solutions within region C. If, on the other hand, we start
with the profile of a snapshot of the stable oscillatory solution obtained at a value of Da
just below this region (i.e. from region D in Fig. 11), then we obtain stable oscillatory
solutions within the region C. So in fact, region C exhibits bistability where for every
value of Da and ε, the stable solution behaviour is either stationary or oscillatory.

Next to this region of bistability, we find a region labelled B in Fig. 11 in which the
observed solution behaviour again depends strongly on the initial condition. If we start
with the profile of the stable stationary solution obtained at a value of Da just above
this region (i.e. from region A), stable stationary solutions are observed in this region.
If we start from the bistability region C, then the observed behaviour depends on the
nature of the solution type as described above. Specifically, if the initial condition is
that of the stable stationary solution in C, the solution behaviour in B is also stable and
stationary. On the other hand, if we choose an initial condition given by the profile of a
stable oscillatory solution in C, then we find that the solution dies out to u = 0 as we
cross the boundary between the two regions. The time periods of the oscillations in region
C rapidly increase close to the boundary with B which is is indicative of a homoclinic
bifurcation.
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We further observe that region B has a stability boundary with region E where no
solutions are observed. As we move from B to E we observe that the solution dies out
to u = 0 via a subcritical Hopf bifurcation. This is reminiscent of the generic bifurcation
behaviour in unstirred excitable systems for weakly interacting pulses [17]. As we move
from region D to E the time period of the oscillations increases rapidly (not shown here),
and the solution goes to zero. This is again indicative of a homoclinic bifurcation. The
two homoclinic bifurcations, i.e between D and E and between C and B, join up at the
high codimension point ε ≈ 0.028. The homoclinic bifurcation branches between C and
B coalesces with the subcritical Hopf bifurcation as well as the saddle-node branch of
the propagation failure at ε ≈ 0.03. We also find that the homoclinic bifurcation branch
between D and E coalesces with the lower branch of the supercritical Hopf bifurcations,
DaH1

, and the saddle-node branch due to stirring at a Bogdanov-Takens point ε ≈ 0.0329.
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Figure 11: Close up of the region ε ∈ (0.0265, 0.031) of the Da − ε parameter space
shown in Fig. 4. Region A contains stable stationary solutions, region D contains stable
oscillatory solutions and region E contains no solutions (these three regions have been
depicted in Fig. 4). The branches of a supercritical Hopf bifurcation are represented by
crosses. In region B we have a strong dependence on initial conditions. At the stability
boundary between regions B and E (represented by triangles), we observe a subcritical
Hopf bifurcation. In region C, we find that stable stationary solutions coexist with stable
oscillatory solutions. At the boundary between regions C and D (represented by circles)
we observe a second supercritical Hopf bifurcation. The oscillatory solutions in D and
C flatten out to u = 0 in a homoclinic bifurcation represented by plus signs and dots
respectively. A high codimension point at εH2

≈ 0.028 is marked.

4 Nonperturbative variational method

In [15] a nonperturbative variational method was developed which was particularly useful
in describing the solution behaviour and bifurcations in cases when asymptotic techniques
failed. This is the case, for example, near the saddle-node when the solution assumes a
bell-shape and is not separable into a flat outer solution and a steep narrow inner solu-
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tion. The method in [15] restricts the “shape” of the solution to a specified test function,
and then determines the parameters of this test function in a projection procedure which
minimizes the error made by the restriction. The method has been used in excitable,
autocatalytic, bistable and combustions systems [32, 7, 33].

In particular, we restrict the solutions to the form

u(x, t) = U(x, pi(t)) , i = 1, . . . , n , (12)

v(x, t) = V (x, qj(t)) , j = 1, . . . , m , (13)

where the test function U is parameterized by parameters pi(t), and V by qj(t). Note that
for the case of steady-state solutions we may calculate v(x) as a function of u(x) using
(7) or (8) (for δ = 0). Hence to study stationary bifurcations it is sufficient to specify U
and pi. In the following we still keep V and qj explicit to illustrate the method.

Once we restrict the solutions of the system (4)–(5) to a particular solution space of
the test functions spanned by (12) and (13), we look for those parameters pi and qj which
optimize this approximation. This is achieved by requiring the error to be orthogonal
to the tangent space of the restricted test function solution space, which is spanned by
∂U/∂pi and ∂V/∂qj This condition assures that the error lies in the orthogonal com-
plement of the function space spanned by the prescribed test functions. Our conditions
determining the free parameters pi and qj are therefore

〈−Ut + Uxx + xUx + Da U(1 − U)(U − us − V ) | ∂U/∂pi〉x = 0 , (14)

〈−Vt + δVxx + xVx + Da ε (U − a V ) | ∂V/∂qj〉x = 0 , (15)

where the brackets indicate integration over the whole x domain. Using

∂U

∂t
=

n
∑

i=1

∂U

∂pi
ṗi and

∂V

∂t
=

m
∑

j=1

∂V

∂qj
q̇j ,

we obtain a system of m+n coupled ordinary differential equations for the parameters pi

and qj . For stationary bifurcations we may ignore the time-dependence of the parameters
and end up with a set of algebraic equations instead. Note that if U is specified, V can
be calculated explicitly in the stationary case as a function of U by solving the ordinary
differential equation (7) with only (14) as the variational condition.

We will employ two different choices of test functions. Close to the saddle-node bifur-
cations where the activator u assumes a bell-shaped profile (see Fig. 2) we may choose a
Gaussian function

U(η, t) = f0(t) exp(−η2) with η = w(t)x , (16)

where the parameters are {pi} = {f0, w}. In this case (7) can be solved analytically and
V can be given explicitly (cf. Section 5.3). The approach is not restricted to a particular
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test function. For bell-shaped functions one may equally take sech- or sech2-functions
[7]. A more general test function which is able to describe a variety of different shapes
such as single or twin plateau-like solutions is given by

U(η, t) =
g0

2
(tanh (η − ω(µ − ν)) + tanh (η + ω(µ + ν))

− tanh (η − ω(µ + ν)) − tanh (η + ω(µ − ν)) ) ,
(17)

where the parameters are {pi} = {g0, ω, ν, µ} and η = ωx, where ω measures again the
steepness of the solution. This test function is particularly well suited to study chaoti-
cally stirred excitable media. It is able to capture all solution profiles we discovered in
Section 3. In particular, it allows us to describe the time-varying solution profile of the
solution in the region near the Hopf bifurcation with two interacting pulses. The range
of solution types of (17) is illustrated in Fig. 12. In the case when (17) describes two
separated single pulses, the maximum of the pulses is a distance µ apart from the center
x = 0 and has half-width ν. Note that the maximal amplitude is not given by g0 but
rather by U(x = µ, t). In this case V has to be numerically evaluated by solving the
ordinary differential equation (7). Note that one could restrict the analysis just to the
positive domain x ≥ 0. However, we will consider here the whole domain since it poses
no further computational effort.
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Figure 12: Different profiles obtained using the test function (17) for different values
of the parameters pi = {g0, ω, ν, µ}. The solution describes: (a) Pulse-like shape for
pi = {1, 2, 0.3, 0.3} (solid line). Plateau-like shape for pi = {1, 2, 2, 2} (dashed line).
“Twin-plateau” shape for pi = {1, 2, 3, 15} (dashed-dotted line). “Twin-pulse” shape
for pi = {1, 2, 1, 25} (dotted line). (b) Examples of closely neighbouring pulses which
appear near the Hopf bifurcations; solid line: pi = {1.25, 1, 0.9, 1.1}, dashed line: pi =
{1, 1, 2, 2.2}, dotted line: pi = {1.4, 0.6, 1.5, 3.5}.

For completeness we provide here the basis functions of the tangent space correspond-
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ing to the test function (17)

∂U

∂g0

=
1

g0

U,
∂U

∂ν
=

g0 ω

2
(s1 + s2 + s3 + s4) ,

∂U

∂µ
=

g0 ω

2
(−s1 + s2 + s3 − s4) ,

∂U

∂ω
=

g0

2ω
((η − ω(µ − ν))s1 − (η − ω(µ + ν))s2 + (η + ω(µ + ν))s3 − (η + ω(µ − ν))s4) ,

where s1 = sech2(η − ω(µ − ν)), s2 = sech2(η − ω(µ + ν)), s3 = sech2(η + ω(µ + ν)) and
s4 = sech2(η + ω(µ − ν)).

In the following Section we will use this variational approach to study the solutions
and the bifurcations we discovered in Section 3.

5 Results of the nonperturbative variational approach

In this section we compare the results obtained using the nonperturbative method with
those of the numerical simulations of the full system (4)–(5) (and its steady-state formu-
lation (6)–(7)), as presented in Section 3. We will use the nonperturbative method to
study the solution behaviour for large Damköhler numbers, the saddle-node associated
with propagation failure at large Da, the stirring-induced saddle-node at small Da and
the hysteresis loop at intermediate values of the Damköhler number. The Hopf bifurcation
is analyzed by a time-dependent version of the variational approach.

5.1 Solutions for large Damköhler numbers

For large enough values of Da the solution of (4)-(5) consists of two stationary pulses,
symmetric around x = 0, as illustrated in Fig. 5. Far away from the saddle-node reported
in Section 3, the pulses take the form of a plateau-type solution for small values of ε, while
for larger values of ε approaching εc(Da) they become bell-shaped. We perform the non-
perturbative approach for a test function of the form (17) which is able to capture both
solution types. The nonperturbative method for the test function (17) consists of four
algebraic equation consisting of the four projections (14) for the parameters {g0, ω, µ, ν}.
We show in Fig. 13 a comparison with numerical results of the full system (4)-(5). Fig. 13a
reveals that the amplitude approaches for Da → ∞ the constant value f0 = 0.9989 corre-
sponding to the amplitude of the unstirred system. (Note that the maximal amplitude for
the test function (17) is not given by f0 but rather by U(x = µ)). The distance from the
origin x = 0 is roughly measured by µ which scales with

√
Da, as illustrated in Fig. 13b,

consistent with the asymptotic theory of Section 2.2.
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Figure 13: Comparison of the numerical solution (stars) of (4)-(5) with the corresponding
values of the nonperturbative method for a test function (17) (continuous line) for ε = 0.02
and a = 0. (a) Maximal amplitude of the pulses. (b) Logarithmic plot of the distance of
the pulses from x = 0. A reference line with slope 1/2 is given.

5.2 Saddle-node bifurcation at large Damköhler numbers

At large Damköhler numbers there exists a critical εc(Da) above which propagation failure
sets in. This saddle-node is inherent to excitable media. At the saddle-node the activator
is bell-shaped as shown in Fig. 2. The asymptotic analysis in Section 2.2 showed that
the system (4)-(5) is equivalent to the unstirred system (10)-(11). This allows us to
use the results of [15] for excitable unstirred media directly. The projection (14) with a
bell-shaped test function such as (16) with Ũ = exp(−η2) can be formulated as [15]

Af 2
0 + Bf0 + C = 0 , (18)

where

A = 3

4
〈Ũ4〉 − 5

6
〈Ũ3V 〉 − aΘ

3
〈ηŨ3V 〉 ,

B = −5

6
(1 + us)〈Ũ3〉 + 〈Ũ2V 〉 + aΘ

2
〈ηŨ2V 〉 , C = us〈Ũ2〉 . (19)

where Θ = εDa/µw. Here v(η) = f0V (η) and v(η) is the solution of (11) which we write
in the rescaled version as

Vη = −εDa

µw
(U − aV ) .

The corresponding inverse width parameters w± for the stable and unstable branch are
given by

w2 =
1

D〈Ũ2
η 〉

[f 2
0 (−〈Ũ4〉 + 〈Ũ3V 〉) + f0((1 + us)〈Ũ3〉 − 〈Ũ2V 〉) − us〈Ũ2〉] . (20)

The velocity w̄ can now be determined in the standard way by multiplying the equation
for the activator u (4) by ux and integrating over x. We obtain

w̄ = − f0Θ

w〈Ũ2
η 〉

[
f0

3
(〈Ũ4〉 − a〈Ũ3V 〉) − 1

2
(〈Ũ3〉 − a〈Ũ2V 〉)] . (21)

17



Note that µ ≈ w̄
√

Da.

We also perform a nonperturbative analysis using the tanh-based test function (17).
This does not allow for an explicit formula but the condition (14) has to be numerically
evaluated for the parameters {f0, g0, ω, µ, ν}. In Fig. 14 we show a comparison of the
two different test functions comparing with results from a simulation of the full system
(4)-(5). The plot shows that for large Da both test functions yield good agreement with
the full system. Note in particular that the variational approach produces the quadratic
behaviour typical for a saddle-node (see (18)), as illustrated in Fig. 14.
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Figure 14: Comparison of the numerical solution (represented by stars) of (4)-(5) with
the corresponding values of the nonperturbative method for Da = 1000 and a = 0. The
analytical formula (18) and (21) for a Gaussian test function (16) is depicted as a dashed
line. The results from a numerical evaluation of (14) for a test function (17) is depicted as
a solid line. (a) Maximal amplitude of the pulses. (b) Distance of the pulses from x = 0.

5.3 Saddle-node bifurcation at small Damköhler numbers

Besides the saddle-node at large Da which is generic for excitable systems there is an
additional saddle-node associated with the stirring of the system. For smaller values of
the Damköhler number the pulses become too quenched and cannot sustain excitation
anymore. Note that small Damköhler numbers does not mean Da ≈ 0, but refers rather
to the range of finite Damköhler numbers below which no solutions exist (see Fig. 4).
We will now describe this saddle-node explicitly using our variational nonperturbative
method. Guided by our asymptotic analysis in Section 2.1 and numerical observation
(see Fig. 2), we use a Gaussian test function ansatz (16)

U(η) = f0 exp(−η2) with η = wx .

The inhibitor v(x) can then be given explicitly via (8) as

V (η) =
f0 α

a
η2αΓ(−α, η2), (22)
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where again we set α = Da ε a/2, and where Γ(−α, η2) is the incomplete Gamma function

Γ (α, x) =

∫

∞

x

ςα−1e−ςdς . (23)

As discussed in Section 4, we project onto the tangent space of the restricted solution
subspace spanned by

∂U

∂f0

=
1

f0

U and
∂U

∂w
=

1

w
ηU ′ ,

and require

〈w2 Uηη + η Uη + Da U(1 − U)(U − us − V ) | U〉η = 0 , (24)

〈w2 Uηη + η Uη + Da U(1 − U)(U − us − V ) | ηUη〉η = 0, (25)

where the integration is performed over the whole η domain, and V (η) is given by (22).
These are two algebraic equations for the two unknown parameters f0 and w. This system
can be solved analytically (see Appendix) to obtain the following quadratic equation for
the amplitude f0

Af 2
0 + Bf0 + C = 0 ,

which is solved by

f0 =
−B ±

√
B2 − 4AC

2A
, (26)

and an algebraic equation for the inverse pulse width w

w2 = Da

[

f 2
0

(

√

2

π
K(3) − 1√

2

)

− f0

(

√

2

π
K(2) − (1 − us)

√

2

3

)

−
(

us +
1

2 Da

)

]

,

(27)
where

A =
9a + 8α

24a

√
π − 5 + 4α

6
K(3),

B = − 5a (1 + us) + 6α

6a

√

π

3
+ (α + 1) K(2),

C =

√

π

2

(

us +
1

Da

)

.

(28)

The function K(n) is given by

K(n) =
α

a
Γ (−α) Γ

(

α +
1

2

)

n−
1

2
−α +

1

a

√

π

n
2F1

({

1

2
,−α

}

; {1 − α} ;−1

n

)

. (29)

The limit a → 0 allows for the following simplification

K(n) = Da ε

√

π

n
arcsinh

(√
n
)

. (30)
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The quadratic equation (26) for the amplitude f0 yields the stable and unstable so-
lutions. For B2 − 4AC = 0 these solutions coalesce and then subsequently vanish in a
saddle-node bifurcation. The condition B2 − 4AC = 0 determines the bifurcation point
Dac. Once the amplitude f0 is determined we may calculate the inverse width w using
(27).

The expressions for the amplitude f0 simplify in certain limits. In the Appendix we
shall describe in detail how the bistable case of [32, 7] is recovered in the limit ε → 0 when
the inhibitor is constant and the system (4)-(5) is no longer excitable, but bistable. In the
limit of Da → ∞ we find that in accordance with the asymptotic calculation of Section 2.2
we recover the results for the unstirred Barkley model found in [15] and used in Section 5.2.

We observe that the variational test function method captures the actual dynamics of
the full system (4)-(5) well. In Fig. 15, we compare the analytical results for the amplitude
(26) with those of a numerical simulation of (6)-(7). We also perform the nonperturbative
approach using the tanh-based test function (17). The comparison is clearly better for
the tanh-based test function than for the Gaussian test function for larger values of ε.
Although the solution close to the saddle-node bifurcation is well approximated by a
Gaussian test function as evidenced by Fig. 6, the solution for larger values of ε develops
rapidly into two separate interacting pulses with increasing Damköhler number, as seen
in Fig. 6b. This explains the better performance of the more versatile tanh-based test
function when compared to the simpler Gaussian test function (16). Fig. 15 also reveals
that the unstable solution is well approximated by a Gaussian, typical for these systems
[7].
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Figure 15: Comparison of the amplitude f0 of the stable and unstable solution as a
function of the Damköhler number Da at a = 0. Shown are results from a simulation
of (6)-(7) (stars), the analytical formula (26) for a Gaussian test function (16) (dashed-
dotted line for stable, dotted line for unstable branch), and the nonperturbative approach
using the tanh-based test function (17) (continuous line for stable, dashed line for unstable
branch). (a) ε = 0.005. (b) ε = 0.03.
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In Fig. 16 we show a comparison between the activator u(x) as calculated from nu-
merically integrating the full equations (6)-(7) and the variational test function approach
for a Gaussian with parameters f0 and w calculated via (26) and (27).
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Figure 16: The activator u(x) obtained from the numerical solution of the system (6)-(7)
(stars) at Da = 6.45, a = 0 and ε = 0.005 superimposed with the Gaussian test function
(continuous line) with parameters f0 and w calculated using (26) and (27).

As for the parameters f0 and w of the Gaussian test function, the critical Damköhler
numbers Dac, as calculated from the criterion B2−4AC = 0 for a Gaussian test function,
matches up well for small values of ε but rather poorly for larger values as seen in Fig. 17.
Again this is due to the stronger deviation of the solution from a Gaussian shape for larger
values of ε. The results of the nonperturbative method for the tanh-based test function
show excellent agreement with the results from the full system (6)-(7).
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Figure 17: Comparison of the critical value of the Damköhler number at the saddle-node
Dac calculated using the critical condition B2 − 4AC = 0 of the Gaussian test function
method (dashed line) with the value as calculated from a numerical simulation of the full
system (6)-(7) (stars) for a = 0. The continuous line shows results from the test function
approach using the tanh-based test function (17).
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5.4 Hysteresis Loop

For small values of ε and sufficiently large Damköhler numbers we observe a region of
bistability. The bistability is linked to the different asymptotic solutions at the respective
limits of ε → 0 and Da → ∞. In the limit ε → 0 the system (4)-(5) is not excitable
anymore but bistable and the solution consists of a single plateau-like solution. In the
limit Da → ∞ the stirred system behaves like an unstirred excitable medium and has
two well separated pulses symmetrically arranged around the origin at x = 0. In the
simultaneous limit ε → 0 and Da → ∞ both solution types coexist as shown in Fig. 18.
The region of bistability is more pronounced for larger values of a approaching the bistable
limit a = 1/(1 − us). We therefore take a = 1 in the following.
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Figure 18: Stationary solutions u(x) in the bistable region at Da = 70, a = 1 and
ε = 0.01. The solution obtained by numerical integration of the full system (4)-(5) is
shown as points. The continuous line shows the result of our test function approach using
the tanh-based test function (17) with excellent agreement. (a) The plateau-like solution
at this value of Da. (b) The twin plateau-like solution at this value of Da.

The bistable region is characterized by a hysteresis loop which is illustrated in Fig. 19,
and the solution of (4)-(5) in the bistable region depends on the initial condition. In
Fig. 19 we show the hysteresis loop and provide a comparison of our nonperturbative test
function approach using a tanh-based test function (17) with results from the simulation
of the full system (4)-(5). The test function approach clearly captures both solution types
exhibiting bistability. The nonperturbative method approximates the solution well and
is able to detect the bifurcation at Dahys1

. The upper bifurcation point Dahys2
is largely

overestimated by the test function approach as can be clearly seen from Fig. 19. This can
be linked to the near-degeneracy of the stable and unstable branches at large Damköhler
numbers. In the test function approach the unstable solution of the twin plateau-solution
coincides for large Da with the stable branch of the single plateau solution. The kink
of the unstable branch of the single plateau solution as seen in Fig. 19 stems from the
functional change of the unstable solution at this point from a single pulse solution to a
twin pulse solution.

22



0 50 100 150
0

1

2

3

4

5

Da

µ

40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

Da

µ

(a) (b)

Figure 19: Pulse location µ as a function of Da for ε = 0.01 and a = 1 illustrating
the hysteresis loop. (a) Result of the nonperturbative approach by evaluating (14) for a
test function (17). Stable branches are depicted by continuous lines, unstable branches
by dashed line. (b) Results of the numerical simulation of (4)-(5) with results from
the nonperturbative approach. The numerical results obtained when starting with a
plateau-like solution and increasing the value of Da are represented by circles, while the
results obtained when starting with a twin plateau-like solution and decreasing Da are
represented by stars. The arrows indicate the hysteresis loop. Note the near-degenerate
behaviour of the lower stable and unstable branches.

5.5 The Hopf Bifurcation

In this section we use a time-dependent version of the test function approach to describe
the Hopf bifurcation at moderate values of the Damköhler number. We choose the tanh-
based test function (17), and now take time dependent parameters {g0(t), ω(t), µ(t), ν(t)}.
In the time-independent case we prescribed only the functional form of the activator U ,
and subsequently could determine the inhibitor V which is slaved to the activator using
the exact equation (7). In the time-dependent case we cannot simply determine V as
a function of U by solving the ordinary differential equation (7). However, observation
of numerical simulations suggests the following simple ansatz for the inhibitor in the
time-dependent case

V (x, t) = h0(t) exp(−|ζ |) with ζ = κ(t) x . (31)

The associated basis functions of the tangent space needed for the projection are then

∂V

∂h0

=
V

h0

,
∂V

∂κ
=

ζ Vζ

κ
. (32)

As described in Section 4 the projection of the equations onto the tangent space yields a
system of 4+2 first order ordinary differential equations for the parameters {g0(t), ω(t), µ(t), ν(t)}
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and {h0(t), κ(t)}, (14) and (15), which we write here as

4
∑

j=1

〈

ṗj
∂U

∂pj
| ∂U

∂pi

〉

η

=

〈

ω2 Uηη + η Uη + Da U(1 − U)(U − us − V ) | ∂U

∂pi

〉

η

, (33)

2
∑

j=1

〈

q̇j
∂V

∂qj

| ∂V

∂qi

〉

ζ

=

〈

δκ2Vζζ + ζVζ + Da ε (U − a V ) | ∂V

∂qi

〉

ζ

, (34)

with {pi(t)} = {g0(t), ω(t), µ(t), ν(t)} and {qi(t)} = {h0(t), κ(t)}.
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Figure 20: Comparison of the critical Damköhler number of the Hopf bifurcation as
a function of ε at a = 0, calculated via the nonperturbative method (represented by
triangles) with the corresponding values obtained from a numerical solution of the system
(4)-(5) (represented by stars). (a) Lower branch, DaH1

. (b) Upper branch, DaH2
.

As we see in Fig. 20, the values of DaH1
and DaH2

as calculated via the nonperturbative
method match up fairly well with the numerically obtained values of these critical points.
In Fig. 21 we show the time period T of the oscillations. A comparison of the values
obtained by a numerical simulation of the full partial differential equations (4)-(5) and the
reduced ordinary differential equations (33) and (34), obtained from the nonperturbative
approach, show good qualitative agreement.
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Figure 21: Comparison of the time period T of the oscillations at the critical Damköhler
number of the Hopf bifurcation as a function of ε at a = 0 calculated via the nonpertur-
bative method (represented by triangles) with the corresponding values obtained from a
numerical solution of the system (4)-(5) (represented by stars). (a) Time period at the
lower branch, DaH1

. (b) Time period at the upper branch, DaH2
.

6 Summary

We studied the effect of stirring on an excitable system using a one-dimensional filament
model. In particular, we examined a system where the diffusion coefficient of the activator
is much larger than that of the inhibitor. We found that the bifurcation scenarios are
organized around two saddle-node bifurcations separating the Da-ε parameter space into
a part with no solutions and a part with various steady and unsteady pulse solutions.
We identified one of the saddle-nodes as the generic saddle-node for excitable media, and
another saddle-node as the generic saddle-node for chaotically stirred reaction-diffusion
systems. We also found a region of bistable behaviour and an associated hysteresis loop.
Within this bistable region we find the two solution types characteristic for the limit
Da → ∞ and ε → 0. Connecting to the bistable region in a homoclinic bifurcation
we find two Hopf branches. Unlike in unstirred excitable media, the Hopf bifurcation is
supercritical. Close to higher codimension bifurcations, where the Hopf branches collide
with the saddle-node bifurcations, we found complex unfoldings including bistability be-
tween stable stationary and stable oscillatory solutions.

We applied a nonperturbative method developed in [15] to describe the bifurcation
behaviour. This approach restricts the solution space to specified test functions which are
parameterized by a set of variables whose dynamics is used to optimize the fit. This ap-
proach is similar to the method of collective coordinates. This nonperturbative approach
allowed us to reduce the steady-state equations (6)-(7) to a set of algebraic equations
for the parameters of the test function, and the partial differential equations (4)-(5) to
a set of ordinary differential equations. We showed that the nonperturbative approach
captures the bifurcation scenarios and the solution behaviour well, and hence allows for
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an effective reduced description of the full system.

A Calculation of the parameters of a Gaussian test

function using the nonperturbative method

Here we describe in detail the calculations involved in finding the explicit expressions of
the parameters of a Gaussian test function (16) with the nonperturbative method near
the saddle-node bifurcation at Dac for δ = 0. We then simplify the expressions for the
limit ε → 0 to the bistable case already studied in [32, 7], and for the limit Da → ∞ to
the case of unstirred Barkley model as studied in [15].

We restate the conditions for the minimization of the error, (24) and (25),

〈w2 Uηη + η Uη + Da U(1 − U)(U − us − V ) | U〉η = 0 , (35)

〈w2 Uηη + η Uη + Da U(1 − U)(U − us − V ) | ηUη〉η = 0 . (36)

For a test function which vanishes at x → ±∞ we can simplify the following integrals
using partial integration, for n > 0,

〈ηUηηUη〉 = −1

2
〈U2

η 〉 , 〈ηUηU
n〉 = − 1

n + 1
〈Un+1〉 .

Using the equation for the inhibitor for the limiting case δ = 0

ηVη = −Da ε (U − a V ) ,

we may simplify the expression

〈ηUn−1UηV 〉 = −1

n
(〈ηUnVη〉 + 〈UnV 〉)

= −1

n
〈UnV 〉 +

1

n
Da ε(〈Un+1〉 − a〈UnV 〉) .

The conditions (35)–(36) can now be combined to give

9a + 8α

12a
〈U4〉 − 5 + 4α

6
〈U3V 〉 − 5a (1 + us) + 6α

6a
〈U3〉

+ (1 + α) 〈U2V 〉 +

(

us +
1

Da

)

〈U2〉 = 0 ,
(37)

where we have taken α = Da εa/2.

The integrals of the type 〈Un V 〉 can be evaluated by considering the solution of
V (η) for the limiting value δ = 0. When U is given by a Gaussian test function, i.e.
U(η) = f0 exp(−η2), we find that V is given by (22), which we recall

V (η) =
f0 α

a
η2αΓ(−α, η2) .
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Writing the incomplete Gamma function in terms of an infinite sum [2] (eqn. (6.5.29)),
we get the following expression

V (η) =
f0 α

a
η2α

(

Γ (−α) + η−2α
∞
∑

j=0

(−1)j η2j

j! (α − j)

)

.

The integral 〈UnV 〉 can now be explicitly written as

〈Un V 〉 =
f0 α

a
Γ (−α)

∫

∞

−∞

η2αUn(η)dη

+
f0 α

a

∫

∞

−∞

Un(η)

∞
∑

j=0

(−1)j η2j

j! (α − j)
dη .

As U is a Gaussian test function, this simplifies to

〈Un V 〉 =
fn+1

0 α

a

(

Γ (−α) Γ (α + 1/2)n−1/2−α

+
∞
∑

j=0

∫

∞

−∞

e−nη2 (−1)j η2j

j! (α − j)
dη

)

,

(38)

where the order of integration and summation has been reversed for the second integral.
The integral over η can be found explicitly, and the summation is found to yield

∞
∑

j=0

(−1)j n−1/2−jΓ (j + 1/2)

j! (α − j)
=

1

α

√

π

n
2F1

(

{1/2,−α} ; {1 − α} ;−1

n

)

.

Substituting back into (38), we obtain

〈UnV 〉 =fn+1
0

[

α

a
Γ (−α) Γ

(

α +
1

2

)

n−
1

2
−α +

1

a

√

π

n
2F1

({

1

2
,−α

}

; {1 − α} ;−1

n

)]

=:fn+1
0 K (n) .

(39)

Moreover, for a Gaussian test function we can evaluate

〈Un〉 =

√

π

n
fn

0 , 〈η2U2
η 〉 =

3

4
〈U2〉 .

Upon substitution into (37) we obtain the quadratic equation (26) for the amplitude f0,
which we evaluate here as

(9a + 8α

12a

√

π

4
− 5 + 4α

6
K(3)

)

f 2
0 −

(5a (1 + us) + 6α

6a

√

π

3
+ (1 + α)K(2)

)

f0

+

(

us +
1

Da

)
√

π

2
= 0.
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The equation for the inverse width w, (27), can now be found by substituting the
expression for f0 and (39) into (35). In the remainder we study several limits for which
the expressions can be simplified.

The limit a → 0. In the limit a → 0 the inhibitor does not decay anymore in time.
Setting a = 0 in the equation for the inhibitor (A) and choosing U(η) = f0 exp(−η2), we
get

V (η) = −f0Da ε

2
Ei(−η2),

where Ei is the exponential integral

Ei(x) =

∫ x

−∞

eς

ς
dς . (40)

The integrals of the form 〈UnV 〉 can be explicitly evaluated to obtain the simplified form
for K(n), as in (30),

K(n) = Da ε

√

π

n
arcsinh

(√
n
)

.

The limit ε → 0. In the limit of vanishing ε the excitable system (4)–(5) becomes
bistable, since v is not evolving in time anymore. Upon taking the limit in (28) and using
K(n) = 0 for ε = 0, we obtain

A =
3

4
, B = −5 (1 + us)

3
√

3
, C =

√
2 (Da us + 1)

Da
,

which corresponds to the result obtained for the bistable system [32, 7].

The limit Da → ∞. From our asymptotic considerations in Section 2.2 we expect
that the limit Da → ∞ recovers the results found in [15] for unstirred excitable media
moving in a frame of reference with speed c0 = µ/

√
Da, namely (18)–(21). We first show

that in the limit Da → ∞ the inhibitor v(η) is the same for the stirred and the unstirred
system. The equation for the inhibitor in the stirred flow is

ηvη = −θ(u − av) , (41)

with θ = εDa, the solution of which we now show is asymptotic to the appropriately
scaled unstirred equation (11) which we write in rescaled variables as

ṽη = −Θ(u − aṽ) , (42)

with Θ = θ/(µw), where we used η = wx and µ =
√

Daw̄. The solution of (42) is readily
found by variation of constants and reads

ṽ(η) = −ΘeaΘη

∫ η

−∞

dη′ e−aΘη′

u(η′) . (43)
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The solution of the stirred equation (41) is

v(η) = −θηaθ

∫ η

−∞

dη′ η′−aθ 1

η′
u(η′) . (44)

Using limθ→∞(1 + z/θ)θ = exp(z) we obtain that for θ → ∞ (44) converges to

v(η) = −θeaθη

∫ η

−∞

dη′ e−aθη′ 1

η′
u(η′)

→ −ΘeaΘη

∫ η

−∞

dη′ e−aΘη′

u(η′) ,

where we used that for an activator located at x = µ with scale w we have u(wx)/(wx) →
u(wx)/(wµ) for µ → ∞. Hence in the limit Da → ∞ the inhibitor v of the stirred system
(41) converges to the solution ṽ of the unstirred equation (42), i.e. v = ṽ in this limit.

We now show that the algebraic equations (37) for the stirred system (6)-(7) converge
to expression (19) for the unstirred equations (10)-(11). We rewrite (37) as

Af 2
0 + Bf0 + C = 0 ,

with

A =
3

4
〈Ũ4〉 − 5

6
〈Ũ3V 〉 +

θ

3
(〈Ũ4〉 − a〈Ũ3V 〉) ,

B = −5

6
(1 + us) 〈Ũ3〉 + 〈Ũ2V 〉 − θ

2
(〈Ũ3〉 − a〈Ũ2V 〉) ,

C =

(

us +
1

Da

)

〈Ũ2〉 ,

where we used U = f0Ũ . Using (41) we obtain

A =
3

4
〈Ũ4〉 − 5

6
〈Ũ3V 〉 − 1

3
〈ηVηŨ

3〉 ,

B = −5

6
(1 + us) 〈Ũ3〉 + 〈Ũ2V 〉 +

1

2
〈ηVηŨ

2〉 ,

C =

(

us +
1

Da

)

〈Ũ2〉 .

From the equality of v and ṽ in the limit Da → ∞ we may write

Vη = −Θ(U − aV ) ,

and using the evenness of U we obtain in the limit Da → ∞ the expressions for A, B and
C in (19).
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[5] J. H. E. Cartwright, E. Hernández-Garćıa and O. Piro, Burridge-Knopoff models as
elastic excitable media, Phys. Rev. Lett. 79 (1997) 527–530.

[6] S. M. Cox, Chaotic mixing of a competitive–consecutive reaction, Physica D 199

(2004) 369–386.

[7] S. M. Cox and G. A. Gottwald, A bistable reaction–diffusion system in a stretching
flow, Physica D 216 (2006) 307–318.

[8] J. M. Davidenko, A. M. Pertsov, R. Salomonsz, W. Baxter and J. Jalife, Stationary
and drifting spiral waves of excitation in isolated cardiac muscle, Nature (London)
335 (1992) 349–351.
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