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We propose a new, unified model for the small, intermediate and large-scale evolution
of freely-decaying two-dimensional turbulence in the inviscid limit. The new model’s
centerpiece is a recent theory of vortex self-similarity (Dritschel et al. 2008), applicable
to the intermediate range of scales spanned by an expanding population of vortices. This
range is predicted to have a steep k−5 energy spectrum. At small scales, this gives way
to Batchelor’s (1969) k−3 energy spectrum, corresponding to the (forward) enstrophy
(mean-square vorticity) cascade or, physically, to thinning filamentary debris produced
by vortex collisions. This small-scale range carries with it nearly all of the enstrophy but
negligible energy. At large scales, the slow growth of the maximum vortex size (∼ t1/6

in radius) implies a correspondingly slow inverse energy cascade. We argue that this
exceedingly slow growth allows the large scales to approach equipartition (Kraichnan
1967, Fox & Orszag 1973), ultimately leading to a k1 energy spectrum there. Put together,
our proposed model has an energy spectrum E(k, t) ∝ t1/3k1 at large scales, together
with E(k, t) ∝ t−2/3k−5 over the vortex population, and finally E(k, t) ∝ t−1k−3 over an
exponentially-widening small-scale range dominated by incoherent filamentary debris.

Support for our model is provided in two parts. First, we address the evolution of
large and ultra-large scales (much greater than any vortex) using a novel high-resolution
vortex-in-cell simulation. This verifies equipartition, but more importantly allows us to
better understand the approach to equipartition. Second, we address the intermediate
and small scales by an ensemble of especially high-resolution direct numerical simulations.

1. Introduction

One of the most fascinating aspects of fluid flows is turbulence. Turbulence is inherently
nonlinear, operating over a wide range of spatial and temporal scales (cf. Tabeling 2002,
Davidson 2004, Lesieur 2008 & refs.). This range grows with the Reynolds number, or
the inverse of viscosity. Yet turbulence is not a state of complete disorder, but rather a
semi-organised state exhibiting coherent structures (e.g. vortices) and self-similar scaling
properties (e.g. power-law spectra).

Turbulence is found in a great number of physical systems, ranging in scale from
quantum to astrophysical dimensions. There is little hope of a universal theory applicable
to all systems, but some idealised systems now appear to be within reach. The simplest —
and the most widely studied — is governed by the two-dimensional (2D) Navier–Stokes
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equations, or Euler equations in the inviscid, unforced situation considered here. This
system evolves purely by advection of a (scalar) vorticity, which moreover is conserved
on fluid particles. The system exhibits a dual cascade of energy (to large scales) and
enstrophy (to small scales), but conserves total energy and enstrophy (Kraichnan 1967,
Batchelor 1969).

Much of the research on “freely-decaying” 2D turbulence has focused on small to
intermediate scales, the so-called “inertial range” lying between the most energetic scale
and (if present) the dissipative scale. Over this range, Batchelor (1969) used dimensional
arguments to predict a k−3 form of the energy spectrum (where k is the wavenumber),
which has since been nearly universally found in numerical simulations (see Davidson
(2004) & refs.).

It has been recognized for some time that the k−3 decay of the energy spectrum,
found independently by Batchelor (1969) and Kraichnan (1967) in 2D turbulence, is not
sufficient to explain the observed steeper spectra (see for example McWilliams, 1984).
These theories are local in wave number space and do not take into account the nonlocal
effect of vortices in transporting energy and enstrophy. Since then, several scaling theories
have been proposed stressing the importance of vortices for the energy transport in
spectral space. Benzi et al. (1988,1992) linked the statistics of vortex populations to the
energy spectrum. They numerically fitted an algebraically decaying vortex population
with number density n(A, t) ∼ A−ξ (where n(A, t)dA gives the average number of vortices
with areas between A and A + dA over a sample area As in the plane) to deduce that
the energy spectrum associated with the vortices decays more steeply than predicted by
the Batchelor scaling (Batchelor 1969).

The temporal scaling of the vortex number density was addressed in Carnevale et al.

(1991) and Weiss & McWilliams (1993). Carnevale et al. (1991) assumed that, in addition
to energy, the maximal vorticity during vortex interactions is conserved. Dimensional
arguments then lead to an algebraic decay in time of the vortex number density n(A, t).
Their analysis however assumes vortices of one particular size, and does not predict the
value of the scaling exponent.

In Dritschel et al. (2008) we presented a model which unifies these spatial and temporal
scaling theories. We argued that, as a result of repeated vortex collisions, a self-similar
vortex population naturally arises in two-dimensional turbulence, and that this popula-
tion is characterised by a vortex number density n(A, t) ∝ t−2/3A−1. This decay occurs
principally through collisions involving a ballistic dipole and a monopole (cf. Dritschel &
Zabusky, 1996). Sire & Chavanis (2000) and Laval et al. (2001), on the other hand, ar-
gued that three body collisions lead to a faster t−1 decay of n(A, t) at late times when the
distribution of vortices becomes very dilute — but they did not consider a distribution
of vortex sizes. (Sopik, Sire & Chavanis (personal communication, Chavanis) have since
independently derived a t−2/3 decay for shorter times based on different arguments.) It
is difficult, however, to conceive of another timescale apart from the inverse of the r.m.s.
vorticity ωrms; hence there should be no distinction between ‘late’ and ‘shorter’ times if
both greatly exceed ω−1

rms. We argue that the t−2/3 decay of the vortex number density,
derived in Dritschel et al. (2008), persists for all time in an infinite domain and in the
absence of viscosity.

The self-similar form n(A, t) ∝ t−2/3A−1, following Benzi (1988), implies an energy
spectrum E(k, t) ∝ t−2/3k−5 over the range of scales containing the vortex population.
Moreover, this implies that the enstrophy in the vortex population decays like t−1/3

through vortex collisions, which produce incoherent filamentary debris carrying nearly
all of the enstrophy to small scales at late times. Meanwhile, for consistency, the mean
radius of the largest vortices — proportional to ℓ =

√

E/Q where E and Q are the total



Evolution of unforced inviscid two-dimensional turbulence 3

(vortex) energy and enstrophy — slowly grows like t1/6, sending energy to progressively
larger scales at a diminishing rate proportional to t−5/6.

These predictions were verified by an ensemble of ultra-high resolution numerical simu-
lations, and are consistent with previous numerical simulations (Benzi et al. 1992, Bracco
et al. 2000, Clercx et al. 1999, Weiss & McWilliams 1993). The t1/6 growth of the in-
tegral scale ℓ is much slower than the t1 growth predicted by Batchelor (1969), and is
significantly slower than the t1/2 growth argued by Lowe & Davidson (2005), building
on the phenomenological scaling theory of Bartello & Warn (1996). Their t1/2 growth,
however, was only demonstrated at relatively low Reynolds number.

The present paper addresses the spatial and temporal scaling behaviour at large scales,
and connects it with that of the vortex population and filaments at intermediate and small
scales, addressed in Dritschel et al. (2008). There has been surprisingly little research done
on the large scale structure of two-dimensional turbulence. Exceptions include Chasnov
(1997), Ossai & Lesieur (2001), Lowe & Davidson (2005), and Davidson (2007). Here,
we consider scales larger than any vortex, and moreover in an infinite domain in order
to examine the limit t → ∞ without the effects of domain boundaries or periodicity.
Thereby, the flow can never reach statistical equilibrium and must continue evolving
forever. We argue that as the flow evolution slows down at late times, the large-scale
evolution approaches equipartition, in which a linear combination of energy and enstrophy
becomes uniformly distributed among Fourier modes (Kraichnan 1967, Orszag 1970, Fox
& Orszag 1973, and many others — see Lesieur 2008, chapter 10 & refs.). In time,
equipartition spreads to increasingly large scales where the energy alone is approximately
uniform among Fourier modes, implying a k1 energy spectrum there. This is illustrated in
§2 through a novel point-vortex experiment starting from small-scale initial conditions. In
§3, vortex self-similarity (Dritschel et al. 2008) and large-scale equipartition are combined
in a model of the long-time turbulent decay. Using only conservation of energy and
enstrophy, and assuming that the smallest scales stretch exponentially fast (at a constant
growth rate), this model predicts that the steep k−5 energy spectrum associated with the
vortex population slowly spreads over the range m(t)<∼ k<∼ f(t), with f(t) ∼ t1/6 and

m(t) ∼ t−1/6. Meanwhile, the shallower k−3 energy spectrum associated with incoherent
filamentary debris is pushed out to ever higher wavenumbers, k>∼ f(t) ∼ t1/6. Support for

this model is provided in §4 via a large ensemble of high resolution numerical simulations.
The paper concludes in §5.

2. Large-scale dynamics

At scales much larger than any vortex, vortices appear point-like yet may collectively
exhibit large-scale motions, e.g. in the form of clusters of like-signed vortices. This self-

organisation was discussed early on in this context by Onsager (1949) and many others
since (cf. Eyink & Sreenivasan (2006) & refs.). Onsager used a thermodynamical anal-
ogy to predict clustering depending on properties of the initial vortex distribution, like
the proximity of like or opposite-signed vortices (for further developments, see Joyce &
Montgomery (1973), Montgomery & Joyce (1974), Miller (1990), Robert (1991), Robert
& Sommeria (1991), and Eyink & Spohn (1993), for example).

Onsager considered point vortices having finite circulations but infinitesimal size, and
it seems appropriate to revisit this model to understand the development of large-scale
order in turbulence. Specifically, we wish to understand the form of the energy spec-
trum developing from an inverse cascade of energy from an initial small-scale reservoir
containing disorganised or incoherent vortical motions.
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Figure 1. Staggered array of point vortices (• = positive, ◦ = negative) in a single grid box used
as the initial conditions. The vortices are separated by ∆x/4 both horizontally and vertically,
where ∆x is the grid size.

To this end, we carried out a large simulation of 40962 ≈ 17 million vortices in a 2D
doubly-periodic domain. We used the vortex-in-cell (VIC) method (cf. Christiansen &
Zabusky, 1973) on a 10242 grid to speed up the calculation. In the VIC method, the
vorticity at a grid point is obtained by a weighted sum of the vortex circulations in the
surrounding 4 grid boxes, using the standard Fresnel weights associated with bi-linear
interpolation. The gridded vorticity field ω so obtained is then ‘inverted’ via FFTs to
obtain the streamfunction ψ = ∆−1ω and the velocity field u = ∇⊥ψ = (−ψy, ψx) on
the grid. Finally, u is interpolated (bi-linearly) to the positions of the 17 million vortices
and used to advect them forward within a 4th-order Runge-Kutta time-stepping scheme.

So far this is standard. The novelty, we believe, lies in our set up of the initial conditions.
To track the inverse energy cascade, we had to ensure that initially very little energy was
contained in scales larger than the grid size. This is virtually impossible to achieve from
a random distribution of vortices, even 17 million of them. Random placement invariably
leads to a k−1 energy spectrum (as discussed by Davidson, 2007), spoiling any hope
of observing an inverse cascade. Instead, in each of the 10242 grid boxes, we placed
16 vortices in a nearly regular array with 8 positive vortices (each with circulation Γ)
and 8 negative vortices (each with circulation −Γ), staggered as shown in figure 1. For
a perfectly regular array in each grid box, the average vorticity contributed by all 64
vortices in the 4 grid boxes surrounding each grid point is identically zero, so there is in
fact no energy (or enstrophy) at and above the grid scale.

To get things going, each vortex is displaced in x and in y by a uniformly-distributed
random number lying between −0.001∆x and +0.001∆x where ∆x is the grid spacing.
This generates a weak k1 energy spectrum which is subsequently overwhelmed by the
inverse cascade (see Figure 4 and discussion below).

The vortex circulation Γ is chosen so that the vorticity ω would be 4π for a regular
array of positive vortices in the grid boxes surrounding a given grid point. This requires
16Γ = 4π(∆x)2. The vorticity-based time scale is then unity.

We now turn to the results of this simulation. By time t = 100, there is already
a huge growth of energy at large scales, and the energy continues to grow (as energy
cascades from sub-grid to super-grid scales) until about t = 500. Figure 2 shows the
energy spectra E(k, t) at t = 0 (left panel), and t = 100, 200, 300 and 400 (right). Note
there is a difference of 5 orders of magnitude in the energy ranges plotted in the two
plots. From t = 500 onwards, the energy evolves much more slowly, and fastest at the
largest scales (or lowest wavenumbers) — see figure 3 (left) for t = 500, 1000, 1500 and
2000, and (right) for t = 2000 individually. Figure 4 shows the temporal evolution of
the total energy and enstrophy. One sees clearly the initial rapid increase in energy and
enstrophy and the slower evolution to a plateau at later times.

The most striking feature exhibited by the energy spectra in figure 3 is their conver-
gence to some fixed form over an increasingly wide range of wavenumbers. In time, the
growth in energy becomes confined to progressively lower wavenumbers or larger scales,
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Figure 2. Energy spectra at t = 0 (left) and (right) at times t = 100 (thin solid line), 200
(long dashed line), 300 (bold solid line) and 400 (short dashed line).

as can be seen in the streamfunction field ψ, shown in figure 5 at t = 200, 500 and 2000.
The largest scale in ψ coincides with the transition from E ∼ k1 to k3.

A k3 range is expected, for sufficiently small k, based on the mathematical analy-
sis of Tran & Dritschel (2006), who proved that E(k, t) ≤ Ck3t2, for some constant
C proportional to the square of the total energy, starting from E(k, 0) = 0 over this
wavenumber range. Davidson (2007) showed that the k3 energy spectrum can be related
to the non-vanishing total angular momentum of the vortices through the Loitsyansky
integral. Chasnov (1997), Ossai & Lesieur (2001) and Lowe & Davidson (2005) also found
the low-wavenumber k3 scaling (so long as periodicity is insignificant), though Ossai &
Lesieur (2001) suggest E(k, t) ∝ k3t2.5 (in turn much slower that the t4 growth predicted
by Batchelor (1969)).

The growth in E(k, t) at small k is not incompatible with the widening k1 range seen
in figure 3 (and quantified below), and, for example, could be modelled by the spectral
form

E(k, t) ∼ a0k
3

k2 + b2
(2.1)

for a0 ≈ constant and b(t) a decreasing function of t (no faster than t−1 to be consistent
with E(k, t) ≤ Ck3t2 for k ≪ b). This spectral form however is too simple to describe
the nearly fixed form of the spectrum for k ≫ b.

That fixed form, we argue, is a consequence of equipartition, in which a linear combi-
nation of energy |û|2 and enstrophy k2|û|2 spreads itself uniformly among the Fourier
modes (û(k) is the amplitude of the velocity projected on wavevector k; Kraichnan
(1967)). This gives rise to the equipartition spectrum

Eeq(k) =
c1k

k2 + p2
(2.2)
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Figure 3. Energy spectra (left) at times t = 500 (thin solid line), 1000 (long dashed line),
1500 (bold solid line) and 2000 (short dashed line), and (right) at t = 2000 individually.
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Figure 4. Total energy E (multiplied by 105) and enstrophy Q in wavenumbers k ≤ 512
versus time t. Note that the initial growth in E and Q is approximately exponential.

where the constants c1 and p are determined from the total energy E =
∫

Eeqdk and
enstrophy Q =

∫

k2Eeqdk, integrated over 0 ≤ k ≤ kmax, where kmax is the maximum
wavenumber used in the truncated inviscid dynamical model. Fox & Orszag (1973) illus-
trate how the spectral shape (controlled by p2) depends on the ratio Q/E, and discuss
the approach to equipartition from non-equilibrium initial conditions. They conducted
truncated spectral simulations of inviscid two-dimensional turbulence and confirmed that
E(k, t) → Eeq(k) at large times.

The present point vortex simulation appears to exhibit similar characteristics. It too
has truncated dynamics, in the sense that no enstrophy cascade can occur below a certain
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Figure 5. Streamfunction ψ(x, t) at t = 200, 500 and 2000 (left to right). A linear greyscale is
used from the minimum (black) to maximum (white) values.

scale (the individual point vortices are neither created nor destroyed). This appears to
be sufficient for the flow to approach equipartition. But the definitive test is how well the
spectra in figure 3 match the equipartition spectrum (2.2) for the known values of E and
Q. Clearly the equilibrium energy spectrum (2.2) does not explain the energy spectrum
at large scales where we observe a k3 range. However since this range is decreasing over
time and being invaded by the k1 spectrum, we may introduce another time-dependent
parameter b(t) and modify (2.2) at low k to have the form of (2.1), leading to the hybrid
spectrum

E(k, t) ∼ ck3

(k2 + b2)(k2 + p2)
. (2.3)

We emphasise that this does not have the same sound mathematical basis as (2.2); we
have introduced (2.3) simply to model the time-dependent approach to equilibrium. The
amplitude c(t) and the two wavenumbers b(t) and p(t) can be determined by fitting to E,
Q and the integral S =

∫

k−2Edk which is the mean-square streamfunction. The param-
eter b(t) measures the departure from the equilibrium spectrum (2.2) and for b(t) → 0
we have E(k, t) → Eeq(k). Note that S is not conserved in the exact dynamics, but
k−2E peaks around the wavenumber b controlling the transition between large and in-
termediate scales. Figure 6 shows how well (2.3) matches the actual energy spectra over
0 ≤ k ≤ kmax = 512 at early, intermediate and late times in the point vortex simulation.
The agreement is excellent across all wavenumbers, and uniformly in time for t ≥ 300.
Note that these results are not obtained by a least-squares curve fit, but merely by equat-
ing

∫

k−2Edk,
∫

Edk and
∫

k2Edk for E in (2.3) to the known values of S, E and Q in
the point vortex simulation.

The parameters b, c and p are displayed in figure 7 as a function of time for t ≥ 300.
Note that c(t) and p(t) rapidly tend to constant values, while the wavenumber b(t)
diminishes like t−1, consistent with the bound obtained by Tran & Dritschel (2006). For
times t > 1700, the nearly linear increase in 1/b is arrested. At these times, the simulation
becomes increasingly affected by the finite box size, preventing further scale growth. But
we clearly can see the trend towards the equilibrium spectrum (2.2).

We now consider how equipartition relates to the physical properties of the vortex
distribution. Davidson (2007) has shown that a random distribution of vortex dipoles
gives rise to a k1 energy spectrum at scales larger than the dipoles. This suggests that
our simulation is dominated by dipoles at scales comparable to the energy-enstrophy
scale L (where the spectrum changes over from k−1 to k1 around k = p). Figure 8 shows
that this is indeed the case, each dipole being composed of many point vortices. Note
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Figure 6. Actual energy spectra at t = 300, 800 and 2100 (thin lines) compared to
hybrid-equipartition spectra (bold lines).

0.0196 + 0.000204t.

t.

b−1
.

0 20001000

0.4

0.3

0.2

0.1

0

t.

3 × 106 c.

p .

0 20001000

220

210

200

180

190

Figure 7. Time evolution of the inverse large-scale wavenumber b (left), spectral amplitude c
(right) together with the peak wavenumber p (also right). The linear fit on the left was obtained
by a least-squares analysis over 300 ≤ t ≤ 1700.

that the scale of the dipoles does not grow appreciably over time, but remains of order
L. Moreover, the dipoles are space filling, and an examination of their time evolution
shows that they are short lived (with life times comparable to the enstrophy timescale
1/Q1/2).

We verify next that this picture is correct, i.e. that at late times the flow is characterised
by a sea of dipoles. We first prove, statistically, that a (large) random distribution of
dipoles implies that the ensemble mean vorticity 〈|ω|〉 over an area of size A should
scale as A−3/4 (and this result is unique to dipoles). In any sufficiently large area A,
the expected number of dipoles is proportional to A. Within A, the dipoles contribute
nothing to the mean vorticity, but on the periphery of A, some halves of dipoles will be
in A and others will not. Hence, there will be a surplus of positive or negative vortices,
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Figure 8. Point-vortex trajectories over a single unit of time at (left) t = 800 and (right)
t = 2000. Only a thousandth (1/322) of the domain is shown. The energy-enstrophy scale L in
each case is shown beneath each plot. Note that the characteristic large scale 2π/b ∼ 100L and
is growing nearly linearly in time.

implying a non-zero mean vorticity 〈|ω|〉. The mean number of randomly distributed
surplus vortices scales as the square-root of the number of dipoles on the periphery of
A, since the orientation of the dipoles is uniformly distributed (we thus have Gaussian
statistics). But the number of dipoles on the periphery is proportional to the perimeter
of A, which is itself proportional to A1/2. Hence, the mean number of surplus vortices
scales like the square-root of the perimeter, or A1/4. This divided by the area A is
proportional to the mean vorticity over A, and therefore 〈|ω|〉 ∝ A−3/4. Figure 9 shows
just how good this prediction is, over a very wide range of areas A extending from the
grid scale to the domain scale. Note that a random distribution of vortex monopoles, by
similar arguments, would give 〈|ω|〉 ∝ A−1/2. A reduction in slope toward −1/2 is just
visible in figure 9 at scales smaller than the energy-enstrophy scale L. As can be seen
from figure 8, these scales are below the scale of the dipoles and are characterised by
individual monopoles (the point vortices themselves).

3. Late time evolution at all scales

The main limitation of the point vortex model just described is that the individual
vortices cannot merge and exhibit an enstrophy cascade (p is constant in (2.2)). This
cascade transfers coherent enstrophy contained within the vortices to filaments, and
additionally results in a slow t1/6 growth of large-scale vortices (Dritschel et al. 2008).
The observed tendency toward equipartition exhibited by the point vortices, however, is
a direct result of their stationary population characteristics. Nevertheless, we argue that
evolving two-dimensional turbulence will form an equipartition spectrum at large scales,
precisely because the evolution is so slow and becomes ever slower in time. Eventually,
there is time for equipartition to become established at all but the very largest scales,
which must remain bounded by a steeper k3 spectrum (Tran & Dritschel, 2006).

To analyze the numerical results at the large scales we propose here a simple spectral
form incorporating three basic elements:

(1) large-scale equipartition over a range k<∼ m(t),
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(2) a self-similar vortex population over a range m(t)<∼ k<∼ f(t), and

(3) a filamentary cascade over a range f(t)<∼ k<∼ d(t).

A spectral form with these properties is

E(k, t) =
ck(1 + k2/f2)

(k2 +m2)3
. (3.1)

We stress that this spectrum is chosen simply to deduce the temporal scaling of the
spectral transition wavenumbers. It is not a mathematical model like the equipartition
spectrum (2.2) proposed by Fox & Orszag (1973). Here m(t) is a wavenumber associated
with the maximum vortex size (m can be defined by the coherent energy-enstrophy cen-
troid, m ≈

√

Qcoh/Ecoh, obtained by integrating the spectrum over the vortex wavenum-
bers m(t)<∼ k<∼ f(t)). The wavenumber f(t) marks the transition scale from vortices to

filaments, and d(t) is the leading edge of the ‘enstrophy front’, assumed to be increasing
exponentially (see below). The final coefficient c(t) is proportional to the vortex density
(Dritschel et al. 2008). Notice that for simplicity we ignore the steep k3 range at k ≪ m;
this range contributes negligibly to both the energy and the enstrophy. Moreover, we do
not incorporate the k−1 range of the equipartition spectrum (2.2). This is because the
transition from k1 to k−1 in (2.2) occurs at the energy-enstrophy centroid p ≈

√

Q/E,

which is much larger than its coherent counterpart m ≈
√

Qcoh/Ecoh, since Qcoh ≪ Q
at late times (while Ecoh ≈ E).

At sufficiently late times (i.e. many eddy turnaround times based on r.m.s. vorticity),
vortex self-similarity predicts c(t) ∼ t−2/3 and m(t) ∼ t−1/6 (Dritschel et al. 2008).
However, the ‘filament transition’ wavenumber f(t) is not predicted. Instead here we
determine f(t) from conservation of energy E and enstrophy Q, together with an as-
sumption on the growth of the ‘enstrophy front’ at k = d(t). We argue that the thinnest
filaments, at the scale Ld ∝ d−1, are essentially passive and thus likely thin exponen-
tially fast, i.e. d(t) ∼ eγt where γ is the mean strain rate associated with larger scales. It
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is conceivable that γ scales with the r.m.s. vorticity contained within the larger scales,
but it seems more plausible that γ scales with the characteristic vorticity magnitude ωv

within the vortices, which efficiently capture and twist filamentary debris as they criss-
cross space. ωv varies little across the vortex population (Dritschel et al. 2008) and is
time invariant. The r.m.s. vorticity on the other hand decreases like t−1/6 due to the
decreasing area fraction covered by the vortices (Dritschel et al. 2008). Since there is
little practical difference, we choose the simpler assumption that γ is constant.

This assumption is well supported by simulation results for Navier-Stokes turbulence
(Dritschel et al. 2007), where it was shown that the palinstrophy P (or mean-square
vorticity gradient) reaches a maximum at a time t = tp ≈ c0 + c1 ln Re where Re is
the Reynolds number. Thereafter, P decreases by viscous dissipation. But the time tp
measures the time it takes the enstrophy front to reach the scale of viscous dissipation
ℓdiss. But Re ∝ ℓ−2

diss, and hence ℓdiss ∼ e−γtp for some constant γ. Identifying ℓdiss with
1/d in the inviscid context, and tp with t, we arrive again at d(t) ∼ eγt.

We now determine the scaling of the filament transition wavenumber f(t). Without loss
of generality, we are free to nondimensionalise length and time by taking E = Q = 1/2.
Using then (3.1), elementary integration yields

4

c

∫ d

0

E(k, t)dk =
2

c
=

1

m4
+

1

f2m2
+ O

(

1

f2d2

)

(3.2)

4

c

∫ d

0

k2E(k, t)dk =
2

c
=

1

m2
+

4 log(d/m) − 3

f2
+ O

(

1

d2

)

. (3.3)

At late times t ≫ 1, the wavenumbers become increasingly well separated, m ≪ f ≪ d,
and moreover log(d/m) ∼ t ≫ 1. Retaining therefore only the dominant terms, we have
c ≈ 2m4 from energy conservation (which is consistent with c ∼ t−2/3 and m ∼ t−1/6

found in Dritschel et al 2008) and

1

m4
≈ 1

m2
+

4 log(d/m)

f2
(3.4)

from enstrophy conservation, which implies

f ≈ 2m2

√

log(d/m)√
1 −m2

. (3.5)

At late times, m≪ 1. Now we use our assumption that the enstrophy front increases ex-
ponentially d(t) ∼ eγt to obtain the following scaling for the filament transition wavenum-
ber:

f ∼ t1/6 . (3.6)

A postiori, this justifies m≪ f ≪ d.
This simple model predicts energy growth E(k, t) ∝ t1/3k1 in the equipartition range

at large scales k ≪ t−1/6, energy decay E(k, t) ∝ t−2/3k−5 over the vortex population
at intermediate scales t−1/6 ≪ k ≪ t1/6, and also energy decay E(k, t) ∝ t−1k−3 over
the filamentary range at small scales k ≫ t1/6. The k−3 spectrum is formally the same
as that obtained by Batchelor (1969), but in our model this spectrum applies only at
high wavenumbers where filaments dominate. Moreover, this spectral tail decays more
slowly than predicted by Batchelor. The t−1 decay is due to the exponential stretching of
filaments assumed in our model. The spectral tail contains negligible energy and nearly
all of the enstrophy.

The spectral evolution for this idealised model is illustrated in Figure 10, using m =
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Figure 10. Model energy E and enstrophy Ω spectra (left and right) for the non-dimensional
times t = 10, 100 and 1000 as labelled. Here, the total energy and enstrophy are both equal to
1/2. Only the range 10−3 ≤ k ≤ 103 is shown. Logarithmic scales are used.

t−1/6, d = et, along with (3.2) for c and (3.5) for f . The most striking feature of this
evolution is just how slow it is — there is only a small change from t = 10 to t = 1000.
Notice also that the enstrophy at a fixed wavenumber to the left of the peak increases

for a while before eventually decaying (after the peak sweeps past); nevertheless most of
the enstrophy quickly ends up in the rapidly expanding tail between k = f and k = d.

4. Comparison with numerical simulations

Support for this simple model is presented next. We carried out 20 high-resolution nu-
merical simulations in a 2π doubly-periodic domain using the CASL algorithm (Dritschel
& Ambaum (1997), Fontane & Dritschel 2009). The CASL algorithm is an efficient hybrid
contour dynamics/spectral method capable of modelling a wide range of spatial scales
with much less numerical dissipation, and much more accurately, than commonly-used
algorithms such as pseudo-spectral (Dritschel & Scott 2009, hereafter DS09). The sub-
stantially weaker dissipation in CASL simulations is the result of being able to retain
enstrophy to much finer scales (DS09, figures 1–3). Notably, CASL simulations exhibit
the same form of enstrophy dissipation as in the Navier-Stokes equations, but at a much
higher Reynolds number than can be presently achieved with other numerical methods
(DS09, figure 4). The simulations reported here would have required approximately 108

more computational effort if one used the pseudo-spectral method (DS09).
We started each simulation with the energy spectrum E(k, 0) = αk3 exp(−2k2/k2

0),
with k0 = 32 and α chosen so that E = 1/2. Then Q(0) = k2

0/2. The maximum
wavenumber used to represent the velocity field is kmax = 256 (the vorticity is repre-
sented at 8 times higher resolution). Each simulation differed only in a random number
seed determining the phases of the Fourier coefficients.

The flow evolution was computed for 160 ‘eddy rotation periods’ Teddy ≡ 4π/ωrms(0),
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Figure 11. Vorticity ω(x, t) at t = 6 (left) and t = 24 (right) in one representative simulation.
A linear greyscale is used from the minimum (black) to maximum (white) values.

where ωrms(0) =
√

2Q(0) = k0 is the initial r.m.s. vorticity (the peak vorticity is 4 to 5
times larger). Below, time t is in units of Teddy.

This ensemble of simulations was used previously in Dritschel et al. (2008) to cor-
roborate our self-similar evolution model of the vortex population. In particular, the
numerical results strongly support the development of a universal vortex number density
n(A, t) ∝ t−2/3A−1 (corresponding to the energy spectrum E(k, t) ∝ t−2/3k−5 over the
range of scales containing the vortex population), and a decay of vortex enstrophy and
vortex area fraction proportional to t−1/3 over the last 90% of the evolution.

Two snapshots of the vorticity field from one simulation are shown in Figure 11. Note
the prevalence of filamentary structures at early times and of vortices at later times. The
flow is dominated by vortices at all but the earliest times. Figure 12 shows the enstrophy
spectrum at early, intermediate and late times. Each spectrum is multiplied by t2/3 so
that, in theory, the intermediate ‘vortex wavenumber range’ remains steady. This appears
to work well. At low wavenumbers, we observe a k3 spectrum (which eventually saturates
when energy reaches the domain scale), while at small scales we see a slowly retreating
k−1 range. The apparently slow decay of the k−1 range of the enstrophy spectrum at large
wavenumbers when compared to Figure 10 is due to the t2/3 scaling we have applied.

We now quantify this spectral evolution, and compare it to the ideal evolution proposed
in §3. To this end, we computed the total ‘resolved’ energy, enstrophy and palinstrophy
(Er, Qr and Pr) over the wavenumbers 0 < k ≤ kr (with kr = 512 or 2048 to check

sensitivity). Here, the palinstrophy is given by
∫ kr

0
k4Edk, and is equal to the mean-

square vorticity gradient (divided by 2). Pr is not conserved in the inviscid limit, but
it is used here to help determine the spectral parameters c, m and f in the idealised
spectrum (3.1), for which

Er =
c

4m4
+

c

4f2m2
(4.1)

Qr =
c

4m2
+

c

f2

[

log(kr/m) − 3

4

]

(4.2)

Pr =
ck2

r

2f2
(4.3)
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Figure 12. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 10 (bold solid line),
40 (thin solid line) and 160 (dashed line). The temporal scaling is intended to collapse the
spectra over the range of scales occupied by vortices, m<

∼ k<∼ f . Various slopes are indicated.
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Figure 13. Ensemble-averaged spectral parameters m(t) (bold), f(t) (thin) and c(t) (dashed)
for two truncation wavenumbers kr = 512 (left) and kr = 2048 (right). Note the logarithmic
scales. The units on the abscissa are arbitrary (the unscaled parameters are shown in Figure 14).
Reference slopes of ±1 are shown by the thick bold lines.

approximately (for kr ≫ f).

The spectral parameters were determined from each simulation from early times t = 10
to the final time t = 160. They were then ensemble averaged at each time. The resulting
ensemble-averaged values of m(t), f(t) and c(t) are shown in Figure 13 (log scaled) using
the truncation wavenumbers kr = 512 on the left and kr = 2048 on the right. Figure 14
shows the corresponding unscaled results for kr = 2048, emphasising the slow evolution
of the wavenumbers m and f . The ‘vortex wavenumber’ m and the ‘vortex density’ c
are both insensitive to the choice of kr. Using a least-squares fit of the log-scaled data,
we obtain m ∼ t−0.1702, c ∼ t−0.6822 for kr = 512 and m ∼ t−0.1676, c ∼ t−0.6715 for
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Figure 14. Ensemble-averaged spectral parameters m(t) (bold), f(t) (thin) and c(t) (dashed)
for kr = 2048. Here the scales are linear.
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Figure 15. Ensemble-averaged scaled enstrophy spectra t2/3Ω(k, t) at t = 40 (bold solid line)
compared with the ideal scaled spectrum using (3.1). Various slopes are indicated.

kr = 2048. These compare well with the theoretical predictions m ∼ t−1/6 and c ∼ t−2/3

(Dritschel et al. (2008)).
The results for f are much less robust, with f ∼ t0.1188 for kr = 512 and f ∼ t0.2105

for kr = 2048. We argued for f ∼ t1/6 in §3 above. The discrepancy at early times occurs
because the spectrum has not yet filled out to kr. Note from (4.3), f is determined
only by Pr; at late times, numerical inaccuracies make Pr uncertain, particularly as Pr is
dominated by the rapidly fluctuating high-k end of the spectrum. Despite the uncertainty,
the numerical data are not inconsistent with our model prediction.

Finally, a comparison of the numerical and ideal model enstrophy spectra at an in-
termediate time of t = 40 is presented in Figure 15. Again c, m and f are not fit but
determined from Er, Qr, and Pr. The ideal spectrum is more peaked but captures the
spectral transitions around k = m and k = f , and closely matches the k−1 tail. Impor-
tantly, the spectral parameters are not sensitive to the form of the ideal spectrum we
have chosen, as has been verified using the ‘stick’ spectrum Ω = cm−6k3 joined to ck−3
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joined to cf−2k−1. We do not claim (3.1) is correct everywhere. What appears robust
is an energy spectrum containing k1, k−5 and k−3 ranges, with transition wavenum-
bers evolving according to the time-dependencies discussed. To determine the exact form
of the spectrum will require further theoretical insight, such as an improvement of the
vortex self-similarity hypothesis near the maximum vortex size.

5. Concluding remarks

We have developed a new model for the late-time evolution of inviscid, unforced
two-dimensional turbulence. The model builds upon vortex self-similarity over a slowly-
expanding intermediate range of scales (Dritschel et al. 2008). Here, we propose that the
scales larger than any vortex approach a state of equipartition (Kraichnan, 1967; Fox
& Orszag 1973), with energy spread uniformly among Fourier modes (except at ultra-
large scales, where the energy spectrum is bounded by a constant times t2k3, see Tran &
Dritschel, 2006). Whereas ideal equipartition is a statistically-steady state, in our model
we argue that the energy spectrum at large scales slowly grows like E(k, t) ∝ t1/3k1, and
slowly cascades to ever larger scales, k<∼ m(t) ∝ t−1/6. In particular, the flux of energy

to large scales diminishes like t−5/6. The inverse cascade becomes ever slower.
At small scales, we propose that Batchelor’s k−3 spectrum is gradually replaced at its

upper end around k = f(t) ∝ t1/6 by the steeper spectrum E(k, t) ∝ t−2/3k−5 associated
with a self-similar population of vortices (Dritschel et al. 2008). The k−3 spectrum, we
argue, spreads to high k exponentially fast, implying that the spectrum decays like t−1

there. This decay is slower than predicted by Batchelor (1969) by simple scale analysis.
Furthermore, he did not recognise the possibility that a steeper spectrum would develop
and replace the k−3 spectrum at intermediate scales.

We have examined our model’s predictions using a large ensemble of high-resolution
simulations of two-dimensional turbulence. These simulations strongly support the t1/6

growth of the ‘vortex wavenumber’ m (inversely proportional to the size of the largest
vortex), and the t−2/3 decay of the ‘vortex density’ c. Less secure is our prediction that
the ‘filament transition wavenumber’ f (where the energy spectrum shallows from k−5

to k−3) grows like t1/6. This wavenumber is sensitive to numerical inaccuracies and
to spectral fluctuations at high k. Nevertheless, our results are not inconsistent with
f(t) ∝ t1/6.

Finally, we note that a similar model can be derived for the analogous 3D quasi-
geostrophic system applicable to rapidly-rotating, strongly-stratified flow (Gill 1982).
This system is in many ways analogous to the 2D one studied here: it possesses a
materially conserved dynamical tracer (potential vorticity), its flow is layer-wise two-
dimensional and non-divergent, it has a scalar streamfunction whose Laplacian is the
conserved dynamical tracer, and it exhibits a direct enstrophy cascade and an inverse
enstrophy cascade (Charney 1971). In the quasi-geostrophic system, equipartition at late
times gives rise to a spectrum E(k, t) ∝ t9/20k2 at large scales, while the emergence of a
self-similar population of vortices gives rise to a spectrum E(k, t) ∝ t−3/4k−6 at interme-
diate scales. Further details and computational support are left for a future study.

GAG is partly supported by the Australian Research Council grant DP0452147. We
wish to thank colleagues and staff at the Isaac Newton Institute (Cambridge) for their
feedback and support during the 2008 programme on High Reynolds Number Turbulence.
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