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Abstract. We study the slow singular limit for planar anharmonic oscillatory
motion of a charged particle under the influence of a perpendicular magnetic
field when the mass of the particle goes to zero. This model has been used by
the authors as a toy model for exploring variational high order approximations
to the slow dynamics in rotating fluids. In this paper, we address the long
time validity of the slow limit equations in the simplest nontrivial case. We
show that the first order reduced model remains O(ε) accurate over a long
1/ε time scale. The proof is elementary, but involves subtle estimates on the
nonautonomous linearized dynamics.

1. Introduction

We study the zero mass limit for the equations of a single charged particle in a
planar anharmonic oscillator potential under the influence of an external magnetic
field. The equations of motion are

ε q̈ − Jq̇ + ∇V (q) = 0 , (1)

where q : R → R
2 and

J =

(

0 −1
1 0

)

(2)

denotes the canonical symplectic matrix. This system is variational and can be
obtained as the Euler–Lagrange equations associated with Lagrangian

Lε =
ε

2
q̇T q̇ − V (q) − 1

2
q̇T Jq . (3)

System (1) can also be viewed as a simple model of balance in rotating flow as
exemplified by the rotating shallow water equations

Du

Dt
+ f0 Ju + g ∇h = 0 , (4a)

Dh

Dt
+ h∇ · u = 0 . (4b)

Here u = u(x, t) denotes the velocity field on the horizontal plane x ∈ R
2, h =

h(x, t) the layer depth, ∇ the horizontal gradient, D/Dt = ∂t + u · ∇ the material
derivative, g the constant of gravity, and f0/2 the ambient angular velocity in the
so-called f -plane approximation. To nondimensionalize the equations, let U be a
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typical velocity, L be a typical horizontal length scale, and H a typical layer depth.
Then, in new, nondimensional variables,

ε
Du

Dt
+ Ju − B

ε
∇h = 0 , (5a)

Dh

Dt
+ h∇ · u = 0 , (5b)

where ε = U/f0L is the Rossby number and B = (LR/L)2 the Burger number
with Rossby radius of deformation LR =

√
gH/f0. The semigeostrophic scaling

B = O(ε) with ε ≪ 1 is one of the physically relevant scalings [15, 19]. In this
situation, (1) can be regarded as the Lagrangian equation for one fluid parcel with
externally prescribed layer depth potential, the magnetic force taking the role of
the Coriolis force.

Observed large scale flows, for example the large vortices we know from weather
maps, frequently dominate the behavior of the system, and there is a plethora of
reduced so-called balance models which filter out the fast components of the motion.
The present study is motivated by the desire to understand variational constructions
of balance models which were initially proposed by Salmon [18] and generalized in
[14]. The main advantage of going the variational route is the persistence of proper
analogs of conserved quantities of the parent equations under model reduction.
However, to our knowledge there is currently no proof that solutions to any of
the semigeostrophic limit equations remain close to solutions of the full parent
equations. Moreover, it has been numerically observed that balance models, for
example the quasi-geostrophic equations [15], appear valid for much longer time
scales than expected [5, 11]. For the full shallow water equations, rigorous estimates
in the limit of rapid rotation have been obtained by Babin, Mahalov, and Nicolaenko
[1] and Embid and Majda [3]. These estimates are challenging as resonant wave
interactions have to be controlled; similar difficulties will arise when attempting
to generalize our result to higher dimensions. On the other hand, their results
are concerned with a time scale which is long with respect to the fast time scale
rather than with respect to the slow time scale as in the present paper. Thus, our
work here is a first step in understanding the conditions under which balance in
the semigeostrophic limit is maintained over very long times.

Our model equation (1) is characterized by motion on two separate time scales.
There is fast, nearly harmonic oscillatory motion through a balance between inertia
and magnetic terms,

ε q̈ε = Jq̇ε , (6)

and slow, generically anharmonic motion through a balance between magnetic and
potential terms

Jq̇ε = ∇V (qε) . (7)

The corresponding frequencies are of order ε−1 and 1, respectively. There is no
explicit separation of fast and slow subsystems, so that the construction of a slow
manifold becomes a nontrivial task.

The general theory and the construction of slow manifolds for normally hy-
perbolic systems is well developed [4, 20, 23, 24, 25]. However, most Hamiltonian
systems, including our model, are not normally hyperbolic. Moreover, in the Hamil-
tonian case it is often desirable to retain a Hamiltonian vector field on the slow
manifold and, consequently, the associated conservation laws. Structure preserva-
tion can be achieved by using normal form transformations on the Hamiltonian
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side or variational asymptotics on the Lagrangian side. The slow Hamilton or
Euler–Lagrange equations of motion are then derived in a second, non-perturbative
step. The construction of slow manifolds by canonical transformations has been ad-
dressed, for example, in [22, 28]. A construction by constraining the Lagrangian to
a zero order approximation of the slow manifold has been introduced by Whitham
[27] and applied to fluid mechanics by Salmon [17]. However, their approach does
not generalize directly to higher order; see MacKay [10] for an excellent review.
For unbalanced data where the full dynamics has nonnegligible fast contributions,
averaging methods have to be used [20, 25].

The present paper is motivated by, though not dependent on, our previous work
on generalizing Salmon’s [18] constrained Lagrangian construction to higher order.
The procedure has been developed both for the shallow water equations [14] and
studied for the finite dimensional model (1) in [7]. This new construction provides
a natural framework for working with noncanonical symplectic transformations,
thereby providing enough generality in an infinite dimensional setting to ensure
well-posedness and regularity of the resulting slow dynamics.

In this paper we address the question whether the dynamics on the slow manifold
can shadow trajectories of the parent system over very long times. Specifically, we
prove that the first order reduced models remain O(ε) accurate representations of
the slow parent dynamics over a long 1/ε time scale.

Related work has been done by a number of authors. Cotter and Reich [2] have
used Hamiltonian normal form theory to show that solutions near the slow manifold
of system (1) remain close to it for exponentially long times. Their proof is based
on an optimal truncation of an asymptotic series, while the present paper aims at
proving a long-time path-wise estimate for an explicitly computable slow model
at fixed low order of an asymptotic series. Wirosoetisno [26] considers a different
finite dimensional model of balance in which the splitting between fast and slow
dynamics is explicitly built into the model. For equation (1), this is not the case,
so that the problem of identifying the slow dynamics is nonobvious.

The paper is structured as follows. Section 2 introduces the first order limit
systems and provides a brief sketch of their derivation. In Section 3, we state
our main theorem and sketch the structure of the proof. Sections 4–7 provide the
technical details of this proof. We conclude the paper with a short discussion of
the result in the broader context of our original motivation.

2. First order slow equations

Throughout the paper, we write ∇ to denote the gradient, viewed as a column
vector, and use D to denote the total derivative, viewed as a linear map acting
on column vectors. The Hessian of a scalar function φ is written Hess φ = D∇φ;
we write, in particular, Hess q when we need to distribute over components of a
vector-valued function q, i.e.

(vT Hess q u)i ≡ vT Hess qi u . (8)

Finally, ∆ denotes the Laplacian which also distributes over components of vector-
valued functions.

We are now ready to introduce the two first-order limit systems which are the
main concern of this paper. First, we consider the variational slow equation

(1 + ε ∆V (q))Jq̇ = ∇V (q) + ε D∇V (q)∇V (q) . (9)
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It is derived by inserting a near-identity transformation of the form

qε = q + ε q′ + 1
2 ε2 q′′ + . . . (10)

into the Lagrangian (3) and truncating to first order in ε. In this setting, q′ is a
free parameter which can be chosen to render the first order Lagrangian affine. The
resulting dynamics is constrained to slow motion in a two-dimensional phase space.
Equations (9) arise from the particular choice

q′ = − 1
2 Jq̇ + 1

2 ∇V (q) (11)

where, as can be seen by diagnosing (11) with the leading order balance Jq̇ =
∇V (q), the q variables remain untransformed up to terms of second order in ε. For
details and more general transformations, see [7].

Second, we consider the nonvariational slow equation

Jq̇ = ∇V (q) + ε JD∇V (q)J∇V (q) (12)

which can be derived in the following direct way. (An alternative derivation based
on successive integration by parts is given as part of the set-up for our proofs in
Section 4.) As in [12], write (1) as

q̇ = p , (13a)

ε ṗ = Jp −∇V (q) , (13b)

and introduce a new fast variable w = p − Fn+1(q) so that

q̇ = w + Fn+1(q) , (14a)

ẇ =

(

1

ε
J − DFn+1

)

w +
1

ε

(

JFn+1(q) −∇V (q)

)

− DFn+1(q)Fn+1(q) . (14b)

Expanding

Fn(q) =

n
∑

i=0

fi(q) εi , (15)

we can iteratively determine the fi such that the inhomogeneity in (14b) is of order
εn+1. Left-multiplying (14b) with w yields

d

dt
‖w‖ ≤ ‖DFn+1‖ ‖w‖ + O(εn+1) (16)

so that, if w = O(εn+1) initially, it will remain so for times of order one. The
dynamics is then dominantly slow and can be approximated to O(εn+1) by

q̇ = Fn(q) (17)

for times of order one. Figure 1 shows the projection onto the q1-q2 plane of a
solution to the parent system initialized on the first-order approximate slow mani-
fold w = 0 (dotted line) together with the corresponding first-order limit trajectory
(solid line) for two different values of ε. When ε decreases, the approximation of
the slow manifold becomes more accurate—evidenced by the decrease in amplitude
of the fast components in the solution to the parent system. At the same time, the
slow limit system becomes a more accurate description of the slow dynamics of the
parent system. Note that the trajectory for the full system is not generally closed,
even though it appears so in the left hand graph of Figure 1, while the slow limit
system is topologically constrained to closed orbits.
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The variational limit equations (9) differ from (12) by retaining different higher
order terms. Thus, for the task of estimating the shadowing of trajectories of the
slow limit systems, these differences are immaterial. Beyond the time of validity of
the approximations, however, the nonvariational limit systems will generally blow
up, while the variational limit system will continue its slow motion on the energy
surface.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q
1

q 2

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

q
1

q 2

Figure 1. Full dynamics (1) (dotted line) and slow variational
dynamics (9) (solid line) with quartic nonlinear potential V (q) =
3
4 q4

1 + 1
4 q4

2 . Left: ε = 0.1 and right: ε = 0.2.

The present paper makes the point that under certain, more restrictive assump-
tions, the slow approximation is not only O(εn+1) on time scales of O(1), but also
O(εn) on time scales of O(ε−1). As the proofs for the long-time result require esti-
mates on nonautonomous linear problems, they are considerably more involved. We
therefore restrict ourselves to the case n = 1, stated in the following section. Nu-
merical experiments, however, indicate that the result readily generalizes to higher
order; see Figure 2.

3. Main Theorem

In the following, we assume that the potential V is even and convex. Physically,
evenness of the potential means that the restoring force field is point symmetric
about the equilibrium of the oscillator. Our main result then is the following.

Theorem 1. Assume that V is even and convex. For q(0) = q0 ∈ R
2 fixed, let

q(t), implicitly depending on ε, be a sequence of solutions to either the variational

slow equation (9) or to the nonvariational slow equation (12), symbolically written

as q̇ = F (q). Further, let qε(t) be a sequence of solutions to the full parent system

(1) with balanced initial data qε(0) = q0 and q̇ε(0) = F (qε(0)). Then there exist

constants c = c(q0) and ε0 > 0 such that

‖q(t) − qε(t)‖ ≤ c ε (18)

for every 0 ≤ t ≤ ε−1 and 0 < ε ≤ ε0.

Remark 1. Within the setting of Theorem 1, there is no difference between the
behavior of the variational and the nonvariational limit system. Beyond the 1/ε
time scale, however, the nonvariational limit system generally blows up as the
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Figure 2. Error ‖qε− q‖ at time t = ε−1 vs. ε for the approxima-
tion of the slow manifold by first and second order limit systems
with quartic potential V (q) = 3

4 q4
1 + 1

4 q4
2 . The first order error

scales very close to O(ε) while the second order error scales very
close to O(ε2).

dynamics is not constrained by a conserved energy. Theorem 1 thus provides a
lower bound for the blow-up time of (12).

Remark 2. Numerical experiments show that the restriction to even potentials—
which, as shown in Section 7, allows for a cancellation of error growth across con-
secutive half periods of the slow motion—is essential.

Remark 3. The result is optimal in the sense that the behavior is replicated in the
linear case where the equations can be solved by explicit diagonalization [7, 14].

A crucial ingredient for the proof is the notion that the parent system (1) is
Hamiltonian with conserved energy

Eε(t) =
ε

2
‖q̇ε(t)‖2 + V (qε(t)) = Eε(0) . (19)

Since the potential is convex, qε is bounded uniformly in t and ε. Moreover, the
variational limit system is Hamiltonian with conserved energy

E(t) = V (q(t)) +
ε

2
‖∇V (q(t))‖2 = E(0) . (20)

We write our parent system symbolically as

q̇ε = Fε(qε) (21)

and, similarly, denote the vector fields corresponding to the non-variational limit
system (12) and the variational limit system (9) by Fnv and Fvar, respectively. The
evolution equation for the trajectory error y = qε−q is split into three components,

ẏ = Fε(qε) − Fvar(q)

=
(

Fε(qε) − Fnv(qε)
)

+
(

Fnv(qε) − Fvar(qε)
)

+
(

Fvar(qε) − Fvar(q)
)

. (22)
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The first two differences on the right are called the consistency error as is common
in the analysis of numerical time integrators for differential equations (see, for ex-
ample, [21]). The consistency errors are treated as driving terms to the linearization
of the third term in (22). In other words, the evolution of the error is expressed as
a stability estimate of the form

ẏ = G + DFvar(q) y . (23)

Our situation is complicated by the fact that a straightforward application of
the Gronwall inequality will miss by one order in ε. (This is in fact a restatement
of the problem already encountered in the introduction.) To recover the missing
order, we must carefully verify that the next order contribution of the consistency
error actually gets averaged out over full periods of the slow motion. This averaging
argument can be sketched as follows.

An oscillator Jq̇ = ∇V (q) with even potential has trajectories which are anti-
symmetric with respect to time shifts by half-periods. Thus, even functions h of
the position q are T/2-periodic while odd functions g(q) are T/2 anti-periodic. It
turns out that the linearized growth of the difference in (18) can be cartooned by
the scalar equation

ẏ(t) = g(q(t)) + h(q(t)) y(t) . (24)

Integrated over a full period T of q(t), the contributions from h cancel identically.
In the actual proof, this growth estimate is vector-valued and hence may have
monodromy which needs to be carefully controlled.

The remainder of the paper provides the details of the proof. In Section 4, we
re-derive the nonvariational limit system (12) by a formal argument which provides
the raw structure for developing the rigorous proof later. The consistency error is
analyzed in Section 5. The result, namely that the consistency error remains of
the expected order on the long time scale, is stated as Theorem 6 at the end of
Section 5.

The proof of Theorem 6 is performed by explicitly splitting off the fast dynamics
which allows for averaging over one slow period by the application of the Gronwall
lemma. As a by-product, we also get an estimate for the higher-order terms of
the nonvariational system (12) which include fast components. In Section 6, we
show that perturbations to the slow dynamics have at most secular growth and,
moreover, do not resonate with the fast dynamics. This is expressed in Lemma 7
and in Corollary 10 respectively. In Section 7, these ingredients are combined to
complete the proof of Theorem 1.

4. Derivation of the nonvariational limit system

In this section, we provide what effectively amounts to the variations-of-constants
formulation of the derivation of the slow manifold w = 0 as sketched in the intro-
duction. In this process, the nonvariational limit system arises from the boundary
terms of successive integration by parts. Section 5 will take a different starting
point which could be verified directly without going through this section. As such
direct verification is non-constructive, however, it is worth taking the detour.

It is convenient to make the long time scale explicit. We thus introduce a slow
time τ = ε t, and write uε(τ) = qε(τ/ε) and u(τ) = q(τ/ε) to denote the solution
as a function of slow time. This implies q̇(t) = ε u̇(τ). In these variables, q̇ε(t) =
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ε u̇ε(τ) and q̈ε(t) = ε2 u̇ε(τ), so that the parent dynamics (1) reads

ε3 üε(τ) + ∇V (uε(τ)) − ε Ju̇ε(τ) = 0 , (25)

or

üε(τ) − J

ε2
u̇ε(τ) = − 1

ε3
∇V (uε(τ)) . (26)

Using an integrating factor and integrating once, we find

u̇ε(τ) = e
Jτ
ε2 u̇ε(0) − 1

ε3

∫ τ

0

e
J(τ−σ)

ε2 ∇V (uε(σ)) dσ . (27)

Writing

ε2 J
d

dσ
e

J(τ−σ)
ε2 = e

J(τ−σ)
ε2 , (28)

we integrate by parts and obtain

w0(τ) = e
Jτ
ε2 w0(0) +

J

ε

∫ τ

0

e
J(τ−σ)

ε2 D∇V (uε(σ)) u̇ε(σ) dσ

= e
Jτ
ε2 w0(0) +

J

ε

∫ τ

0

e
J(τ−σ)

ε2 D∇V (uε(σ))w0(σ) dσ

− J

ε2

∫ τ

0

e
J(τ−σ)

ε2 D∇V (uε(σ))J∇V (uε(σ)) dσ , (29)

with

w0(τ) = u̇ε(τ) +
1

ε
J∇V (uε(τ)) . (30)

Leading order balance can now be written as w0(τ) = 0. To go to the next order,
note that the last term in (29) does not contain any time derivatives on uε. Hence,
we can continue integration by parts, thereby reducing the order of the prefactor
to ε−1. We regroup terms as before, obtaining

w1(τ) = e
Jτ
ε2 w1(0) +

J

ε

∫ τ

0

e
J(τ−σ)

ε2 D∇V (uε(σ))w1(σ) dσ

−
∫ τ

0

e
J(τ−σ)

ε2 L1(σ)[w1(σ)] dσ +
1

ε

∫ τ

0

e
J(τ−σ)

ε2 r1(σ) dσ , (31)

where

w1(τ) = u̇ε(τ) +
1

ε
J∇V (uε(τ)) − D∇V (uε(τ))J∇V (uε(τ)) . (32)

Remainder terms which only depend on uε are lumped into the linear operator

L1(τ) = D(D∇V J∇V )(uε(τ)) (33)

and the vector

r1(τ) = JD∇V (uε(τ))D∇V (uε(τ))J∇V (uε(τ))

+ D(D∇V J∇V )(uε(τ)) [J∇V (uε(τ)) − ε D∇V (uε(τ))J∇V (uε(τ))] .
(34)

The claim of Theorem 1 is that the dynamics on the slow manifold is given, to
the order indicated, by the first-order nonvariational balance equation (12), which
can now be written as w1(τ) = 0. Consistency of this approximation means that
if w1 is used as a diagnostic for the full dynamics and is small initially, it remains
small for τ = O(1), or t = O(1/ε) in physical time. It would thus be tempting
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to use the Gronwall inequality on (31) by estimating the norm of the first-order
consistency error ‖w1(τ)‖.

Indeed, the last two terms in (31) are benign: The term involving w1 is already
in good shape for a Gronwall inequality argument, while the final term again does
not involve time derivatives, so that integration by parts can be used once more to
improve the order of the prefactor from 1/ε to 1. The first integral on the right of
(31), however, cannot be easily dealt with unless we restrict the argument to the
short time scale ε. Our consistency argument, which is presented in Section 5, is
based on the observation that this term can be understood as a perturbation of the
unitary matrix group exp(Jτ/ε2).

The stability argument in Section 6 is even more subtle—it depends on the odd
symmetry of the next order correction to the nonvariational limit system. We must
therefore expose these next order terms explicitly, which amounts to integration by
parts, once again, on the last term of (31). We obtain

w2(τ) = e
Jτ
ε2 w2(0) +

J

ε

∫ τ

0

e
J(τ−σ)

ε2 D∇V (uε(σ))w2(σ) dσ

−
∫ τ

0

e
J(τ−σ)

ε2 L2(σ)[w2(σ)] dσ +

∫ τ

0

e
J(τ−σ)

ε2 r2(σ) dσ , (35)

where

w2(τ) = w1(τ) + ε Z1(uε(τ)) = u̇ε(τ) − Fnv(uε(τ)) + ε Z1(uε(τ)) , (36a)

Fnv(u) = −1

ε
J∇V (u) + D∇V (u)J∇V (u) , (36b)

Z1(u) = −JD(D∇V J∇V )(u)[J∇V (u)] + D∇V (u)D∇V (u)J∇V (u) , (36c)

and

L2(τ) = L1(τ) − ε DZ1(uε(τ)) . (36d)

Remainder terms which only depend on uε, hence are uniformly bounded as ε → 0,
and those which are of O(ε2) are grouped into r2(τ).

We proceed by left-multiplying (35) with exp(−Jτ/ε2), and differentiate the
resulting expression, so that

− J

ε2
e−

Jτ
ε2 w2(τ) + e−

Jτ
ε2 ẇ2(τ)

=
J

ε
e−

Jτ
ε2 D∇V (uε(τ))w2(τ) − e−

Jτ
ε2 L2(τ)[w2(τ)] + e−

Jτ
ε2 r2(τ) , (37)

which we write in its final form as

ẇ2 =
J

ε2

(

I + ε D∇V (uε)
)

w2 − L2[w2] + r2 . (38)

The analysis in Section 5 is based on formulation (38). Of course, we could have
started with (38) right away and checked equivalence to (1) by direct calculation.
This, however, would hide the structure of the argument, namely that an expansion
for the slow equation emerges as an aggregation of boundary terms from successive
integration by parts. The equation w2(τ) = 0 is the second-order nonvariational
system for balanced motion. Although our main Theorem 1 is only concerned
with the first-order balance model we need explicit expressions for the next order
correction to prove that they do not impact the slow dynamics on the long time
scale.
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5. Consistency

In this section we prove an O(ε) bound on the consistency error w1(τ). Along
the way, we obtain a representation of the explicit next order error w2(τ) in terms
of an oscillatory integral.

The proof is based on the fact that the fundamental matrix corresponding to
the entire first term on the right of (38) is a small perturbation of a one-parameter
unitary group. To make this statement rigorous, we must study the linear homo-
geneous problem

ẋ(τ) = A(τ)x(τ) (39)

where

A(τ) =
J

ε2

(

I + ε D∇V (uε(τ))
)

. (40)

The fundamental matrix R = R(τ ; σ) is defined through x(τ) = R(τ ; σ)x(σ). We
prove three auxiliary results.

Lemma 2. A−1(τ) = O(ε2) as ε → 0 uniformly in τ .

Proof. A formal power series inversion yields

A−1 = −ε2
∞
∑

i=0

(

−ε D∇V (uε)
)i

J . (41)

Since uε remains bounded as ε → 0, the series is absolutely convergent for ε small
enough, hence uniformly bounded as ε → 0. �

Lemma 3. For any τ fixed, R solves the adjoint equation

∂2R(τ ; σ) = −R(τ ; σ)A(σ) . (42)

Here, and in the following, ∂j denotes the partial derivative with respect to the
jth argument slot.

Proof. The fundamental matrix R(τ ; σ) solves the nonautonomous linear matrix
equation

∂1R(τ ; σ) = A(τ)R(τ ; σ) , (43a)

R(σ; σ) = I . (43b)

Moreover, the fundamental matrix satisfies

R(τ ; σ) = R(τ ; ρ)R(ρ; σ) (44)

for arbitrary real numbers ρ, σ, and τ . In particular,

R(τ ; σ)R(σ; τ) = I , (45)

so that differentiation with respect to τ yields

∂1R(τ ; σ)R(σ; τ) + R(τ ; σ) ∂2R(σ; τ) = 0 . (46)

Plugging in (43a), multiplying with R(σ; τ) from the left, and exchanging variable
names, we obtain the statement of the lemma. �
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Lemma 4. There exists a constant c depending only on uε(0) and an ε0 > 0 such

that

‖R(τ ; σ)‖ ≤ 2 exp

(

c

∫ τ

σ

(

1 + ε ‖w1(ρ)‖
)

dρ

)

(47)

for all 0 < ε ≤ ε0. In particular, ‖R‖ = O(ε0) as long as w1 remains a priori
bounded.

Proof. We take a WKB-like approach and factor out the oscillations with frequency
O(ε−2) as follows. Without loss of generality, we take the initial time σ = 0 and
drop the second argument of R henceforth. We separate trace and trace-free part
of D∇V by setting

Q(τ) = D∇V (uε(τ)) − 1
2 I TrD∇V (uε(τ)) , (48)

φ(τ) = 1 + 1
2 ε Tr D∇V (uε(τ)) , (49)

and define

Φ(τ) =

∫ τ

0

φ(σ) dσ . (50)

We remark that as φ is a small perturbation of unity, Φ can be regarded as a new
time-like variable. Then R(τ ; σ) satisfies the equation

Ṙ(τ) =
J

ε2

(

φ(τ) I + ε Q(τ)
)

R(τ) (51)

with R(0) = I. Further, define

U =
1√
2

(

1 1
i −i

)

and Ω =
1

ε2

(

−i 0
0 i

)

. (52)

We introduce a “slow” fundamental matrix Y by explicitly factoring out fast oscil-
lations,

R(τ) = U eΩΦ(τ) Y (τ) . (53)

Since this transformation is unitary, bounding R is equivalent to bounding Y . Di-
rect computation shows that Y must satisfy

Ẏ =
1

ε
MY , (54)

with Y (0) = U−1 and
M = e−ΩΦ U−1 JQ U eΩΦ . (55)

Noting that Q is a traceless symmetric matrix, we find that

M ≡ e−ΩΦ U−1 JQ U eΩΦ =





0 µ e
2i
ε2 Φ

µ e−
2i
ε2 Φ 0



 , (56)

where µ = −(Q12 + iQ11) ultimately is a function of uε.
We complete the proof by a direct estimate on the growth of an arbitrary so-

lution to the “slow” equation (54). Writing this equation out in components and
integrating in τ , we have

y1(τ) = y1(0) +
1

ε

∫ τ

0

e−
2i
ε2 Φ(σ) µ(σ) y2(σ) dσ , (57a)

y2(τ) = y2(0) +
1

ε

∫ τ

0

e
2i
ε2 Φ(σ) µ(σ) y1(σ) dσ . (57b)



12 G. GOTTWALD, M. OLIVER, AND N. TECU

Since

e−
2i
ε2 Φ(σ) = −ε2

2i

1

φ(σ)

d

dσ
e−

2i
ε2 Φ(σ) , (58)

integration by parts in (57a) yields

y1(τ) = y1(0) − ε

2i
e−

2i
ε2 Φ(τ) µ(τ)

φ(τ)
y2(τ) +

ε

2i

µ(0)

φ(0)
y2(0)

+
1

2i

∫ τ

0

( |µ(σ)|2
φ(σ)

y1(σ) + ε e−
2i
ε2 Φ(σ) d

dσ

(

µ(σ)

φ(σ)

)

y2(σ)

)

dσ (59)

We now take the absolute value on both sides. Since uε is bounded uniformly in ε
for all time, so are µ and the trace of D∇V (uε). As a consequence, φ(τ) is bounded
away from zero, e.g. φ(τ) ≥ 1

2 , for ε small enough. Finally,

d

dσ

µ

φ
= D

(

µ

φ

)

(uε) · u̇ε

= D

(

µ

φ

)

(uε) ·
[

w1 −
1

ε
J∇V (uε) + D∇V (uε)J∇V (uε)

]

. (60)

We thus find that

|y1(τ)| ≤ |y1(0)|+ε c |y2(0)|+ε c |y2(τ)|+c

∫ τ

0

(

|y1(σ)|+(1+ε ‖w1(σ)‖) |y2(σ)|
)

dσ ,

(61)
where c denotes a constant that may only depend on the initial data uε(0). Simi-
larly,

|y2(τ)| ≤ |y2(0)|+ε c |y1(0)|+ε c |y1(τ)|+c

∫ τ

0

(

|y2(σ)|+(1+ε ‖w1(σ)‖) |y1(σ)|
)

dσ .

(62)
We set η = |y1| + |y2| and add the previous two inequalities, so that

η(τ) ≤ (1 + ε c) η(0) + ε c η(τ) + c

∫ τ

0

(

2 + ε ‖w1(σ)‖
)

η(σ) dσ . (63)

Choosing ε small enough, we finally obtain

η(τ) ≤ 2 η(0) + 4 c

∫ τ

0

(

1 + ε ‖w1(σ)‖
)

η(σ) dσ . (64)

Note that the prefactor 2 in front of η(0) is purely technical; bounds that are
initially sharp are possible, but are not required for our purpose. Noting that Y
and R are related via a unitary transformation we can prove the Lemma upon using
the Gronwall inequality. �

The following lemma is not necessary for proving a bound of the consistency
error. However, it will prove crucial for the stability error. This Lemma will allow
to control the driving of the slow dynamics by the higher order fast terms.

Lemma 5. Let w1(0) = 0 and let R denote the fast fundamental matrix corre-

sponding to (39). Then there exists a bounded time dependent linear map L3 such

that

w2(τ) = ε R(τ ; 0)Z1(u(0)) +

∫ τ

0

R(τ ; σ)L3(σ)[w2(σ)] dσ + O(ε2) . (65)
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Proof. We rewrite (38) in its mild formulation

w2(τ) = R(τ ; 0)w2(0) +

∫ τ

0

R(τ ; σ)

(

−L2(σ)[w2(σ)] + r2(σ)

)

dσ . (66)

Taking norms of this expression would leave the last term under the integral at
O(1). We can improve its order by integration by parts, in effect retracing the
steps of Section 4 with the fundamental matrix of the nonautonomously perturbed
linear system in place of explicit matrix exponentials. Due to Lemma 2,

ε2 r3(τ) ≡ A−1(τ) r2(τ) = O(ε2) . (67)

Using the adjoint equation from Lemma 3, we compute
∫ τ

0

R(τ ; σ) r2(σ) dσ = −
∫ τ

0

∂σR(τ ; σ)A−1(σ) r2(σ) dσ

= −ε2 R(τ ; σ) r3(σ)

∣

∣

∣

∣

σ=τ

σ=0

+ ε2

∫ τ

0

R(τ ; σ)Dr3(uε(σ)) u̇ε(σ) dσ

= −ε2 R(τ ; σ) r3(σ)

∣

∣

∣

∣

σ=τ

σ=0

+ ε2

∫ τ

0

R(τ ; σ)Dr3(uε(σ))w2(σ) dσ

+ ε

∫ τ

0

R(τ ; σ)Dr3(uε(σ)) r4(σ) dσ (68)

with

r4(τ) ≡ ε (u̇ε(τ) − w2(τ)) = ε Fnv(uε(τ)) − ε2 Z1(uε(τ)) = O(1) . (69)

The order of the last term in (68) must still be improved. As this term has the
same structure as the left hand side of (68), we iterate the argument and apply
partial integration once more, concluding that this term contributes only at O(ε2).
The second term on the right of (68) can be combined with the first part of the
integrand in (66), resulting in an overall expression of the form (65) with L3(τ) =
−L2(τ) + O(ε2). �

Theorem 6 (Consistency). Let w1(0) = 0. Then there exist constants c and ε0

such that

‖w1(τ)‖ ≤ c ε and ‖w2(τ)‖ ≤ c ε (70)

for εt = τ ∈ [0, 1] and for every 0 < ε ≤ ε0.

Proof. We make the dependence of w2 on ε explicit by writing w2 = w2(τ ; ε).
Let τε denote the maximum time such that ‖w2(τ ; ε)‖ < 1 for every τ < τε. If
lim inf τε > 0, the claim is immediate. Otherwise, there exists a sequence εk → 0
with τεk

→ 0 as k → ∞; without loss of generality we may assume that τεk
≤ 1.

Then Lemma 4 implies that there exists a constant c which bounds ‖R(τ, σ)‖ for
all σ ∈ [0, τ ] with τ < τεk

< 1 and all k. (Note that, since w2 is bounded by 1,
the difference between w2 and w1 is at most O(εk). Hence, w1 is also bounded a

priori.) Taking norms on (65), we have

‖w2(τ ; εk)‖ ≤ c1 εk + c2

∫ τ

0

‖w2(σ; εk)‖ dσ . (71)

The Gronwall inequality directly implies that there exists a constant c3 such that
‖w2(τ ; εk)‖ ≤ c3 εk for all τ ∈ [0, τεk

). For k large enough, c3 εk ≤ 1
2 . Continuity of

w2 then implies that there exists τ∗

εk
> τεk

such that ‖w2(τ, εk)‖ < 1 for τ < τ∗

εk
.

This contradicts the maximality of τεk
. �
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Remark 4. To prove this theorem it would not have been necessary to carry along
the next order contributions in w2 explicitly—we could have derived an inequality
of the form (71) for w1 first, and deduced the w2 bound from there. However, we
chose to go this route as the intermediate equation (65) will be important later on.

A second contribution to the consistency error comes from the difference be-
tween the variational and nonvariational limit systems, Fnv(uε) − Fvar(uε). The
computation is direct, with details as follows.

Recall that the variational slow dynamics in rescaled variables is given by

ε
(

1 + ε ∆V (u)
)

Ju̇ = ∇V (u) + ε D∇V (u)∇V (u) , (72)

which we shall abbreviate

u̇ = Fvar(u) ≡ − 1

ε + ε2 ∆V (u)
J

(

∇V (u) + ε D∇V (u)∇V (u)
)

. (73)

For comparison and for future reference, we write out the nonvariational limit
system,

u̇ = Fnv(u) ≡ −1

ε
J∇V (u) + D∇V (u)J∇V (u) . (74)

Expanding Fvar in powers of ε and noting that ∆V J = J D∇V + D∇V J , we find
that

Fvar = −1

ε
J∇V + D∇V J∇V − ε ∆V D∇V J∇V + O(ε2)

= Fnv − ε ∆V D∇V J∇V + O(ε2)

≡ Fnv − ε Z2(u) + O(ε2) . (75)

6. Stability

In the following, we prove that perturbations to the slow variational limit system
have secular rather than exponential growth—the limit system is a planar nonlinear
oscillator. Moreover, when the potential is even, inhomogeneities which are odd
functions of the slow dynamics will cancel on the time scale of the slow period and
first appear on the long time scale. Odd potentials, on the other hand, would give
rise to even forces and fast modes could nonlinearly interact to produce a slow mode
of zero frequency.

The following lemma is our basic stability result.

Lemma 7. Let u(τ) denote a solution to (72), and let S(τ ; σ) denote the funda-

mental matrix which governs the evolution of small perturbations about u(τ), i.e.

Ṡ(τ ; σ) = DFvar(u(τ))S(τ ; σ) , (76a)

S(σ; σ) = I . (76b)

Then

S(τ ; σ) = P (τ ; σ) eΛ(τ−σ)/T (77)

where P ( · ; σ) is periodic with period T = O(ε), and Λ = O(1) is nilpotent so that

the growth of S can only be secular.

Proof. As V is convex, the planar phase space of the variational limit system (72)
foliates into periodic orbits that are parameterized by their conserved energy. Thus,
the existence of a factorization of the form (77) follows readily by the Floquet
theorem. The scaling of the period, namely T = O(ε), is evident from the leading
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order terms in (72), as the higher order terms are regular perturbations. It remains
to be shown that the matrix of characteristic exponents Λ is nilpotent, i.e. that the
growth of S is secular at most.

Guided by the Hamiltonian structure of the leading order slow dynamics, we
recognize the energy as an action variable I and time as an angle variable σ. We
then denote by u(τ ; I, σ) the solution to (72) satisfying

u(σ; I, σ) = u0(I) , (78)

where u0(I) is a fixed curve of initial values normal to the periodic orbits. Differ-
entiating (78) with respect to σ and I, respectively, we see that the phase error
uσ and amplitude error uI evolve according to a differential equation of the form
(76a), namely

u̇σ = DFvar(u(t))uσ and u̇I = DFvar(u(t))uI . (79)

This is the same equation that a perturbation about the solution u(τ) of (73)
would satisfy. In particular, uσ and uI are initially linearly independent, thus form
a complete fundamental set of solutions for the evolution of small perturbations
about u(τ).

The period of the oscillations for solutions of (72) generally depends on the orbit,
so that u(τ ; I, σ) = u(τ + T (I); I, σ). Differentiation with respect to initial phase
σ gives

uσ(τ ; I, σ) = uσ(τ + T (I); I, σ) , (80)

and, similarly,

uI(τ ; I, σ) = uI(τ + T (I); I, σ) + u̇(τ + T (I); I, σ)T ′(I) . (81)

In particular, differentiating (78) with respect to σ and setting σ = τ = 0, we find
that

(

uσ(T )
uI(T )

)

=

(

1 T ′(I)
0 1

) (

uσ(0)
uI(0)

)

. (82)

As the matrix on the right is clearly the exponential of a nilpotent matrix, the
lemma is proved. �

Remark 5. Equation (82) states that there is no generation of amplitude errors
uI over one slow period. The exclusive generation of phase errors uσ along the
periodic orbit is due to the underlying Hamiltonian structure. Exponentially accu-
rate normal form theory for perturbed Hamiltonian systems can yield even stronger
bounds [13, 16]. This has been lately applied to the toy model (1) in [2]. However,
our estimates are aimed at proving not just closeness of the slow manifold to the
exact manifold of the parent system, but rather to prove convergence of actual
trajectories on the manifolds and thereby we need to estimate the phase errors as
well.

An immediate consequence of Lemma 7 is the following estimate.

Corollary 8. Let S be defined as in Lemma 7. There exists a constant c = c(u0)
such that

‖S(τ, σ)‖ ≤ c

ε
|τ − σ| . (83)
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Remark 6. In our setting, perturbations will enter as inhomogeneities of magnitude
O(ε). Thus, an estimate of the form (83) is not strong enough to conclude that
errors remain small on the long time scale τ = O(1). For even potentials, however,
there is a cancellation of errors between consecutive half-periods, and the order of
the estimate improves by one. This will be detailed in Section 7.

We finally need a nonresonance result on the interaction between fast and slow
modes.

Lemma 9. Let S denote the slow fundamental matrix of Lemma 7 and R the fast

fundamental matrix of Section 5. Then
∫ ω

τ

S(ω; ρ)R(ρ; σ) dρ = O(ε2) (84)

for any τ, σ, ω = O(1) with |ω − τ | = O(ε).

Proof. The proof of the lemma is similar to that of Lemma 5. Recall that R satisfies
the differential equation Ṙ(ρ; σ) = A(ρ)R(ρ, σ), where A is given by (40), so that

∫ ω

τ

S(ω; ρ)R(ρ; σ) dρ =

∫ ω

τ

S(ω; ρ)A−1(ρ) ∂ρR(ρ; σ) dρ

= S(ω; ρ)A−1(ρ)R(ρ; σ)

∣

∣

∣

∣

ρ=ω

ρ=τ

−
∫ ω

τ

∂ρS(ω; ρ)A−1(ρ)R(ρ; σ) dρ

−
∫ ω

τ

S(ω; ρ) ∂ρA
−1(ρ)R(ρ; σ) dρ . (85)

Set δ = |ω − τ |. Recall from Corollary 8 that S(ω; ρ) = O(δ/ε), from Lemma 2
that A−1 = O(ε2), and from Lemma 4—with an O(ε) bound on w1 guaranteed
by Theorem 6—that R(ρ, σ) = O(1). Thus, the boundary term in (85) is O(δε)
overall.

To estimate the second term on the right of (85), we formulate—as in Lemma 3—
the adjoint equation corresponding to (76a),

∂σS(τ ; σ) = −S(τ ; σ)DFvar(u(σ)) . (86)

We also note that DFvar = O(1/ε). Then the application of the same set of esti-
mates as used above for the boundary term yields an overall O(δ2) bound.

To estimate the last term on the right of (85), we compute

∂τA−1 = −A−1ȦA−1

= −A−1

(

J

ε

d

dτ
D∇V (uε(τ))

)

A−1

= −A−1

(

J

ε
DD∇V (uε(τ))

(

w1(τ) + Fnv(uε(τ))
)

)

A−1

= O(ε2) , (87)

since w1 = O(ε) and Fnv(uε) = O(1/ε). Thus, the last term on the right of (85) is
O(εδ2) overall, and the proof of the lemma is complete. �

In the following Corollary we estimate the effect of the driving of the slow dy-
namics by higher order terms over one slow period T .
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Corollary 10. Let S denote the slow fundamental matrix of Lemma 7, T = O(ε)
the slow period, set τn = nT , and let w2 be defined through (36a). Then

∫ τn+1

τn

S(τn+1; σ)w2(σ) dσ = O(ε3) (88)

on a time scale τn = O(1).

Proof. A crude estimate using S(ω; ρ) = O(1), w2 = O(ε), and τn+1 − τn = T =
O(ε) yields an O(ε2)-bound. This bound can be improved by one order as follows.
According to Lemma 5,

∫ τn+1

τn

S(τn+1; σ)w2(σ) dσ

= ε

∫ τn+1

τn

S(τn+1; σ)R(σ; 0)Z1(u(0)) dσ

+

∫ τn+1

τn

S(τn+1; σ)

∫ σ

0

R(σ; ρ)L3(ρ)[w2(ρ)] dρ dσ + O(ε3)

= ε

∫ τn+1

τn

S(τn+1; σ)R(σ; 0) dσ Z1(u(0))

+

(∫ τn

0

∫ τn+1

τn

+

∫ τn+1

τn

∫ τn+1

ρ

)

S(τn+1; σ)R(σ; ρ) dσ L3(ρ)[w2(ρ)] dρ

+ O(ε3) . (89)

Since w2 = O(ε) by Theorem 6, the result follows immediately from Lemma 9. �

7. Proof of Theorem 1

We can now proceed to prove our main result. We symbolically write the full
system (1) as

u̇ε = Fε(uε) , (90)

with Fε given by the integro-differential equation (27). Let u(τ) denote the solution
to the variational slow equation

u̇ = Fvar(u) . (91)

The evolution of the approximation error y(τ) = uε(τ) − u(τ) is split into three
components,

ẏ = Fε(uε) − Fvar(u)

=
(

Fε(uε) − Fnv(uε)
)

+
(

Fnv(uε) − Fvar(uε)
)

+
(

Fvar(uε) − Fvar(u)
)

. (92)

We consider each of these components in turn. By definition, see equation (36), we
write

Fε(uε) − Fnv(uε) = w1 = w2 − ε Z1(uε) + O(ε2) . (93)

Next, quoting (75), we have

Fnv(uε) − Fvar(uε) = ε Z2(uε) + O(ε2) (94)

Last, we expand

Fvar(uε) − Fvar(u) = DFvar(u)y + 1
2 yT HessFvar(u) y + O

(‖y‖3

ε

)

. (95)
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(Recall that, in rescaled time, Fvar and Fnv are O(ε−1) vector fields.) We altogether
obtain

ẏ = DFvar(u)y + G , (96)

where, by the use of the mean value theorem,

G = w2 − ε(Z1(uε) − Z2(uε)) + 1
2 yT HessFvar(u) y + O

(

ε2,
‖y‖3

ε

)

(97)

= w2 + ε Z(u) + ε DZ(u + νy) y + 1
2 yT Hess Fvar(u) y + O

(

ε2,
‖y‖3

ε

)

(98)

for some ν = ν(τ) ∈ [0, 1]. Note that, at this stage, we only have y = O(1). This
is obvious since y = uε − u, both of which are O(1) by conservation of energy.
However, we also know that Z ≡ Z1 − Z2 is an odd function of u. This symmetry
is crucial for proving that the contribution from Z averages out at O(ε).

Let T = O(ε) denote the slow period, set τn = nT , yn = y(nT ), and integrate
in time,

y(τn + σ) = S(τn + σ; τn) yn +

∫ τn+σ

τn

S(τn + σ; ρ)G(ρ) dρ . (99)

We first perform a rough estimate on the integral in (99), then bootstrap to get
the final, more refined estimate we need to prove the long-time result. Note that
if σ = O(ε), Corollary 8 provides an O(1) bound on S(τn + σ; ρ). We now look at
each of the terms contained in G under the integral. Due to Theorem 6,

∫ τn+σ

τn

S(τn + σ; ρ)w2(ρ) dρ = O(ε2) . (100)

The next two terms in G also contribute at O(ε2) under the integral. Since
HessFvar(u) = O(1/ε),

∫ τn+σ

τn

S(τn + σ; ρ) y(ρ)T HessFvar(u(ρ)) y(ρ) dρ = O(‖yn‖2) . (101)

Note that we have replaced supσ∈[0,T ]‖y(τn + σ)‖2 as would naturally appear on

the right of (101) by ‖yn‖2. This is justified so long as ‖y(ρ)‖ ≤ 1. Under this
assumption, over a single slow period, ‖y(τn + σ)‖ ≤ c ‖yn‖, as can easily be seen
by taking the norm of (99) and using the Gronwall inequality.

All other terms contributing to (99) are of higher order than the terms discussed,
so that, altogether, we obtain the first stage estimate

y(τn + σ) = S(τn + σ; τn) yn + O(ε2, ‖yn‖2) . (102)

We can improve this estimate by one order as follows. Take σ = T , so that, by
Lemma 7, S(τn+1; τn) = eΛ. Again, we write

yn+1 = eΛ yn +

∫ τn+1

τn

S(τn+1; ρ)G(ρ) dρ (103)

and look at each of the contributions to the integral in turn. First,
∫ τn+1

τn

S(τn+1; ρ)w2(ρ) dρ = O(ε3) (104)

due to Corollary 10 which picks up cancellations by averaging fast motion over one
slow period. No bootstrapping is required here; in fact, we could have used this
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estimate in the first step, too, but the comparison between the two stages clearly
demonstrates that extra work is required on each of the terms to get to the longer
time scale. Next,

ε

∫ τn+1

τn

S(τn+1; ρ)DZ(u + λy)(ρ) y(ρ) dρ = O(ε2 ‖yn‖) (105)

by direct estimation; the higher order remainder terms also receive their obvious
respective bounds by direct estimation.

Two terms remain which are not generally of the order required, and which
we must carry through the computation explicitly. We split the error into a part
which is propagated by the slow fundamental matrix S over one slow period T and a
remainder which can be estimated. I.e., we write y(ρ) = S(ρ; τn)yn + O(ε2, ‖yn‖2),
see (102), so that

∫ τn+1

τn

S(τn+1; ρ) y(ρ)T Hess Fvar(u(ρ)) y(ρ) dρ

=

∫ T

0

S(T ; σ) yT
n S(σ; 0)T HessFvar(u(σ))S(σ; 0) yn dσ + O(ε2 ‖yn‖, ‖yn‖3) .

(106)

We have, so far, shown that

yn+1 = eΛ yn +

∫ T

0

S(τn+1; τn + σ)H(S(σ; 0) yn, σ) dσ + O(ε3, ‖yn‖3) (107)

where

H(w, σ) = ε Z(u(σ)) + 1
2 wT Hess Fvar(u(σ))w . (108)

(Here and in the following we use Young’s inequality to eliminate mixed terms from
the higher order remainders.) Note that we have already used the T -periodicity
of u to remove any n-dependence from (108). By recursive insertion, noting that
y0 = 0, we obtain the discrete mild formulation

yn =

n
∑

k=1

e(n−k)Λ

(∫ T

0

S(T ; σ)H(S(σ; 0) yk−1, σ) dσ + O(ε3, ‖yk−1‖3)

)

. (109)

The crucial observation is that, due to the even symmetry of the potential, there
are cancellations between consecutive half-periods. This can be seen as follows.

When V is even, not only is u periodic with period T = O(ε), but we also have
u(τ) = −u(τ + T/2). Since DFvar is an even function of u, DFvar(u(σ)) is actually
periodic with period T/2. We express S in its Floquet factorization afforded by
Lemma 7 and note that P must then also be T/2-periodic. Moreover, by standard
arguments, there also exists a “reverse” Floquet factorization

S(τ ; σ) = eΛ(τ−σ)/T P̃ (τ ; σ) (110)

where the monodromy matrix eΛ is as in (77), while P̃ is also T/2-periodic but
may differ from P . Breaking the integral in (109) into consecutive half-periods and
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noting that H(w, σ) = −H(w, σ + T/2) for fixed w, we obtain
∫ T

0

S(T ; σ)H(S(σ; 0)w, σ) dσ

=

∫ T/2

0

eΛ(1−σ/T ) P̃ (T/2; σ)H(P (σ; 0) eΛσ/T w, σ) dσ

−
∫ T/2

0

eΛ(1/2−σ/T ) P̃ (T/2; σ)H(P (σ; 0) eΛ(1/2+σ/T ) w, σ) dσ . (111)

We note, by changing into a basis in which Λ takes its Jordan normal form

Λ =

(

0 λ
0 0

)

, (112)

that
eΛ(1−σ/T ) − eΛ(1/2−σ/T ) = eΛ(1/2+σ/T ) − eΛσ/T = 1

2 Λ . (113)

Thus, by adding and subtracting suitable intermediate terms in (111), we find that
∫ T

0

S(T ; σ)H(S(σ; 0)w, σ) dσ = Λ H1(w, w) + H2(w, Λw) , (114)

where, for i = 1, 2,
Hi(v, w) = O(ε2, ‖v‖ ‖w‖) . (115)

Inserting (114) back into (109), we have

yn =

n
∑

k=1

e(n−k)Λ
[

Λ H1(yk−1, yk−1) + H2(yk−1, Λyk−1) + O(ε3, ‖yk−1‖3)
]

=

n
∑

k=1

[

Λ H1(yk−1, yk−1) + e(n−k)Λ
(

H2(yk−1, Λyk−1) + O(ε3, ‖yk−1‖3)
)]

(116)

since Λ2 = 0 and therefore emΛ = I + mΛ.
Note that e(n−k)Λ contributes secular growth, i.e. it is O(1/ε). This contribution

needs to the controlled by treating Λyk special. We calculate

ε−1 Λ yn =
n

∑

k=1

[

ε−1 H2(yk−1, Λyk−1) + O(ε2, ε−1 ‖yk−1‖3)
]

. (117)

Then, taking norms and setting

zn = ‖yn‖ + ε−1 ‖Λyn‖ , (118)

we find that each of the terms within the summations in (116) and (117) is of the
order

O

(

ε2, ε zk, z
2
k,

z3
k

ε

)

= O

(

ε2,
z3

k

ε

)

(119)

so long as n = O(1/ε). In other words, there exists a constant c such that, using
(116) and (117),

zn ≤ c

ε

n−1
∑

k=0

z3
k + c ε . (120)

If z(τ) is a monotonic interpolant of the zk, we also have

z(τ) ≤ c

ε2

∫ τ

0

z3(σ) dσ + c ε (121)
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which, by the generalized Gronwall inequality [8], implies that

z(τ) ≤ ε√
c−2 − 2cτ

. (122)

We conclude that there exists a τ∗ independent of ε such that z(τ) ≤ 2cε for every
τ ∈ [0, τ∗]. This bound on z directly implies a like bound on y. This completes the
proof of Theorem 1.

8. Discussion

This paper demonstrates for a simple, low dimensional model of balance that
trajectories near the slow manifold of the full equation are shadowed by trajecto-
ries of the balanced dynamics over very long times. While our main interest lies
in variational slow systems, we used a nonvariational system as an intermediate
step in the proof. The technical reason is that perturbative methods, the simple
construction outlined in Section 2 or the version based on the variation of constants
formula used in the actual proof, are effectively based on Taylor expansions in the
equations of motion which generally destroy the variational structure. Even though
this intermediate step appears unsatisfactory, we are not aware of a method to infer
shadowing of trajectories directly from the properties of the two Lagrangians.

The generalization of the long-time shadowing result to larger systems is re-
stricted by two main assumptions. First, we assume a “no chaos” condition on
the slow dynamics, here guaranteed by the two-dimensionality of the reduced flow.
Second, and perhaps more surprising, we need to assume a symmetry condition on
the potential which suppresses slow-slow resonances.

In higher dimensions, we would expect non-resonance conditions to be much
harder to prove. When generalizing to higher dimensional flows, the concept of
trajectory stability of the slow dynamics will have to be replaced by stability of the
slow manifold. In this sense, the statement that nearly balanced initial states re-
main nearly balanced over very long times may survive into the geophysical context,
but further work is clearly needed.
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