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Covariance inflation is an ad-hoc treatment that is widely used in practical real-time data assimilation
algorithms to mitigate covariance underestimation due to model errors, nonlinearity, or/and, in the context
of ensemble filters, insufficient ensemble size. In this paper, we systematically derive an effective “statistical”
inflation for filtering multi-scale dynamical systems with moderate scale gap, ǫ = O(10−1), to the case of
no scale gap with ǫ = O(1), in the presence of model errors through reduced dynamics from rigorous
stochastic subgrid-scale parametrizations.

We will demonstrate that for linear problems, an effective covariance inflation is achieved by a systemat-
ically derived additive noise in the forecast model, producing superior filtering skill. For nonlinear problems,
we will study an analytically solvable stochastic test model, mimicking turbulent signals in regimes ranging
from a turbulent energy transfer range to a dissipative range to a laminar regime. In this context, we will
show that multiplicative noise naturally arises in addition to additive noise in a reduced stochastic forecast
model. Subsequently, we will show that a “statistical” inflation factor that involves mean correction in
addition to covariance inflation is necessary to achieve accurate filtering in the presence of intermittent
instability in both the turbulent energy transfer range and the dissipative range.
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1. Introduction

An integral part of each numerical weather forecasting scheme is the estimation of the most accurate
possible initial conditions given a forecast model with possible model error and noisy observations at
discrete observation intervals; this process is called data assimilation (see e.g. Kalnay 2002, Majda &
Harlim 2012). The presence of the often chaotic multi-scale nature of the underlying nonlinear dynamics
significantly complicates this process. Each forecast estimate, or background state, is an approximation
of the current atmospheric state, with a whole range of sources for error and uncertainty such as model
error, errors due to the nonlinear chaotic nature of the model, the unavoidable presence of unresolved
subgrid-scales, as well as errors caused by the numerical discretisation (see e.g. Palmer 2001).

An attractive method for data assimilation is the ensemble Kalman filter introduced by Evensen (1994,
2006) which computes a Monte-Carlo approximation of the forecast error covariance on-the-fly as an esti-
mate for the degree of uncertainty of the forecast caused by the model dynamics. The idea behind ensemble
based methods is that the nonlinear chaotic dynamics of the underlying forecast model and the associated
sensitivity to initial conditions cause an ensemble of trajectories to explore sufficiently large parts of the
phase space in order to deduce meaningful statistical properties of the dynamics. A requirement for a reli-
able estimate is an adequate size of the ensemble (Houtekamer & Mitchell 1998, Ehrendorfer 2007, Petrie
& Dance 2010). However, all currently operational ensemble systems suffer from insufficient ensemble sizes
causing sampling errors. The associated underdispersiveness implies that the true atmospheric state is on
average outside the statistically expected range of the forecast or analysis (e.g. Buizza et al. (2005), Hamill
& Whitaker (2011)). An underdispersive ensemble usually underestimates the forecast error covariance
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which potentially leads to filter divergence whereby the filter trusts its own forecast and ignores the in-
formation provided by the observations. This filter divergence is caused by ensemble members aligning
with the most unstable direction of the forecast dynamics as shown by Ng et al. (2011). To mitigate this
underdispersiveness of the forecast ensemble and avoid filter divergence the method of covariance inflation
was introduced (Anderson & Anderson 1999) whereby the prior forecast error covariance is artificially
increased in each assimilation cycle. Covariance inflation can either be done in a multiplicative (Anderson
2001) or in an additive fashion (Sandu et al. 2007, Houtekamer et al. 2009). This is usually done globally
and involves careful and computationally expensive tuning of the inflation factor (for recent methods on
adaptive estimation of the inflation factor from the innovation statistics, see Anderson 2007, 2009, Li et al.
2009, Miyoshi 2011). Although covariance inflation is widely used in the context of ensemble based filters,
it can also be used to mitigate covariance underestimation in the presence of model errors in non-ensemble
based setting. For example, Majda & Harlim (2012) discuss an effective covariance inflation using an in-
formation theory criterion to compensate model errors due to numerical discretization in linear filtering
problems. From the perspective of linear Kalman filter theory, the covariance inflation improves the linear
controllability condition for accurate filtered solutions (Castronovo et al. 2008). Law & Stuart (2012) inflate
the static background covariance in a 3DVAR setting to stabilise the filter.

The goal of this paper is to compute an effective “statistical inflation” to achieve accurate filtering
in the presence of model errors. In particular, we study filtering multi-scale dynamics with model errors
arising from a misrepresentation of unresolved sub-grid scale processes in the regime of moderate time-scale
separation. The filtering problem, where the fast degrees of freedom are not observable, has been considered
by Pavliotis & Stuart (2007), Zhang (2011), Mitchell & Gottwald (2012), Imkeller et al. (2012), with a large
scale gap assumption, ǫ ≪ 1. Several numerical methods to address the same problem for moderate scale
gap were developed by Harlim (2011), Kang & Harlim (2012), Harlim & Majda (2013). While these methods
produce encouraging results on nontrivial applications, unfortunately, they are difficult to be justified in
rigorous fashion. Averaging and homogenisation techniques developed by Khasminskii (1968), Kurtz (1973),
Papanicolaou (1976) provide a rigorous backbone for developing reduced slow dynamics for certain classes
of multi-scale systems. Following the idea of Mitchell & Gottwald (2012) we will study how these stochastic
model reductions can be used in data assimilation and how they act as a dynamically consistent way of
statistical inflation. Our particular emphasis here is to understand the role of additive and multiplicative
noise in stochastic model reduction in improving filtering skill. We employ theoretically well-understood
stochastic model reductions such as averaging, formulated in the framework of singular perturbation theory,
and stochastic invariant manifold theory. We consider multi-scale systems whose averaging limit does not
generate additional stochastic diffusion terms; as an innovative feature, we reintroduce stochastic effects
induced by the fast dynamics by going one order higher in the time scale separation parameter ǫ in the
classical averaging theory. The question we address here is, in what way do these stochastic effects improve
the process of data assimilation for multi-scale systems.

The outline of the paper is the following. In Section 2 we consider a linear model and show how
additive inflation naturally arises as judicious model error for the resolved slow scales. We will show
that while singular perturbation expansion allows us to improve the estimates of the statistical moments
when compared to the averaged system, the reduced Fokker-Planck equation for the slow variable does
not support a non-negative probability density function. Consequently, this method does not provide any
means to estimate the temporal evolution of the mean and the variance needed for data assimilation. As a
remedy, we will derive an approximate reduced stochastic model via invariant manifold theory (Berglund
& Gentz 2005, Fenichel 1979, Boxler 1989, Roberts 2008). This yields a Langevin equation for the slow
variable the variance of which is one order less accurate than that obtained with the singular perturbation
theory, but provides an explicit expression for the temporal evolution which can be used to propagate
mean and variance in the data assimilation step. The reduced stochastic differential equation obtained
through stochastic invariant manifold theory produces significantly better filtering skills when compared to
the classical averaged equation. The additional additive noise correction of the reduced stochastic system
provides an effective covariance inflation factor. Nonlinear problems will be discussed in Section 3. There, we
will consider an analytically solvable nonlinear stochastic test model, mimicking turbulent signals in regimes
ranging from the turbulent energy transfer range to the dissipative range to laminar regime (Majda &
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Harlim 2012, Branicki et al. 2012). We will show that the approximate reduced model involves both, additive
and multiplicative noise, and improves the accuracy in the actual error convergence rate of solutions when
compared to the classic averaged equations. For data assimilation applications, we will derive an analytically
solvable non-Gaussian filter based on the approximate reduced model with additive and multiplicative
noise corrections which effectively inflates the first and second order statistics. We will demonstrate that
this non-Gaussian filter produces accurate filtered solutions comparable to those of the true filter in the
presence of intermittent instability in both the turbulent energy transfer range and the dissipative range. We
conclude with a short summary and discussion in Section 4. We accompany this article with an electronic
supplementary material that discusses the detailed calculations.

2. Linear model

We first consider the linear multi-scale model

dx = (a11x + a12y) dt + σxdWx, (2.1)

dy =
1

ǫ
(a21x + a22y) dt +

σy√
ǫ
dWy, (2.2)

for a slow variable x ∈ R and fast variable y ∈ R. Here, Wx, Wy are independent Wiener processes and
the parameter ǫ characterizes the time scale gap. We assume throughout that σx, σy 6= 0 and that the
eigenvalues of the matrix

A =

(

a11 a12
1

ǫ
a21

1

ǫ
a22

)

are strictly negative, to assure the existence of a unique invariant joint density. Furthermore we require
ã = a11 − a12a

−1
22 a21 < 0 to assure that the leading order slow dynamics supports an invariant density

(cf.(2.3)).

(a) Singular perturbation theory: averaging and beyond

The multi-scale linear system (2.1)-(2.2) is amenable to averaging. A recent exposition of the theory
of averaging and its applications is provided for example in Givon et al. (2004) and in Pavliotis & Stuart
(2008). The goal of this section is to apply singular perturbation theory to obtain one order higher than
the usual averaging limit. We will derive an O(ǫ) approximation for the joint probability density function
ρ(x, y, t) of the full multi-scale system (2.1)-(2.2), when marginalised over the fast variable y. The resulting
higher-order approximation of the probability density will turn out to be not strictly non-negative which
implies that it is not a proper probability density function, and therefore cannot be associated with a
stochastic differential equation for the slow variable x. However, it will enable us to find corrections to the
mean and variance and all higher order moments.

The standard effective averaged slow dynamics,

dX = ãXdt + σxdWx, (2.3)

is obtained by averaging the slow equation (2.1) over the conditional invariant measure ρ∞(y; x) induced
by the fast dynamics where the slow variable x is assumed fixed in the limit of infinite time scale separation
ǫ → 0. Formally, the effective averaged slow dynamics can be derived by finding a solution of the Fokker-
Planck equation associated with (2.1)-(2.2) with the following multiscale expansion,

ρ(x, y, t) = ρ0 + ǫρ1 + ǫ2ρ2 + · · · . (2.4)

and the reduced system in (2.3) is the Langevin equation corresponding to marginal distribution,
∫

ρ0(x, y, t) dy
(see Appendix A in the electronic supplementary material). Here, we are looking for a higher order correc-
tion through the contribution from ρ1(x, y, t). In order for ρ0 + ǫρ1 to be a density we require

∫

dx dy ρ1 = 0. (2.5)
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Figure 1. Absolute error of the variance of the slow variable x when calculated from the full multi-scale system
(2.1)-(2.2) and from the singular perturbation theory result (2.6) evaluated at t = 1.3. The variances were evaluated
at time t = 2.8. Parameters were with a11 = 1, a12 = −1, a21 = −1, a22 = −1 and σx = σy =

√
2. Linear regression

of the upper two data sets reveals a slope of 0.95 and 0.90, respectively, the slope of the lower line is estimated as
1.80.

Again, see Appendix A (and eqn (A14)) for the detailed discussion and an explicit solution for ρ1 that
satisfies (2.5).

We find that for each value of ǫ the expression ρ = ρ0 + ǫρ1 is not a strictly positive function of x and
y. This implies that, contrary to ρ0, the next order probability density function ρ = ρ0 + ǫρ1 does not
satisfy a Fokker-Planck equation which describes the time evolution of a probability density function. As
such it is not possible to find a reduced Langevin equation corresponding to ρ = ρ0 + ǫρ1. This indicates
that in general memory effects are too significant to allow for a decorrelation at that order. In the next
subsection we will explore a different approximative approach which allows to derive approximate slow
Langevin equations. This as we will see will come at the cost of less accurate estimate of the variance of
the slow variable.

Despite the lack of a probabilistic interpretation of the Fokker-Planck equation associated with ρ0+ǫρ1,
we can use the higher-order approximation of the probability density function to calculate O(ǫ)-corrections
to the variance of the slow variable. We find that Eρ1

(x) = 0, which implies that ρ1 does not contribute to
the mean solution, and

E(x2) = Eρ0
(x2) + ǫEρ1

(x2) + O(ǫ2)

= −σ2
x

2ã
(1 − e2ãt) − ǫ

a2
12σ

2
y

2ãa2
22

(1 − e2ãt) + ǫ
a12a21σ

2
x

2ãa2
22

(1 − e4ãt) + O(ǫ2)

= Q0 + ǫ (Q1 + Q2) + O(ǫ2). (2.6)

Note that for sufficiently small values of ǫ the approximation to the variance is always positive. In Figure 1
we show how the approximation to the variance (2.6) converges with ǫ to the variance of the slow variable
x of the full multi-scale system (2.1)-(2.2). We plot the absolute error of the variances EV = |E(x2) −
(

Eρ0
(x2) + ǫEρ1

(x2)
)

| using only the averaged system (i.e. Q0), with partial correction (i.e., Q0 + ǫQ1),
and with full higher order correction (i.e. Q0 + ǫ(Q1 + Q2)). As expected from the singular perturbation
theory we observe linear scaling behaviour for the averaged system without ǫ(Q1 + Q2) correction and
quadratic scaling behaviour with the higher-order correction in (2.6). We should also point out that the
covariances Q1 +Q2 are not Gaussian statistics (one can verify that the kurtosis is not equal to three times
of the square of the variance for a generic choice of parameters) and therefore it is mathematically unclear
how to use this statistical correction in the data assimilation setting since we have no information about
the temporal evolution of these non-Gaussian statistics without a Fokker-Planck equation which supports
a probabilistic solution.
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(b) Stochastic invariant manifold theory: An approximate reduced slow diffusive model

In this Section we will derive an approximate reduced stochastic differential equation for the general
linear system (2.1)-(2.2). The resulting equation will produce inferior second order statistics compared to
the singular perturbation theory described in the previous subsection (cf. (2.6)), but will be advantageous
in the context of data assimilation as we will demonstrate in next section.

We employ here invariant manifold theory (see for example Berglund & Gentz 2005, Fenichel 1979,
Boxler 1989, Roberts 2008). We perform a formal perturbation theory directly with equations (2.1)-(2.2).
Ignoring terms of O(ǫ) in (2.2) we obtain

y = h(x, t) = −a21

a22

x −√
ǫ

σx

a22

Ẇy + O(ǫ).

The slow stochastic invariant manifold h(x, t) is hyperbolic, satisfying the requirements outlined in Fenichel
(1979). Substituting into (2.1) and ignoring the O(ǫ) contribution, we arrive at a reduced equation for the
slow variable

dX̃ = ãX̃ dt + σxdWx −√
ǫσy

a12

a22

dWy, (2.7)

which contains an additional additive noise term when compared to the averaged reduced equation (2.3).
Note that whereas in the framework of the Fokker-Planck equation employed in singular perturbation
theory the diffusion term and the drift term of the fast equation are of the same order in ǫ, invariant
manifold theory works directly with the stochastic differential equation and hence allocates different orders
of ǫ to the drift and diffusion terms.

We now show that solutions of (2.7) converge to solutions xǫ(t) of the full system (2.1)-(2.2) in a
pathwise sense. There exists a vast literature on stochastic invariant manifold theory (see for example the
monograph by Berglund & Gentz (2005)). There are, however, not many convergence results which establish
the scaling with the time scale separation ǫ. In Appendix B in the electronic supplementary material, we
show that the error e(t) = xǫ(t) − X̃(t) is bounded for finite time T by

E

(

sup
0≤t≤T

|e(t)|2
)

≤ cǫ2. (2.8)

This states that the rate of convergence of solutions of the stochastically reduced system (2.7) is one order
better than for the averaged system (2.3). Figure 2 illustrates the convergence of solutions of the averaged
model (2.3) and the reduced model (2.7) obtained from stochastic invariant manifold theory confirming
the estimate in (2.8). Figure 1, however, shows that this superior scaling of the solutions does not imply
better scaling in the convergence of the variances. Recall that the variance of the reduced system (2.7)
E(X̃2) = Q0 + ǫQ1 constitutes a truncation of the O(ǫ)-correction (see (2.6)), but note the improvement
in the actual error when compared to the averaged system with E(X2) = Q0 (again, see Figure 2).

(c) Data assimilation for the linear model

In this section, we compare numerical results of filtering the linear system in (2.1)-(2.2), assimilating
noisy observations,

zm = x(tm) + εo
m = Gu(tm) + εo

m, εo
m ∼ N (0, ro), (2.9)

of the slow variable x at discrete time step tm with constant observation time interval ∆t = tm+1 − tm.
For convenience, we define u = (x, y)T and the observation operator G = [1, 0]. The observations in (2.9)
are corrupted by unbiased Gaussian noise with variance ro. In our numerical simulation below, we define
signal-to-noise ratio, SNR = V ar(x)/ro, such that SNR−1 indicates the relative observation error variance
compared to the temporal (climatological) variance of x.

Suppose that u−
m and R−

m are the prior mean and error covariance estimates at time tm. In this Gaussian
and linear setting, the optimal posterior mean, u+

m, and error covariance, R+
m, estimates are obtained by

the standard Kalman filter formula (Anderson & Moore 1979):

u+
m = u−

m + Km(zm − Gu−
m),
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Figure 2. Convergence of solutions xǫ of the full model (2.1)-(2.2) to those of the reduced models, (2.3) and (2.7), on
a time interval 0 ≤ t ≤ T = 250. Parameters are a11 = a21 = a22 = −1, a12 = 1 and σx = σy =

√
2. The supremum

errors, Esup ≡ E(sup
0≤t≤T |e(t)|2), where e(t) = xǫ(t)−X(t) (circles) and e(t) = xǫ(t)− X̃(t) (squares), are plotted

as functions of ǫ. Trajectories were averaged over 100 realisations of the Wiener processes. Linear regression of the
two data sets reveals a slope of 0.9 and 1.8 for the error of X and X̃ , respectively.

R+
m = (I − KmG)R−

m, (2.10)

Km = R−
mGT (GR−

mGT + ro)−1.

To complete one cycle of filtering (or data assimilation), the next prior statistical estimates are obtained
by propagating the posterior according to

u−
m+1 = Fu+

m, (2.11)

R−
m+1 = FR+

mFT + Q, (2.12)

where for the true filter, F and Q are 2 × 2-matrices associated with the dynamical propagation operator,
corresponding to the full linear multi-scale system (2.1)-(2.2), and the model error covariance, respectively.
We will compare the true filter with two reduced filtering strategies: (i) Reduced Stochastic Filter (RSF)
which implements a one-dimensional Kalman filter on Gaussian prior statistics produced by the standard
averaging model (2.3); (ii) Reduced Stochastic Filter with Additive correction (RSFA) which implements a
one-dimensional Kalman filter on Gaussian prior statistics produced by model (2.7) obtained from stochas-
tic invariant manifold theory. For both reduced filters (RSF and RSFA), we implement the same formulae
(2.10) and (2.11), replacing u with x, G = [1, 0] with G = 1, and using F = exp(ã∆t). The difference
between RSF and RSFA is on the covariance update where Q = Q0 for RSF and Q = Q0 + ǫQ1 for RSFA.
Therefore, RSFA is nothing but applying RSF with an effective additive covariance inflation factor, ǫQ1.

To measure the filter accuracy, we compute a temporally average root-mean-square (RMS) error between
the posterior mean estimate, x+

m, and the underlying true signal, x(tm), for numerical simulations up to time
T = 10, 000. In Figure 3, we show the average RMS errors as functions of ǫ for ∆t = 1 and SNR−1 = 0.5
(left panel); as functions of SNR−1 for ǫ = 1 and ∆t = 1 (middle panel); and as functions of ∆t for ǫ = 1
and SNR−1 = 0.5 (right panel). Notice that the average RMS error for RSFA is almost identical to that of
the true filter. More importantly, the additive inflation in RSFA improves the filtered accuracy compared
to RSF.

3. Nonlinear model

In this section, we consider solutions of the nonlinear SPEKF model as true signals. This nonlinear test
model was introduced in Gershgorin et al. (2010a,b) for filtering multi-scale turbulent signals with hidden
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Figure 3. Filter accuracy: Average RMS errors as functions of ǫ for ∆t = 1 and SNR−1 = 0.5 (left panel); as
functions of SNR−1 for ǫ = 1 and ∆t = 1 (middle panel); as functions of ∆t for ǫ = 1 and SNR−1 = 0.5 (right
panel). In these simulations, the model parameters were a11 = a21 = a22 = −1, a12 = 1 and σx = σy =

√
2.

intermittent instabilities. In particular, the SPEKF model is given by the following system of SDEs,

du

dt
= −(γ̃ + λ̂)u + b̂ + b̃ + f(t) + σuẆu,

db̃

dt
= −λb

ǫ
b̃ +

σb√
ǫ
Ẇb, (3.1)

dγ̃

dt
= −dγ

ǫ
γ̃ +

σγ√
ǫ
Ẇγ ,

with λ̂ = γ̂−iω and λb = γb−iωb. Here, u represents a resolved mode in a turbulent signal with the nonlinear
mode-interaction terms replaced by an additive complex-valued noise term b̃(t) and multiplicative stochastic
damping γ̃(t) as it is often done in turbulence modeling (Delsole 2004, Majda et al. 1999, 2001, 2003, 2008).
In (3.1), Wu, Wb are independent complex valued Wiener processes and Wγ is a real valued standard
Wiener process. The nonlinear stochastic system in (3.1) involves the following parameters: stationary

mean damping γ̂ and mean bias b̂, and two oscillation frequencies ω and ωb for the slow mode u; two
damping parameters γb and dγ for the fast variables b̃ and γ̃; three noise amplitudes σu, σb, σγ > 0; and

deterministic forcing f(t) of the slow variable u. Here, two stochastic parameters b̃(t) and γ̃(t) are modeled
with Ornstein-Uhlenbeck processes, rather than treated as constant or as a Wiener processes (Friedland
1969, 1982). For our purpose, we consider the temporal scales of b̃, γ̃ to be of order t/ǫ, which leaves the
system amenable to averaging for ǫ ≪ 1.

The nonlinear system in (3.1) has several attractive features as a test model. First, it has exactly solvable
statistical solutions which are non-Gaussian, allowing to study non-Gaussian prior statistics conditional on
the Gaussian posterior statistics in a Kalman filter. This filtering method is called “Stochastic Parameter-
ized Extended Kalman Filter” (SPEKF). Note that it is different from the classical extended Kalman filter
that produces Gaussian prior covariance matrix through the corresponding linearized tangent model (see
e.g., Anderson & Moore 1979, Kalnay 2002). Second, a recent study by Branicki et al. (2012) suggests that
the system (3.1) can reproduce signals in various turbulent regimes such as intermittent instabilities in a
turbulent energy transfer range and in a dissipative range as well as laminar dynamics. In Figure 4, we
show pathwise solutions Re[u(t)] of the system in (3.1) without deterministic forcing (f(t) = 0), unbiased

b̂ = 0, frequencies ω = 1.78 and ωb = 1, for a non-time scale separated situation with ǫ = 1, in three
turbulent regimes considered in Branicki et al. (2012):

I. Turbulent transfer energy range. The dynamics of u(t) is dominated by frequent rapid transient
instabilities. The parameters are: γ̂ = 1.2, γb = 0.5, dγ = 20, σu = 0.5, σb = 0.5, σγ = 20. Here, γ̃
decays faster than u.

II. Dissipative range. The dynamics of u(t) exhibits intermittent burst of transient instabilities, followed
by quiescent phases. The parameters are: γ̂ = 0.55, γb = 0.4, dγ = 0.5, σu = 0.1, σb = 0.4, σγ = 0.5.
Here, u and γ̃ have comparable decaying time scales.
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Figure 4. Pathwise solutions of SPEKF model (real part of u) in three turbulent regimes considered in Branicki
et al. (2012). Notice the vertical scale of regime III is much smaller than the other two regimes.

III. Laminar mode. Here, u(t) has no transient instabilities (almost surely). The parameters are: γ̂ = 20,
γb = 0.5, dγ = 0.25, σu = 0.25, σb = 0.5, σγ = 1. Here, u decays much faster than γ̃.

We remark that regimes I and II exist only for sufficiently large values of ǫ. For smaller ǫ, the solutions
in these two regimes qualitatively look like a laminar mode. Second, for ǫ = 1, the following inequality is
satisfied,

Ξn ≡ −nγ̂ + ǫ
n2σ2

γ

2d2
γ

< 0, (3.2)

for n = 1 in all three regimes; this is a sufficient condition for stable mean solutions (Branicki et al. 2012).
For n = 2, the condition in (3.2) is only satisfied in Regimes I and III. In Regime I, where γ̃ decays much
faster than u, this condition implies bounded first and second order statistics (see Appendix D of Branicki
& Majda 2013).

Next, we will find a reduced stochastic prior model corresponding to the nonlinear system in (3.1). Sub-
sequently, we will discuss the strong error convergence rate. Finally, we will compare the filtered solutions
from the proposed reduced stochastic model with the true filter with exact statistical prior solutions and
various classical approximate filters.

(a) Reduced stochastic models

The goal of this section is to derive an approximate O(ǫ)-correction for the effective stochastic model
in (3.1). As in the linear case, the O(1) dynamics is given by the averaged dynamics, where the average is
taken over the unique invariant density generated by the fast dynamics of b̃ and γ̃, which is

dU

dt
= −λ̂U + b̂ + f(t) + σuẆu. (3.3)

To recover stochastic effects of the fast dynamics neglected in (3.3), we employ invariant manifold theory.
We do not pursue here singular perturbation theory as it does not yield information on the temporal
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Figure 5. Convergence of solutions uǫ of the full model (3.1) to those of several reduced models on a time interval
0 ≤ t ≤ T = 0.5. The supremum error, Esup ≡ E(sup

0≤t≤T |e(t)|2), where e(t) = uǫ(t) − U(t), is plotted as a
function of ǫ. Trajectories were averaged over 500 realizations of the Wiener processes. Linear regression of the data
sets reveal slopes close to 1. Parameters are for Regime I, where γ̃ decays faster than u, and Ξ4 < 0 for these values
of ǫ.

evolution of the statistics as already encountered in the linear case of the previous section. We will show
that invariant manifold theory naturally produces order-ǫ correction factors that consist of both additive
and multiplicative noise.

Proceeding as in Section 2.2, we consider an O(
√

ǫ)-approximation of the invariant manifold of the fast
subsystem

b̃ =
√

ǫ
σb

λb

Ẇb + O(ǫ),

γ̃ =
√

ǫ
σγ

dγ

Ẇγ + O(ǫ).

Inserting into the equation for the slow complex-valued variable u in (3.1) we obtain an approximate
reduced model,

dU

dt
= −λ̂U + b̂ + f(t) + σuẆu +

√
ǫ
(σb

λb

Ẇb −
σγ

dγ

UẆγ

)

. (3.4)

Note that the reduced system (3.4) can be written as the averaged system (3.3) with added O(
√

ǫ) ad-
ditive and multiplicative noise. This model allows for a complete analytical description of the statistics.
In Appendix C (see the electronic supplementary material) we present explicit expressions for the first
and second moments of (3.4). In Figure 5, we show the numerically simulated errors of solutions of the
approximate reduced models when compared to solutions of the full multi-scale system (3.1). All reduced
models, the classical averaged model (3.3), the reduced stochastic model (3.4) and the reduced model (3.4)
with only additive noise exhibit linear scaling with ǫ. Note that the absolute error is smaller though for
the higher-order models (3.4). Notice that the multiplicative noise does not contribute here much to the
closeness of solutions; however, we will see below that it will be significant for filtering turbulent signals
when ǫ = 1. In the electronic supplementary material (Appendix D), we present a convergence proof for
solutions of the reduced model (3.4).

(b) Data assimilation for the nonlinear model

In this section, we report numerical results from filtering the SPEKF model (3.1). We assume partial
observations vm of u only,

vm = u(tm) + εo
m, εo

m ∼ N (0, ro), (3.5)

Article submitted to Royal Society



10 Gottwald and Harlim

at discrete time step tm with observation time interval ∆t = tm+1 − tm. We choose ∆t = 0.5 in regimes I
and II so that it is shorter than the decorrelation times, 0.833 and 1.81, respectively. In regime III, since
the decorrelation time is much shorter, 0.12, we choose ∆t = 0.05. The observations in (3.5) are corrupted
by unbiased Gaussian noise with variance ro. We report on observation noise variances corresponding to
SNR−1 = 0.5, that is, ro is 50% of the climatological variance of u. We have checked that our results are
robust when changing to smaller observational noise with SNR−1 = 0.1.

We will investigate the performance of our reduced models as forecast models in the Kalman filter for
strong, moderate, and no time scale separation. We recall that the intermittent regime II does only exist
for sufficiently large values of ǫ ∼ O(1). We compare four filtering schemes, one perfect and three imperfect
model experiments:

1. The true filter. This filtering scheme applies the classical Kalman filter formula (2.10) to update the
first and second order non-Gaussian prior statistical solutions at each data assimilation step. These
non-Gaussian prior statistics are semi-analytical statistical solutions of the nonlinear SPEKF model
in (3.1) (see Gershgorin et al. 2010b, Majda & Harlim 2012, for the detailed statistics).

2. Reduced stochastic filter (RSF). This approach implements a one-dimensional Kalman filter on Gaus-
sian prior statistical solutions of the averaged system (3.3).

3. Reduced stochastic filter with additive inflation (RFSA). This method implements a one-dimensional
Kalman filter on Gaussian prior statistical solutions of the reduced stochastic model in (3.4) ignoring
the O(

√
ǫ) multiplicative noise term. Technically, this method inflates the prior covariance of the

reduced filtering approach in 2 with an additive correction factor, ǫ
σ2

b

2|λb|2γ̂
(1− e−2γ̂∆t), associated to

the order-
√

ǫ additive noise term in (3.4).

4. Reduced stochastic filter with combined, additive and multiplicative, inflations (RSFC). This filter-
ing scheme applies a one-dimensional Kalman filter formula to update the non-Gaussian statistical
solutions (see Appendix C in the electronic supplementary material) of the reduced stochastic model
in (3.4). The presence of the multiplicative noise correction term yields a statistical correction on
both the mean and covariance. This is what we refer as to “statistical inflation” in the abstract and
introduction.

In Figure 6 we show the average RMS error as a function of the time scale separation parameter ǫ
in regimes I and III. For sufficiently small values of ǫ all filters perform equally well, consistent with the
asymptotic theory; here, the higher order correction is negligible since ǫ is small. For moderate time-scale
separation with ǫ = 0.5 the two higher-order filters produce better skills than RSF which was based on
classical averaging theory. RSFC, which includes multiplicative noise, performed slightly better than RSFA;
here, the transient instabilities have smaller magnitude compared to those with ǫ = 1 shown in Figure 4
and the RMS error suggests that RSFA has relatively high filtering skill. Here, we ignore showing regime
II for smaller ǫ since the solutions look like a laminar mode.

In the remainder of this section, we consider the three turbulent regimes in a tough test bed without
time-scale separation with ǫ = 1. In the turbulent energy transfer regime I, γ̃ decays much faster than
u. The numerical result suggests that RSFC, including multiplicative noise, produces significantly better
filtered estimates than all other filters with RMS errors comparable to the true filter. Note that for this
regime, the optimal inflation factor for which the smallest RMS errors are obtained is unphysical large
with a value of 7.1, and still produces RMS errors 10% larger than those of the true filter (results are
not shown). This is analogous to the situation in ensemble filters found by Mitchell & Gottwald (2012). In
Figure 7, we show the posterior estimates for Regime I for observation error corresponding to SNR−1 = 0.5,
compared to the true signal. Notice that the estimates from RFSC and the true filter are nearly identical;
they capture almost every intermittent instability in this turbulent energy transfer range. The other two
methods, RSF and RSFA, do not capture these intermittent instabilities. In this regime, we also see an
improved covariance estimate with RSFC compared to RSF and RSFA (results are not shown).

In the dissipative regime II, we consider observation error
√

ro = 1.2786; this choice corresponds to
SNR−1 = 0.5 of the temporal average over time t = [0, 400], ignoring the immense intermittent burst
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Figure 6. Average RMS errors as functions of ǫ for SNR−1 = 0.5 in regimes I and III, for observation interval
∆t = 0.5 for regime I and ∆t = 0.05 for regime III. We assimilated until T = 1000.

that occurs at time interval [540, 580] (see Fig. 8). This regime is an extremely difficult test bed since the
variance for the chosen parameters is unstable (that is, Ξ2 < 0), and furthermore the decaying time scales
for u and γ̃ are comparable. Nevertheless, RSFC performs extremely well for observation times not too
large when compared to the growth rate of the instability, Ξ2. RSFC exhibits an RMS error of 0.70 which is
close to the true filter with an RMS error of 0.58 and much lower than the observation error,

√
ro = 1.2786.

The filters without multiplicative noise, RSF and RSFA, have RMS errors of one magnitude higher with
14.9 and 13.3, respectively. In Figure 8 we show the posterior estimates for Regime II. The multiplicative,
i.e. amplitude dependent, nature of the noise clearly enables the filter to follow abrupt large amplitude
excursions of the signal. This illustrates well the necessity to incorporate multiplicative noise in modelling
highly non-Gaussian intermittent signals.

In the laminar regime III, all reduced filters are doing equally well with RMS errors lying between the
true filter and the observational noise (see Fig 6). The filtered estimate from RSFC is slightly less accurate
than those of the true filter; we suspect that this deterioration is because u decays much faster than γ̃ in
this parameter regime, and hence the reduced stochastic systems are not dynamically consistent with the
full dynamics. We should also mention that for all these three regimes with ǫ = 1, we also simulate the
classical EKF with linear tangent model and its solutions diverge to infinity in finite time; this is due to
the practical violation of the observability condition in filtering intermittent unstable dynamics in these
turbulent regimes (see Chapter 3 of Majda & Harlim 2012, in a simpler context).

4. Summary and discussion

In this paper, we presented a study of filtering partially observed multi-scale systems with reduced stochastic
models obtained from a systematic closure on the unresolved fast processes. In particular, we considered
stochastic reduced models derived by singular perturbation theory as well as invariant manifold theory.
Here, we were not only showing convergence of solutions in the limit of large time scale separation, but we
also tackled the question of how the stochasticity induced by the unresolved scales can enhance the filtering
skill, and how their diffusive behaviour can be translated into effective inflation. Our work suggests that
by incorporating results from stochastic perturbation theory one may guide inflation strategies which so
far have been mostly ad-hoc to more efficiently filter multi-scale systems in regimes where the asymptotic
theory usually fails.

We focussed here on the realistic case of moderate and non-existing time scale separation in our data
assimilation experiments, and showed how judicious model error, in particular additive and multiplicative
noise, can enhance filter performance by providing sufficient dynamically adaptive statistical inflation.
We systematically derived higher order additive noise in a reduced stochastic model that does not only
improve the path-wise estimate of solutions, but also improves the filtered estimates through a covariance
inflation for the Kalman update in the linear case and in a nonlinear example that mimics a laminar
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Figure 7. Filtered posterior estimates (grey) compared to the truth (black dashes) for regime I with SNR−1 = 0.5.

mode of a turbulent signal. We also systematically derived multiplicative noise, which implies both mean
and covariance corrections for the Kalman update, with a significant improvement of the filtering skill for
intermittent nonlinear dynamics with sudden large amplitude excursions.

The main message of this work here is that reduced stochastic models can be viewed as dynamically
consistent way to introduce covariance inflation as well as mean correction, guiding the filtering process.
As already found in Mitchell & Gottwald (2012) in the context of ensemble filters, the improved skill of
reduced stochastic models is not due to their ability to accurately reproduce the slow dynamics of the full
system, but rather by providing additional covariance inflation. It is pertinent to mention though that skill
improvement is not observed in regimes where the stochastic reduced model fails to sufficiently approximate
the statistics of the full dynamics. For example, the stochastic reduced model (3.4) produces inferior skill
to the classical averaged system (3.3) for large vales of ǫ in the laminar regime in which resolved variables
decay much faster than the unresolved variables. Hence it is an important feature of the effective stochastic
inflation that it is dynamically consistent with the full dynamics and state-adaptable, contrary to adhoc
inflation techniques.

Finally, we should mention that although the study in this paper demonstrates the importance of a
statistical inflation in the form of additive and multiplicative noise stochastic forcings for optimal filtering,
it does not tell us how to choose the parameters associated with these noises (ǫ, γb, σb, dγ , σγ) for real
applications. This issue will be addressed in the future.
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