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A NOTE ON STATISTICAL CONSISTENCY OF NUMERICAL
INTEGRATORS FOR MULTI-SCALE DYNAMICS*

JASON FRANK! AND GEORG A. GOTTWALD?

Abstract. A minimal requirement for simulating multi-scale systems is to reproduce the sta-
tistical behavior of the slow variables. In particular, a good numerical method should accurately
appropximate the probability density function of the continuous-time slow variables. In this note we
use results from homogenization and from backward error analysis to quantify how errors of time
integrators affect the mean behavior of trajectories. We show that numerical simulations converge,
not to the exact probability density function (pdf) of the homogenized multi-scale system, but rather
to that of the homogenized modified equations following from backward error analysis. Using ho-
mogenization theory we find that the observed statistical bias is exacerbated for multi-scale systems
driven by fast chaotic dynamics that decorrelate insufficiently rapidly. This suggests that to resolve
the statistical behavior of trajectories in certain multi-scale systems solvers of sufficiently high order
are necessary. Alternatively, backward error analysis suggests the form of an amended vector field
that corrects the lowest order bias in Euler’s method. The resulting scheme, a second order Taylor
method, avoids any statistical drift bias. We corroborate our analysis with a numerical example.

Key words. multi-scale dynamics; homogenization; stochastic parametrization; backward error
analysis
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1. Introduction. When simulating complex multi-scale dynamics one is often
interested in the accurate description, not of the full system with all its degrees of
freedom, but of only some distinct relevant variables, for example the slow variables.
Numerical weather forecasting provides a good example, where we are interested in
the dynamics of the large-scale high and low pressure fields which evolve on time scales
of days rather than in fast buoyancy oscillations of the atmosphere’s stratification sur-
faces. Another example is decadal climate prediction where we are not interested in
the actual dynamics of the large-scale atmospheric weather but rather in their effect
on the slowly evolving oceanic patterns such as El-Nifio. Whereas in the example of
numerical weather prediction we desire accurate time evolution of the slow relevant
variables, in climate science we are often more interested in statistical properties such
as mean global temperature or the frequency of extreme events. Reproducing such
mean statistical behavior of the slow variables is a minimal requirement for any simu-
lation of complex multi-scale systems. It has long been recognized that the numerical
discretization scheme employed to simulate a dynamical system profoundly affects
the numerically observed statistical behavior [2, 7, 8]. This note is concerned with
the problem of numerically integrating multi-scale systems with the aim to reliably
recover their statistical properties.

We consider here deterministic multi-scale systems of the form
o1
(1) &= - ha)foly) + fla,y), 2(0)=¢

(2) v=—=9), y0)=n,
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2 J. FRANK AND G. A. GOTTWALD

with z € R%, y € R®. The parameter ¢ < 1 characterizes the degree of time scale
separation. Here the slow dynamics evolves on a characteristic time of order 1 and
the fast dynamics on a characteristic time of €2. We assume that the vector fields
fo: RS R™ A RT — L(RELR™), f: REx R — R? and g : R — R satisfy
certain regularity conditions and that the fast y-dynamics is sufficiently chaotic with
compact chaotic attractor A C R and ergodic invariant probability measure p. We
consider the case when | A fodp =0, i.e. when classical averaging would yield trivial
constant-in-time dynamics. In this situation the slow dynamics exhibits stochastic
dynamics on the slow time scale O(1) [12, 33].

Numerical simulation of the multi-scale system (1)-(2) is challenging: To cap-
ture the slow dynamics of interest, for any fixed value of the time scale separation
parameter €, we obtain convergence in the limit At — 0, but for € small, the time
step At used to propagate the slow variables must be chosen of the order of €2 to
resolve the fast dynamics and meet stability restrictions, making direct numerical
simulations computationally impractical. A minimal requirement for a numerical in-
tegrator is that it should reproduce the statistical behavior of the slow variables of
interest. Ideally we would like to employ At ~ O(1)!. However, we will see that
depending on the statistical behavior of the fast dynamics, in particular on the decay
of the correlation function of fo(y), a time step At ~ O(¢?) may not be sufficient
to recover even the statistical behavior of the slow dynamics and one will need time
steps such that K = At/e? — 0 as e — 0. (Note that for £ > 0 solutions of the
fast integrator do not converge in the limit € — 0 to the exact solution of (2).) In
other words, it is insufficient to simply resolve the fast motions as € — 0, one must
in fact accurately approximate them in this limit, even when the goal is to determine
the mean behavior of the slow variables. This inability of numerical time steppers
of order p to reproduce the statistical behavior of the slow dynamics will be linked
to the persistence of O(At?)-terms in the backward error analysis; furthermore these
error terms have a quantifiable influence on the long-time statistics as they will be
shown to correspond to drift corrections in the homogenized diffusive limit equations
of the numerical discrete time maps.

For multi-scale systems of the form (1)—(2) the statistical behavior of the slow
dynamics, in the limit of infinite time scale separation e — 0, is described by a stochas-
tic differential equation (SDE) which can be explicitly stated. The mathematical tool
to describe the long-time stochastic behavior of slow dynamics is known as homog-
enization [12, 33]. Homogenization describes the integrated effect of the fast (either
stochastic or chaotic) dynamics on the slow variables as noise. Initially developed for
stochastic multi-scale systems [20, 21, 32], homogenization has been extended recently
to deterministic multi-scale systems. In the deterministic case the theory is restricted
to the skew-product case (1)—(2) in which the slow dynamics does not couple back to
the fast dynamics. The fully coupled case poses the potential problem that the invari-
ant measure of the fast dynamics may not vary smoothly with the slow variable; in
this instance the averaged vector fields may not even be Lipshitz and uniqueness and
existence of the homogenized equation may not be guaranteed. For the deterministic
skew product case (1)—(2), it was shown rigorously that for sufficiently chaotic fast
dynamics the emergent stochastic long-time behavior of the slow dynamics is given
by stochastic differential equations driven by Brownian motion [30, 15, 18]. The as-

1 Special multi-scale methods have been devised to do this (see, e.g. [9, 10, 11, 19]).
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STATISTICAL CONSISTENCY OF NUMERICAL INTEGRATORS 3

sumed mild conditions on the chaoticity of the fast y-dynamics are satisfied by a large
class of maps and flows. For maps, the convergence to Brownian motion holds when
the correlation function is summable. For flows, it suffices that there is a Poincaré
map with these properties (irrespective of the mixing properties of the flow). These
include, but go far beyond, Axiom A diffeomorphisms and flows, Hénon-like attrac-
tors and Lorenz attractors. Precise statements about the validity can be found in
[27, 28, 29]. We remark that for weakly chaotic dynamics when the correlations are
not summable, the noise is not Brownian anymore but rather a-stable [15]°. Homog-
enization has been used as a framework for stochastic parametrizations in the context
of numerical weather forecasting and climate science [24, 25, 23, 26, 31, 6, 13] and is
at the core of the design of several efficient numerical multi-scale integrators such as
the heterogeneous multi-scale method [9, 10] and equation-free projection [11, 19].

Depending on the underlying deterministic dynamical multi-scale system, the
noise appearing in the limiting homogenized SDE can be either additive or multiplica-
tive. It is well known that the solution of an SDE is sensitive to the approximation of
the Brownian motion. This sensitivity gives rise to the different interpretations of the
noise such as Itd versus Stratonovich interpretations (see the insightful discussion in
[17]). In [15] it was shown that in the case when the slow dynamics is one-dimensional
the stochastic differential equation describing the diffusive behavior of the slow dy-
namics is to be interpreted in the Stratonovich sense. The intuitive argument for this
result is that the noisy SDE is a rough approximation of a smooth dynamical system,
hence in the limiting process of infinite time scale separation classical calculus should
prevail which necessitates the Stratonovich interpretation®. The limiting SDE for de-
terministic discrete-time maps, however, was shown to be neither of Stratonovich nor
of Ttd type. The noise is It only if the fast dynamics is J-correlated.

This immediately points to a problem when numerically simulating a continuous-
time multi-scale system: The long-term statistics of a dynamical multi-scale system,
be it continuous-time or discrete time, is described by its homogenized limiting SDE.
However, the limiting stochastic differential equation describing the long-time statis-
tical behavior of the discretized slow dynamics, that is of the numerical integrator,
might be different from that of the continuous-time system it is designed to model.
Using backward error analysis, we show that the leading-order term responsible for
the difference is the limiting second order contribution of the modified equation corre-
sponding to the numerical map. The main contribution of our work is to show that the
local errors of a time stepper generate a long-time error of the mean behavior which
is recovered by homogenization theory. These error terms are of the order O(AtP)
for a pth order integrator. This result allows us to draw an important practical con-
clusion: In order for a numerical discretization scheme to reproduce the long-time
statistical behavior of the slow dynamics it may be necessary to employ a sufficiently
high order time-stepping method. In particular, the Euler scheme can lead to mas-
sively different statistical behavior with strong bias. This is the case when, as we will
see, the fast chaotic dynamics does not decay sufficiently quickly and its statistical
behavior is far from being close to independent identically distributed (4.i.d.) random

2We use the terminology strongly and weakly chaotic here in a manner different from the usual
distinction between exponential and algebraic decay of correlations; cf.[14].

3This does not hold for higher-dimensional slow sub-spaces where the noise is neither Stratonovich
nor Ité [18] and the conditions for the Wong-Zakai theorem are not satisfied.
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4 J. FRANK AND G. A. GOTTWALD

variables. In contrast, first order schemes are sufficient to capture the long-time sta-
tistical behavior for multi-scale systems with chaotic fast dynamics exhibiting rapid
decay of correlation. As we will see, discretization-induced biases can be expressed
using homogenization theory. This allows us to explicitly subtract the bias from the
slow vector field of the deterministic equation (1), resulting in a remarkably accurate
explicit time stepper.

The paper is organized as follows. In Section 2 we introduce the diffusive limit of
the deterministic multi-scale system (1)—(2) and of its associated Euler scheme. The
diffusive limits of the original continuous-time deterministic multi-scale system and
its Fuler discretized version are shown to differ in the drift term. In Section 3 we
present the backward error analysis of Euler’s method and Heun’s method and the
homogenized limit of the lowest order modified equation for each, describing how its
respective long-time statistics differs from that of (1)—(2). Section 4 presents numerical
simulations corroborating our analytical results. We conclude with a summary and
an outlook in Section 5.

2. The diffusive limit of the multi-scale system and its Euler scheme.
Using fairly weak conditions on the chaoticity of the fast y dynamics, it was recently
proved in [30, 15, 18] that the long-term behavior of deterministic multi-scale sys-
tems (1)—(2) is stochastic and is described on times of order O(1) by the following
homogenized stochastic differential equation

(3) dX = F(X)dt + oh(X) o dW,, X(0)=E&.

For simplicity of exposition and ease of computation, we choose in the following
d =m = 1. The drift term is given by F(X) = [, f(X,y) du, Wy is unit 1-dimensional
Brownian motion with the variance given by a Green-Kubo formula with

() 37 = | clhmioar,

where C[fo(y)](t) = E[fo(y)fo(¢'y)] denotes the autocorrelation function of fy with
¢! denoting the flow of the vector field g(y) (in particular, ¢! is independent of ¢),
and the expectation

BlA) = [ Al

is taken with respect to the fast invariant measure p. As discussed in the Introduc-
tion, the noise is of Stratonovich type because the smooth dynamical system (1)—(2)
is approximated by a rough SDE (3), and hence classical calculus has to be valid
throughout the limiting procedure of homogenization. For the precise statements we
refer the interested reader to [15].

When the multi-scale system (1) is discretized with time step A¢ by a numerical

integration method, the slow dynamics is given by a map. For instance, the first order
forward Euler method gives

(5) Tp+1 = Tn + Até h(xn)fo(yn) + Atf(xnu yn)v xo =&,

where y,, &~ y(nAt) is also obtained via a map yn11 = ®(y,) that approximates ' on
time At. In this paper, we compute ®(y) using multiple time stepping, through the
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K-fold application of the same numerical integrator as used for the slow dynamics,

(6) Ynkt1 = Y + 6t 2g(ynp), k=0,...,K—1,

with initial condition y, 0 = y, and time step 6t = At/K*. We set yni+1 = Yn.x to
define the map y,41 = ®(y,). In the limit ¢ — 0 we choose the scaling At = k&2,
where £ > 0 is a small but finite constant (i.e. we solve the slow equation on the
fast time scale). This implies that the effective stepsize of the fast motion in (6) is
§te=2 = k/K and the map @ is independent of e. Consequently, the fast motion (6)
does not converge in the limit € — 0 to the exact solution of (2). Instead, the constant
K is chosen such that the fast motion is well-resolved for all e. We also assume that
the discrete dynamics (6) possesses a chaotic attractor that satisfies the conditions
needed for the existence of the SDE limit as discussed below.

For the map (5) it was rigorously proven in [15] that the long-time statistics on
times of order O(1/¢?) is governed by the following SDE

(1) dX = (Ii F(X) - %Kﬂh(X)h’(X) E[fg]) dt + Kk6h(X)odW,, X(0)=E¢,

where F(X) is the same as before for the continuous-time system, W, is again unit
1-dimensional Brownian motion and the variance is given by a Green-Kubo formula

(8) E[f3] +2Efo (@"y) foly +ZEfo ) fo(@™ y)],

n=1

where ®" denotes the n-fold application of the discrete map ®. Evaluating the time
integral in (4) as a Riemann sum, comparison with (8) shows that 62k — o2 for
% — 0. We remark that for non-zero & the diffusion coefficient 62 may differ from the
diffusion coefficient o2 of the continuous system. Rescaling time to be measured in
units of the discretization “time step” &, (7) can be rewritten as

) dX=(F<X>——K~h<X> (X)ELf3)) dt +EGh(X) 0 dWy,  X(0) =€,

where W; is unit 1-dimensional Brownian motion on the rescaled time.

Comparing the limiting SDE of the discretized map (9) and the limiting SDE for
its associated continuous-time system (3), we see that they differ by an extra drift
term in (9)

(10) E———th( W (X)E[f5].

Note that the additional drift term prohibits a Stratonovich interpretation of the noise
and hence for finite At the statistics of the map is different from the statistics of the
original continuous-time system (1)—(2), which we identify with the diffusive limit
system (3). A discrepancy of this form was noted in [15] in the case of general maps
where the time step At (or rescaled time step ) was implied. In the case where the
fast dynamics of the discrete Euler map (5) is i.i.d., i.e. 6% = E[fZ], the noise in the
limiting SDE of the discretized map (9) is of the It6 type. This can be heuristically
understood by realizing that if the time step k > Tcorr Where 7copy is the decorrela-
tion time of the fast continuous-time y-dynamics, the map is already as rough as the

4 An alternative strategy would be to use one step for the fast system with times step dt = re?

followed by one step of the slow system with time step At/K and repeat this K times [34, 3].
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discrete approximation of the noise.

Although the additional drift term (10) is formally of order O(At), depending on
the dynamical system under consideration, the extra term E can be large and distort
the statistical behavior leading to a marked difference between the numerically ob-
served statistical behavior of the slow variable X and the statistical behavior of the
slow variable z of the given continuous-time multi-scale system (1)—(2) to be mod-
elled. In Section 4 we provide such an example and show how an Euler discretization
may produce erroneous statistical information. In the next section we develop a rela-
tionship between the extra drift term (10) obtained in homogenization and backward
error analysis. In particular, we will show that the extra drift term (10) generated
by a first order numerical time-stepper is present in the backward error analysis and
would be absent if the dynamics had been integrated with a higher order scheme in-
stead (however, other terms are typically present in this case). This will show how
the first order errors of an Euler-method directly translate into errors of the mean
behavior.

3. Backward error analysis. In this section we provide a backward error anal-
ysis to explain the presence of the extra term (10) in the homogenized discrete model
(9) compared to the homogenized continuous-time model (3). We will see that the ex-
tra term arises from the use of the forward Euler scheme for constructing the discrete
model (5). Although the extra term (10) is of order O(At) and hence disappears in
the small step size limit, we stress that in the context of multi-scale problems one is
often interested in step size regimes that are insensitive to fast dynamics and O(1)
with respect to the slow dynamics.

Backward error analysis [16, 22] has been successfully employed to understand
finite time step effects observed in numerical simulations. The truncation error of a
numerical discretization of an ordinary differential equation (ODE) can be expanded
as an asymptotic series in the step size At with terms involving successively higher
derivatives of the vector field. In backward error analysis, the terms of the truncated
series are interpreted as a higher order approximation to another, perturbed vector
field.

3.1. Lowest order modified equations. We consider a generic differential
equation

(11) z=(z),

the solution of which is to be approximated using a numerical method.
To understand the qualitative behavior of the numerical solution for finite step
size At, one constructs a modified vector field as an asymptotic expansion

(12) 3 =0(2) = v(2) + Atwvy(2) + At2 vy (2) + -+ -,

where the terms vy, vg, etc. are to be determined such that the solution to (12)
matches the expansion of a numerical method applied to (11) to a higher order of ac-
curacy. The continuous-time solutions to the truncated modified differential equation
(12) approximate to higher order the numerical output than do those of the original
differential equation (11), allowing the modified equation to be used to interpret finite
time step effects observed in the numerical time series.

The solution to (12) is expanded in a Taylor series about z(t) to give

~ Atz ~/ ~ Atg ~I o~ ~ ~) ~1 ~ 4
(13)  z(t+ At) = z(t) + Atv + — U + 5 [0"(0,0) + 0'0'0] + O(AL?),

This manuscript is for review purposes only.
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where all terms on the right are evaluated at z(t), and where ¢’ denotes the Jacobian
matrix of ¢, 9" denotes its (symmetric) three-tensor of second partial derivatives,
and 9”(-,-) denotes the contraction of this tensor with the two vector arguments.
Substituting the expansion (12) into the above and gathering terms of like order
yields

(14)  z(t+ At) = 2(t) + Atv + At? {vl + %v’v} +

1 1
At3 {vz + 5(1/1)1 +vjv) + E(U”(U’ v) +0'0') | + O(AY).
Next, one determines the functions vy, vs, etc. to match the expansion of a numerical
integrator to higher order.

Euler’s method is given by z,4+1 = 2, + At v(2,). This formula is consistent with
(14) up to terms of O(At?), and is consequently a first order approximation to (11).

However by choosing
1

/
v = —=0v

2

in (12), one finds that Euler’s method agrees with (14) up to terms of O(At?). Con-
sequently, while Euler’s method is a first order approximation of (11), it is a second
order approximation to the modified differential equation

(15) Z=v— ﬁv/v.

2
This process may be repeated to derive higher order corrections (ve, vs, etc.) in the
modified equation. The asymptotic expansion generally does not converge for fixed
At, but may be optimally truncated [16]. Although for general systems there is no
guarantee that the lowest order corrections will have the most significant impact on
the observed statistics, in our numerical experiments this does appear to be the case.
Next consider the second order Runge-Kutta method (i.e. Heun’s method)

(16) Zn4+1 = Zn + % [v(zn) + v(zn + Atv(zy))] -

Expanding the right-hand side about z,, gives

2
Znil = Zn + % 20(z,) + AtV (z0)v(2n) + ATtv”(v,v)(zn) +0(A)] .

By choosing
1
Lo Lo
Th (v,v) R
in (12) we make this formula agree with (14) up to terms of O(At*) so the modified

equation associated with the second order Runge-Kutta method (16) is (up to terms
of O(At?))

vy =0, vg =

2 Atz " /i
(17) z=v(z)+ﬁ(v (v,v) — 20"0'v),
and the second order Runge-Kutta method (16) applied to the ODE (11) is a third
order approximation to (17).
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8 J. FRANK AND G. A. GOTTWALD

Note that the modified equation (15) suggests a correction to Euler’s method to
eliminate the second order term in (14). Specifically, one can apply Euler’s method
to the differential equation with corrected vector field

Z2=v(z) + —v'(2)v(2).

Doing so yields the second order Taylor method

At?
(18) Znt1 = 2n + Atv(z,) + — Y (zn)v(2n),

which can be efficiently implemented using a finite difference approximation in the
last term:

V(n)olen) & 7 (on + 7o) = o), 7= Ve,

with machine precision €,,. Matching (18) with (14) shows the Taylor method has
modified equation expansion (up to terms of O(At?))
At?

a (’U”(’U, ’U) + ’U/’U/U),

(19) Z2=wv(z)— 5

and is hence is a second order scheme for the original ODE (11). This will turn out
to be advantageous for problems of the form considered here.

3.2. Homogenization of modified equations. In the limit ¢ — 0, the time
step scales as At = k€2, where k > 0 is fixed and small. As we will take this limit to
homogenize the modified equation, we use k = At/e? as our expansion parameter for
the backward error analysis.

The modified vector fields v1, va, etc. each in turn can be expressed as expansions
in e. Upon homogenization, the lowest order term of O(1/¢) contributes to the diffu-
sion and the O(1) term contributes to the drift. Terms of higher order in ¢ vanish in
the homogenization limit € — 0.

Substituting the vector fields of the deterministic multi-scale system (1)—(2) into
the modified equation for a first order Euler discretization (15) with z = (z,y) we
obtain

(20) & =2 h(x) foly) + (2 )
(2 011500 300+ WO (@3 0) + 0, )i0) + O0)) + O

(1) G=Sal), 5= 90)+ 5o Wa(y) + O(/K)?)

In the remainder of the Section we substitute the vector field g(y) for the vector
field g(y) of the fast modified equation, and similarly substitute ¢’ for @f, the flow
of g, which is again independent of ¢ since x and K are fixed. This is admissible
if the numerical scheme for the fast dynamics is sufficiently accurate to resolve its
statistical behaviour and in particular, the autocorrelation function; given the relation
§t = At/K and the scaling At = k&2, it is clear that x/K should be chosen small
enough to accurately approximate autocorrelation functions of the unscaled chaotic
system with vector field g(y), to allow for the substitution of ¢? for @t.

We now show that the associated stochastic limit system of the continuous-time
modified equation of the Euler method (15) is the same as that of the discrete Euler

This manuscript is for review purposes only.
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discretization (5). The homogenized dynamics, approximating the dynamics of (20)
on time scales of order O(1), is given up to O(k) by

(22) dX = F(X)dt +oh(X)odW,, X(0)=¢.

where F(X) is the expectation with respect to y ~ u of the terms of O(1) in € in (20).
Noting that g(y) = 27, we observe that the terms f}(y)g(y) and 9, f(x,y)g(y) in the
slow modified equation (20) can be written as a total derivative (taking x constant
up to terms of O(e) on the homogenization time scale). Consequently, these terms
vanish in expectation as in, for example,

d

(23) E [0, /(X,9)9(y)] = E | 2 (X, 5(8)] xgea| = O

and we are left with the drift term

(24) — E[f(X.y)] + E.

The diffusion coefficient is given by

(25)

N | =

7= [ Elh) ol d
#5000 [ (B0 (G| + B o) G ) ar.

Using ergodicity of the fast dynamics the spatial average in the second integral can
be expressed as a time-average; partial integration then can be used to show that the
second integral sums to zero. The Green-Kubo formula (8) in the limit of ¢ — 0 is
recovered provided we substitute ¢! for ¢! in (25), which we argued above is admissible
provided k/K <« 1. Hence in the limit € — 0 we recover the homogenized equation (9)
for the forward Euler map (5), and the long term statistics of the Euler discretization
captures well the statistics of its associated continuous-time modified equation.

For a second order method, such as the Runge-Kutta method (16) or second order
Taylor method (18), the additional drift term E is absent from the modified equation.
Nevertheless there are terms of O(x?) that could potentially influence the homogenized
limit. When the Runge-Kutta method (16) is applied to the deterministic multi-scale
system (1)—(2), the lowest order modified equation (17) yields, for the slow variable:

(26) & =2 (&) foly) + F(.9)
+ 5 (210 (B 20 — 205015 0)9(0)]
+ [Oyy f (2, 9)9% (y) = 20, f (2, 9)g' (¥)g(y)] + 0(6)) +0(r%).

The homogenized drift term becomes

2

FOX) =E |£(X)+ 5

(B F (X9 (y) — 20, (X, y)g'(y)g(y))} L o),

This manuscript is for review purposes only.



386

387
388
389

390

391
392

393

394

395

396

413
414
115
116
417

10 J. FRANK AND G. A. GOTTWALD

which implies an O(k?) bias in the drift of the slow variables in the limit € — 0. The
homogenized diffusion parameter becomes

2

~0? = h(X) /OOOC [fo(y) + % (fo W)g*(y) — 2f6(y)g’(y)g(y))] (t) dt + O(x?).

Here, too, an O(x?) bias occurs as € — 0.

Finally, when the Taylor method (18) is applied to the deterministic multi-scale
system (1)—(2), the lowest order modified equation (19) yields, for the slow variable:

(27) &= lh( ) fol( ”“_2 1 i drift 3
X E x Oy)+f($,y)+ 6 &_Ul (x,y)+vl (x,y)+(’)(5) —I—O(H ),

where
v (2,y) = h(@) £ (1)9* () + h(@) £ () g (W)9(y),

and

ol (2, y) = 3h(2) h(@) £5 () fo()g(y) + By f (2, 1) g% (y) + By (2, )d" ()9 (y).

Noting that g(y) = €2y, we observe that all terms in the drift perturbation can be
written as total derivatives with z fixed and vanish in expectation (cf. (23)):

drift _ h/ h d f02 (y) d 8 .
Epi™ (X, y)] = E |3h/(X) (X)a — )t F Oy f(X,9)9(Y)) xfixea | = O-
Consequently, the Taylor method has no bias in drift to O(At3), and we expect the
drift to be simply given by

(28) FX) =E[f(X,y)].

The diffusion term is also a total derivative:

o, y) = Th(X) S (ot

and the diffusion parameter o is of the form

Lo2 _hx) /OOO (C[fo](t) - %2c [%fo} (t)) dt + O(™).

The term does not vanish; this is a correlation function, not just an expectation.

In summary, we note that the additional drift term E of order O(k) in (24)
is absent in the modified equation of a numerical method which is at least second
order, such as the Runge-Kutta method (16) or the second order Taylor method
(18). For a second order time-stepping method the homogenized modified equation
therefore agrees with the homogenized equation of the full multi-scale system (3)
up to O(k?). However, a second order scheme will generally also have additional
corrections to the drift and diffusion which might be of the same magnitude for finite x
as those corresponding to the continuous-time multi-scale system under consideration.
Remarkably, the second order Taylor method (18) does not have bias of O(k?) in the
drift. This can be traced to the fact that the scheme exactly agrees with the second
order Taylor expansion of the error, and consequently its higher order terms are exact
differentials.

This manuscript is for review purposes only.
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4. Numerical demonstration. We now demonstrate that the additional terms
in the backward error analysis may lead to significant bias in the probability density
estimation for both the first order forward Euler scheme and, to a lesser degree, the
second order Heun’s method. In particular we show that the numerical methods
converge for ¢ — 0 with At = ke? to the homogenized limits of their respective
modified equations, which are different from the long-time statistical limit of the
original deterministic multi-scale system.

We consider the deterministic multi-scale system (1)—(2) with

fO(y) = ay, h(iE) = \/Ea f(xvy) = b(C - ‘r)yzv
so the slow dynamics is described by the continuous-time system
1
(29) i = ga\/Ey +ble —z)y?.

We choose here a = 0.1, b = 0.005 and ¢ = 0.75. The slow dynamics is driven by
y = (2 + (3 generated by a fast chaotic Rossler system

(30) 26 =G -G,
(31) 26 =G + 1,
(32) 203 = s+ (C1 —u)Gs,

with r = s = 0.25 and u = 7. We will compare the results of a numerical integration
of this deterministic multi-scale system using first and second order discretization
methods to results from the associated limiting homogenized SDE of this system,
describing the long-time statistical behavior.

The diffusive limiting equation of the multi-scale dynamical system (29)—(32) can be
obtained via the homogenization techniques presented in Section 2 and is given by
the Cox-Ingersoll-Ross (CIR) model [4, 5]

(33) dX = caV'X dW; + 2ab(8 — X) dt,
where W; is unit 1-dimensional Brownian motion. The parameters are:
1
(34 o= 3Bl
(35) 7 =2 [ Byl at
0

c%a®
36 = .
(36) B=ct o7

To approximate «, an ensemble simulation of the (unscaled) Rossler system was car-
ried out using a 1000-member ensemble on a time interval ¢ € [0, 3.2 x 10%] with initial
conditions drawn approximately from p (see below). We obtain o = 28.4 +0.1. To
estimate 02 we solve w, 11 = w, + & Aty, where At = ke? and xk = 0.5. Then for

a time series of length N = |1/&%], wy ~ % Zj\;l y; is approximate Brownian
motion with variance V[wy] = 02 NAt. In this way the diffusivity is estimated as

0% ~ 0.140 + 0.002.
The Cox-Ingersoll-Ross (CIR) model (33) has the closed form solution

X(t) _ o’a® _ e—2o¢bt)

(37) ~H(), et = (1

3

This manuscript is for review purposes only.
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12 J. FRANK AND G. A. GOTTWALD

where H (t) is a noncentral y-squared distribution with 8a3b/(a?c?) degrees of free-
dom and noncentrality parameter c(t)~te= 22 X (0).

To numerically integrate the two-scale system (29)—(32) we use a multiple time-
stepping approach [22], with a step size At = ke? for (29) and step size 0t = At/K
for the fast subsystem (30)—(32). For our illustration we choose successively € €
{0.05,0.025,0.0125,0.00625} and integrate over the interval ¢ € [0, 2.5] using x = 0.5
and K = 50. For this scaling of time step the fast dynamics (30)—(32) is well resolved
but is not solved with increasing accuracy in the limit € — 0. The probability density
function (pdf) of x(t) is estimated using an ensemble with 160000 members. Each
member starts from 2(0) = 1 but observes a distinct time series y(t). Each member
initial condition y(0) is drawn from the invariant measure p by letting a randomly
drawn initial condition relax onto the attractor over a transient time of length 25.
We initially compare two different numerical discretizations of the multi-scale system
(29)—(32). Applied to the generic differential equation

these methods are: the forward Euler method
(38) Tn4+1 = Tn + At’U(In, yn)7

and the second order Runge-Kutta method (Heun’s method)

At
(39) Tpy1 = Ty + 5 [V(@n, Yn) + 0 (Tn + At0(Tn, Yn), Ynt1)] -
In the above equations y,, denotes the approximation to y(t, ) obtained from nK steps
of size dt.
When the slow dynamics (29) is discretized using a forward Euler method (38) with
time step At we obtain the map

1
(40) Tpal = Tp + Atg a/Tnyn + Atb(c — x,)y2.

We compare the following probability density functions at time ¢ = 2.5:
e [MS1] The empirical pdf of the multi-scale system (29)—(32) computed using
the forward Euler scheme (38).
e [MS2] The empirical pdf of the multi-scale system (29)—(32) computed using
the second order Runge-Kutta scheme (39).
e [HMC] The exact pdf (37) of the limiting homogenized stochastic CIR model
(33) with parameters a given by (34) and ¢ and § given by (35)—(36) associ-
ated with the continuous-time model (29)—(32).
Empirical pdfs of the slow variable  are computed using Matlab’s histogram counter
with bin size Az = 0.005.

The rigorous homogenization results presented in Section 2 assert that the long-
time statistics of the full deterministic multi-scale system is described by the pdf
[HMC]. Figure 1 shows convergence of the empirical pdfs of the numerically ap-
proximated multi-scale system, obtained with the forward Euler ([MS1], left frame)
and Runge-Kutta ([MS2], right frame) methods for decreasing e (dashed lines, with
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€ = 0.05 in blue, ¢ = 0.025 in red, € = 0.0125 in yellow, and ¢ = 0.00625 in pur-
ple). The exact pdf [HMC] is also indicated in each frame (solid black line). Both
numerically computed pdfs appear to converge, in the limit € — 0, At = k<2, to a
density with the wrong mean. The pdf [MS2] of the RK method is significantly closer
to [HMC] than is [MS1], but bias is nevertheless clearly present.
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Fic. 1. Comparison of the pdfs of the numerically approzimated multi-scale system (29)-(32)
with the exact density of the CIR model (37) at time t = 2.5 for the forward Euler scheme (38) (left)
and the second order Runge-Kutta scheme (39) (right). In each plot the solid black line indicates
the exact pdf associated with the homogenized CIR model (33) for the actual time-continuous multi-
scale system (29)—(32) (i.e. with parameters (34)-(36)). The dashed lines indicate the empirical
probability density function for the numerical simulations of the continuous-time multi-scale system
(29)—(32) for e =0.05 (blue), 0.025 (red), 0.0125 (yellow), and 0.00625 (purple).

For the first order forward Euler discretization (40) the homogenized SDE (22)
describing the long-time behavior of the slow motion is also given by the CIR model
(33), but now with parameters

(a1) o= 3 Bl

(42) 6° =E[y’] +2) E[(®"y)yl = lim n'E[(D_ 7 y)%),
n—=1 =0

(43) BZC+&2Ata2_Ata2

S8ab 4b

and 62At =~ o2. Note that the only difference in the homogenized CIR systems
associated with the continuous-time multi-scale system (1)—(2) and the discrete Euler
map (40) is in the parameter 3 (cf. (36) and (43)). For a?/b>> 1 and 0?2 /4a < 1 this
difference is large and may cause significant discrepancy between the statistics of the
continuous-time multi-scale system (29)—(32) and its first order Euler discretization
(40). The latter condition, 02/4a = [ E[(¢'y)y] dt/E[y?*] < 1 puts a requirement
on the decay of the fast dynamics and states that the fast dynamics should be far
from 4.i.d. with 02 = 2E[y?]. This requirement is satisfied for the Rossler system
(30)—(32) with the parameters r = s = 0.25 and u = 7. For these parameters the
autocorrelation function has a slow decay and E[y?] > ¢2/2. For comparison, we
introduce an additional pdf:
e [HMD] The exact pdf (37) of the limiting homogenized stochastic CIR model
(33) with parameters a given by (34) and o and 8 given by (42)—(43) associ-
ated with the discrete Euler model (40).
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3

The backward error analysis presented in Section 3 predicts that the empirical pdf
[MS1] of the Euler method may be better approximated by the pdf [HMD], derived
by homogenizing the modified equation of the Euler method. Figure 2 confirms this
prediction, showing that as € — 0, the statistical behavior of the discrete Euler scheme
is well described by the pdf of its associated homogenized stochastic CIR model. The
extra drift term E in the homogenized discrete model leads to an error of 16% in the
mean of the pdf [HMD] with respect to the mean of the pdf of the original continuous
time multi-scale system (29)—(32) to be modelled [HMC].

We remark that for fast chaotic dynamics with rapidly decaying autocorrelation
function such as the Lorenz 63 system with the classical parameters, we have E[y?] ~
02/2. The homogenized equation of the full multi-scale dynamics and its first order
Euler discretization will be close (cf. (36) and (43)), and a first order discretization
would be sufficient to capture the long-time statistics of the slow dynamics.

NN N
N O U R WD =R O ©
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or Ov Ov Qv Ot Ot Ot Ot Ot Ot Ot Ot Ot

12

— Buler homog. BEA

— — Buler e = 0.05

— — Euler e = 0.025
Euler ¢ = 0.0125

— — Euler £ = 0.00625

pdf
(2]

Fic. 2. Comparison of the pdfs of the numerically approzimated multi-scale system (29)-(32)
with the exact density of the homogenized modified equation model at time t = 2.5 for the forward
Euler scheme (38). The solid black line indicates the exact pdf associated with the homogenized
modified equation (33) of the Euler scheme (i.e. with parameters (41)-(43)). The dashed lines
indicate the empirical probability density function computed with the forward Euler approximation
(40) applied to the continuous-time multi-scale system (29)—(32) for ¢ = 0.05 (blue), 0.025 (red),
0.0125 (yellow), and 0.00625 (purple).

540 Finally, the backward error analysis of the second order Taylor method (18) in-
541 dicates there is no error in the drift (28) to O(k?) for this method. Indeed, Figure 3
542 confirms this result, illustrating that the empirical pdf of the Taylor method closely
543  matches that of the pdf [HMC] as € — 0. In fact both the mean and the variance of
544 the distribution closely match that of the pdf [HMC], suggesting that errors in the
545 diffusion parameter are also small for this parameter regime. The excellent approxi-
546 mation of the drift makes the Taylor method an attractive alternative for multi-scale

547 problems with stochastic limit behavior.

548 5. Summary. To summarize, using backward error analysis we have demon-
549 strated that the extraneous drift term (10) that arises in homogenization of the dis-
550 crete map (5) compared to homogenization of the flow (1)—(2) can be traced to the
551 relation between the map (5) and a forward Euler discretization of (1)—(2) with large
552  step size At = 1. In particular, we relate this drift term which appears in the litera-
553  ture of homogenization for discrete time systems [15] and which neither corresponds
554 to an Itd nor to a Stratonovich interpretation of the SDE to discretization errors of
555

first order schemes using backward error analysis. We have shown that the local first
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—CR
— — Taylor £ = 0.05

Fic. 3. Comparison of the pdfs of the numerically approzimated multi-scale system (29)-(32)
with the exact density of the CIR model (37) at time t = 2.5 for the second order Taylor method
(18). The solid black line indicates the exact pdf associated with the homogenized CIR model (33)
for the actual time-continuous multi-scale system (29)—(32) (i.e. with parameters (34)-(36)). The
dashed lines indicate the empirical probability density function computed with the second order Taylor
method (18) applied to the continuous-time multi-scale system (29)—(32) for e = 0.05 (blue), 0.025
(red), 0.0125 (yellow), and 0.00625 (purple).

order errors contribute to a well-defined drift error, leading to potentially strong bias,
in the long-time statistical behavior. The accumulated local error, as quantified by
the backward error analysis, was shown to account for the long-time statistical error
of the discretization scheme as provided by homogenization theory.

We further quantified the requirement for a dynamical system such that its Euler
scheme discretization reliably recovers its long-time statistical behavior. In particular,
we found that for sufficiently rapidly decaying fast dynamics an Euler scheme is suffi-
cient. On the contrary, the failure of first order discretization methods to capture the
statistics of the full continuous-time multi-scale system was shown to be exacerbated if
the fast dynamics exhibits slow decay of correlations. We remark that the slow decay
of correlation is not hampering the validity of the homogenized limit system and the
validity of the underlying functional central limit theorem which is assured solely by
requiring € < 1. The difference is entirely given by the failure to match the limiting
homogenized SDE of the first order discretization with the limiting homogenized SDE
associated with the original time-continuous multi-scale system.

Here we discussed deterministic skew product systems of the form (1)—(2). In
order to obtain a stochastic homogenized equation for the slow dynamics, the fast dy-
namics is required to support an ergodic invariant measure and generate an integrable
autocorrelation function of fy (cf. the Green-Kubo formula (4)). Hence the conclu-
sions drawn here for the deterministic setting remain valid in the case when the fast
dynamics is stochastic. For a large class of stochastic ordinary differential equations
stochastic integrators were constructed which accurately approximate the invariant
measure [1]. Their construction also uses the framework of modified equations and the
analysis is not restricted to the multi-scale setting. It would be interesting to compare
the higher order methods developed there in the multi-scale setting considered here.
This is a topic for further research.

In this article, we have examined the limit ¢ — 0, At ~ O(g?) in multi-scale
systems (1)—(2) which approach a rigorous SDE limit under homogenization. In this

is manuscript is for review purposes only.
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limit, with constant k = At/e? > 0, the fast motion of the system remains resolved,
but does not converge as At — 0. The limit is achieved by choosing K to be sufficiently
large and /K to be sufficiently small. Our numerical experiments demonstrate sig-
nificant bias in the pdf of the slow variables in the limit At — 0 under this scaling.
This bias may be mitigated by reducing the ratio x = At/c? in the numerical ex-
periments as the bias is multiplied by « (cf. 10). However, full convergence requires
k=At/e? = 0ase — 0.

We assumed throughout that the fast dynamics is numerically sufficiently resolved
such that the statistical properties, e.g. the auto-correlation structure, is sufficiently
reproduced. If this were not the case, errors arising from the flow map associated with
the fast modified equation enter the Green-Kubo formulae (see, for example, (25) for
the Euler method) implying errors in the diffusion coefficient in addition to the bias
error.

We remark that special numerical methods are often specifically tailored to multi-
scale problems to accommodate time steps that are large with respect to the fast time
scale. It is precisely in this regime that statistical bias may occur. The implication
of this for numerical integration of multi-scale systems is that, to avoid statistical
bias, it may be important to use a higher order method for the slow variables. The
second order Taylor method (18) offers an interesting alternative here, as it may be
efficiently implemented and is unbiased with respect to the drift up to O(At3). To
avoid statistical bias altogether, one might want to solve the actual limiting SDE
instead of the deterministic multi-scale system provided that e is sufficiently small to
allow for the central limit theorem to hold.
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