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Abstract. A minimal requirement for simulating multi-scale systems is to reproduce the sta-4
tistical behavior of the slow variables. In particular, a good numerical method should accurately5
appropximate the probability density function of the continuous-time slow variables. In this note we6
use results from homogenization and from backward error analysis to quantify how errors of time7
integrators affect the mean behavior of trajectories. We show that numerical simulations converge,8
not to the exact probability density function (pdf) of the homogenized multi-scale system, but rather9
to that of the homogenized modified equations following from backward error analysis. Using ho-10
mogenization theory we find that the observed statistical bias is exacerbated for multi-scale systems11
driven by fast chaotic dynamics that decorrelate insufficiently rapidly. This suggests that to resolve12
the statistical behavior of trajectories in certain multi-scale systems solvers of sufficiently high order13
are necessary. Alternatively, backward error analysis suggests the form of an amended vector field14
that corrects the lowest order bias in Euler’s method. The resulting scheme, a second order Taylor15
method, avoids any statistical drift bias. We corroborate our analysis with a numerical example.16
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1. Introduction. When simulating complex multi-scale dynamics one is often20

interested in the accurate description, not of the full system with all its degrees of21

freedom, but of only some distinct relevant variables, for example the slow variables.22

Numerical weather forecasting provides a good example, where we are interested in23

the dynamics of the large-scale high and low pressure fields which evolve on time scales24

of days rather than in fast buoyancy oscillations of the atmosphere’s stratification sur-25

faces. Another example is decadal climate prediction where we are not interested in26

the actual dynamics of the large-scale atmospheric weather but rather in their effect27

on the slowly evolving oceanic patterns such as El-Niño. Whereas in the example of28

numerical weather prediction we desire accurate time evolution of the slow relevant29

variables, in climate science we are often more interested in statistical properties such30

as mean global temperature or the frequency of extreme events. Reproducing such31

mean statistical behavior of the slow variables is a minimal requirement for any simu-32

lation of complex multi-scale systems. It has long been recognized that the numerical33

discretization scheme employed to simulate a dynamical system profoundly affects34

the numerically observed statistical behavior [2, 7, 8]. This note is concerned with35

the problem of numerically integrating multi-scale systems with the aim to reliably36

recover their statistical properties.37

38

We consider here deterministic multi-scale systems of the form39

ẋ =
1

ε
h(x)f0(y) + f(x, y), x(0) = ξ(1)40

ẏ =
1

ε2
g(y), y(0) = η,(2)41
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with x ∈ R
d, y ∈ R

ℓ. The parameter ε ≪ 1 characterizes the degree of time scale42

separation. Here the slow dynamics evolves on a characteristic time of order 1 and43

the fast dynamics on a characteristic time of ε2. We assume that the vector fields44

f0 : Rℓ → R
m, h : Rd → L(Rd,Rm), f : Rd × R

ℓ → R
d and g : Rℓ → R

ℓ satisfy45

certain regularity conditions and that the fast y-dynamics is sufficiently chaotic with46

compact chaotic attractor Λ ⊂ R
ℓ and ergodic invariant probability measure µ. We47

consider the case when
∫

Λ
f0 dµ = 0, i.e. when classical averaging would yield trivial48

constant-in-time dynamics. In this situation the slow dynamics exhibits stochastic49

dynamics on the slow time scale O(1) [12, 33].50

51

Numerical simulation of the multi-scale system (1)–(2) is challenging: To cap-52

ture the slow dynamics of interest, for any fixed value of the time scale separation53

parameter ε, we obtain convergence in the limit ∆t → 0, but for ε small, the time54

step ∆t used to propagate the slow variables must be chosen of the order of ε2 to55

resolve the fast dynamics and meet stability restrictions, making direct numerical56

simulations computationally impractical. A minimal requirement for a numerical in-57

tegrator is that it should reproduce the statistical behavior of the slow variables of58

interest. Ideally we would like to employ ∆t ∼ O(1)1. However, we will see that59

depending on the statistical behavior of the fast dynamics, in particular on the decay60

of the correlation function of f0(y), a time step ∆t ∼ O(ε2) may not be sufficient61

to recover even the statistical behavior of the slow dynamics and one will need time62

steps such that κ = ∆t/ε2 → 0 as ε → 0. (Note that for κ > 0 solutions of the63

fast integrator do not converge in the limit ε → 0 to the exact solution of (2).) In64

other words, it is insufficient to simply resolve the fast motions as ε → 0, one must65

in fact accurately approximate them in this limit, even when the goal is to determine66

the mean behavior of the slow variables. This inability of numerical time steppers67

of order p to reproduce the statistical behavior of the slow dynamics will be linked68

to the persistence of O(∆tp)-terms in the backward error analysis; furthermore these69

error terms have a quantifiable influence on the long-time statistics as they will be70

shown to correspond to drift corrections in the homogenized diffusive limit equations71

of the numerical discrete time maps.72

73

For multi-scale systems of the form (1)–(2) the statistical behavior of the slow74

dynamics, in the limit of infinite time scale separation ε → 0, is described by a stochas-75

tic differential equation (SDE) which can be explicitly stated. The mathematical tool76

to describe the long-time stochastic behavior of slow dynamics is known as homog-77

enization [12, 33]. Homogenization describes the integrated effect of the fast (either78

stochastic or chaotic) dynamics on the slow variables as noise. Initially developed for79

stochastic multi-scale systems [20, 21, 32], homogenization has been extended recently80

to deterministic multi-scale systems. In the deterministic case the theory is restricted81

to the skew-product case (1)–(2) in which the slow dynamics does not couple back to82

the fast dynamics. The fully coupled case poses the potential problem that the invari-83

ant measure of the fast dynamics may not vary smoothly with the slow variable; in84

this instance the averaged vector fields may not even be Lipshitz and uniqueness and85

existence of the homogenized equation may not be guaranteed. For the deterministic86

skew product case (1)–(2), it was shown rigorously that for sufficiently chaotic fast87

dynamics the emergent stochastic long-time behavior of the slow dynamics is given88

by stochastic differential equations driven by Brownian motion [30, 15, 18]. The as-89

1 Special multi-scale methods have been devised to do this (see, e.g. [9, 10, 11, 19]).
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sumed mild conditions on the chaoticity of the fast y-dynamics are satisfied by a large90

class of maps and flows. For maps, the convergence to Brownian motion holds when91

the correlation function is summable. For flows, it suffices that there is a Poincaré92

map with these properties (irrespective of the mixing properties of the flow). These93

include, but go far beyond, Axiom A diffeomorphisms and flows, Hénon-like attrac-94

tors and Lorenz attractors. Precise statements about the validity can be found in95

[27, 28, 29]. We remark that for weakly chaotic dynamics when the correlations are96

not summable, the noise is not Brownian anymore but rather α-stable [15]2. Homog-97

enization has been used as a framework for stochastic parametrizations in the context98

of numerical weather forecasting and climate science [24, 25, 23, 26, 31, 6, 13] and is99

at the core of the design of several efficient numerical multi-scale integrators such as100

the heterogeneous multi-scale method [9, 10] and equation-free projection [11, 19].101

102

Depending on the underlying deterministic dynamical multi-scale system, the103

noise appearing in the limiting homogenized SDE can be either additive or multiplica-104

tive. It is well known that the solution of an SDE is sensitive to the approximation of105

the Brownian motion. This sensitivity gives rise to the different interpretations of the106

noise such as Itô versus Stratonovich interpretations (see the insightful discussion in107

[17]). In [15] it was shown that in the case when the slow dynamics is one-dimensional108

the stochastic differential equation describing the diffusive behavior of the slow dy-109

namics is to be interpreted in the Stratonovich sense. The intuitive argument for this110

result is that the noisy SDE is a rough approximation of a smooth dynamical system,111

hence in the limiting process of infinite time scale separation classical calculus should112

prevail which necessitates the Stratonovich interpretation3. The limiting SDE for de-113

terministic discrete-time maps, however, was shown to be neither of Stratonovich nor114

of Itô type. The noise is Itô only if the fast dynamics is δ-correlated.115

116

This immediately points to a problem when numerically simulating a continuous-117

time multi-scale system: The long-term statistics of a dynamical multi-scale system,118

be it continuous-time or discrete time, is described by its homogenized limiting SDE.119

However, the limiting stochastic differential equation describing the long-time statis-120

tical behavior of the discretized slow dynamics, that is of the numerical integrator,121

might be different from that of the continuous-time system it is designed to model.122

Using backward error analysis, we show that the leading-order term responsible for123

the difference is the limiting second order contribution of the modified equation corre-124

sponding to the numerical map. The main contribution of our work is to show that the125

local errors of a time stepper generate a long-time error of the mean behavior which126

is recovered by homogenization theory. These error terms are of the order O(∆tp)127

for a pth order integrator. This result allows us to draw an important practical con-128

clusion: In order for a numerical discretization scheme to reproduce the long-time129

statistical behavior of the slow dynamics it may be necessary to employ a sufficiently130

high order time-stepping method. In particular, the Euler scheme can lead to mas-131

sively different statistical behavior with strong bias. This is the case when, as we will132

see, the fast chaotic dynamics does not decay sufficiently quickly and its statistical133

behavior is far from being close to independent identically distributed (i.i.d.) random134

2We use the terminology strongly and weakly chaotic here in a manner different from the usual
distinction between exponential and algebraic decay of correlations; cf.[14].

3This does not hold for higher-dimensional slow sub-spaces where the noise is neither Stratonovich
nor Itô [18] and the conditions for the Wong-Zakai theorem are not satisfied.
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variables. In contrast, first order schemes are sufficient to capture the long-time sta-135

tistical behavior for multi-scale systems with chaotic fast dynamics exhibiting rapid136

decay of correlation. As we will see, discretization-induced biases can be expressed137

using homogenization theory. This allows us to explicitly subtract the bias from the138

slow vector field of the deterministic equation (1), resulting in a remarkably accurate139

explicit time stepper.140

141

The paper is organized as follows. In Section 2 we introduce the diffusive limit of142

the deterministic multi-scale system (1)–(2) and of its associated Euler scheme. The143

diffusive limits of the original continuous-time deterministic multi-scale system and144

its Euler discretized version are shown to differ in the drift term. In Section 3 we145

present the backward error analysis of Euler’s method and Heun’s method and the146

homogenized limit of the lowest order modified equation for each, describing how its147

respective long-time statistics differs from that of (1)–(2). Section 4 presents numerical148

simulations corroborating our analytical results. We conclude with a summary and149

an outlook in Section 5.150

2. The diffusive limit of the multi-scale system and its Euler scheme.151

Using fairly weak conditions on the chaoticity of the fast y dynamics, it was recently152

proved in [30, 15, 18] that the long-term behavior of deterministic multi-scale sys-153

tems (1)–(2) is stochastic and is described on times of order O(1) by the following154

homogenized stochastic differential equation155

dX = F (X) dt+ σh(X) ◦ dWt, X(0) = ξ.(3)156157

For simplicity of exposition and ease of computation, we choose in the following158

d = m = 1. The drift term is given by F (X) =
∫

Λ
f(X, y) dµ, Wt is unit 1-dimensional159

Brownian motion with the variance given by a Green-Kubo formula with160

1

2
σ2 =

∫ ∞

0

C[f0(y)](t) dt ,(4)161
162

where C[f0(y)](t) = E[f0(y)f0(ϕ
ty)] denotes the autocorrelation function of f0 with163

ϕt denoting the flow of the vector field g(y) (in particular, ϕt is independent of ε),164

and the expectation165

E[A] =

∫

Λ

A(y)dµ166

is taken with respect to the fast invariant measure µ. As discussed in the Introduc-167

tion, the noise is of Stratonovich type because the smooth dynamical system (1)–(2)168

is approximated by a rough SDE (3), and hence classical calculus has to be valid169

throughout the limiting procedure of homogenization. For the precise statements we170

refer the interested reader to [15].171

172

When the multi-scale system (1) is discretized with time step ∆t by a numerical173

integration method, the slow dynamics is given by a map. For instance, the first order174

forward Euler method gives175

xn+1 = xn +∆t
1

ε
h(xn)f0(yn) + ∆t f(xn, yn), x0 = ξ,(5)176

177

where yn ≈ y(n∆t) is also obtained via a map yn+1 = Φ(yn) that approximates ϕt on178

time ∆t. In this paper, we compute Φ(y) using multiple time stepping, through the179
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K-fold application of the same numerical integrator as used for the slow dynamics,180

(6) yn,k+1 = yn,k + δt ε−2g(yn,k), k = 0, . . . ,K − 1,181

with initial condition yn,0 = yn and time step δt = ∆t/K4. We set yn+1 = yn,K to182

define the map yn+1 = Φ(yn). In the limit ε → 0 we choose the scaling ∆t = κ ε2,183

where κ > 0 is a small but finite constant (i.e. we solve the slow equation on the184

fast time scale). This implies that the effective stepsize of the fast motion in (6) is185

δt ε−2 = κ/K and the map Φ is independent of ε. Consequently, the fast motion (6)186

does not converge in the limit ε → 0 to the exact solution of (2). Instead, the constant187

K is chosen such that the fast motion is well-resolved for all ε. We also assume that188

the discrete dynamics (6) possesses a chaotic attractor that satisfies the conditions189

needed for the existence of the SDE limit as discussed below.190

For the map (5) it was rigorously proven in [15] that the long-time statistics on191

times of order O(1/ε2) is governed by the following SDE192

dX =
(

κF (X)− 1

2
κ2h(X)h′(X)E[f2

0 ]
)

dt+ κ σ̂h(X) ◦ dWt , X(0) = ξ,(7)193
194

where F (X) is the same as before for the continuous-time system, Wt is again unit195

1-dimensional Brownian motion and the variance is given by a Green-Kubo formula196

σ̂2 = E[f2
0 ] +

∞
∑

n=1

E[f0(Φ
n y)f0(y)] +

∞
∑

n=1

E[f0(y)f0(Φ
n y)],(8)197

198

where Φn denotes the n-fold application of the discrete map Φ. Evaluating the time199

integral in (4) as a Riemann sum, comparison with (8) shows that σ̂2 κ → σ2 for200

κ → 0. We remark that for non-zero κ the diffusion coefficient σ̂2 may differ from the201

diffusion coefficient σ2 of the continuous system. Rescaling time to be measured in202

units of the discretization “time step” κ, (7) can be rewritten as203

dX =
(

F (X)− 1

2
κh(X)h′(X)E[f2

0 ]
)

dt+
√
κ σ̂h(X) ◦ dWt , X(0) = ξ,(9)204

205

where Wt is unit 1-dimensional Brownian motion on the rescaled time.206

Comparing the limiting SDE of the discretized map (9) and the limiting SDE for207

its associated continuous-time system (3), we see that they differ by an extra drift208

term in (9)209

E = −1

2
κh(X)h′(X)E[f2

0 ].(10)210
211

Note that the additional drift term prohibits a Stratonovich interpretation of the noise212

and hence for finite ∆t the statistics of the map is different from the statistics of the213

original continuous-time system (1)–(2), which we identify with the diffusive limit214

system (3). A discrepancy of this form was noted in [15] in the case of general maps215

where the time step ∆t (or rescaled time step κ) was implied. In the case where the216

fast dynamics of the discrete Euler map (5) is i.i.d., i.e. σ̂2 = E[f2
0 ], the noise in the217

limiting SDE of the discretized map (9) is of the Itô type. This can be heuristically218

understood by realizing that if the time step κ ≫ τcorr where τcorr is the decorrela-219

tion time of the fast continuous-time y-dynamics, the map is already as rough as the220

4An alternative strategy would be to use one step for the fast system with times step δt = κε2

followed by one step of the slow system with time step ∆t/K and repeat this K times [34, 3].
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discrete approximation of the noise.221

222

Although the additional drift term (10) is formally of order O(∆t), depending on223

the dynamical system under consideration, the extra term E can be large and distort224

the statistical behavior leading to a marked difference between the numerically ob-225

served statistical behavior of the slow variable X and the statistical behavior of the226

slow variable x of the given continuous-time multi-scale system (1)–(2) to be mod-227

elled. In Section 4 we provide such an example and show how an Euler discretization228

may produce erroneous statistical information. In the next section we develop a rela-229

tionship between the extra drift term (10) obtained in homogenization and backward230

error analysis. In particular, we will show that the extra drift term (10) generated231

by a first order numerical time-stepper is present in the backward error analysis and232

would be absent if the dynamics had been integrated with a higher order scheme in-233

stead (however, other terms are typically present in this case). This will show how234

the first order errors of an Euler-method directly translate into errors of the mean235

behavior.236

3. Backward error analysis. In this section we provide a backward error anal-237

ysis to explain the presence of the extra term (10) in the homogenized discrete model238

(9) compared to the homogenized continuous-time model (3). We will see that the ex-239

tra term arises from the use of the forward Euler scheme for constructing the discrete240

model (5). Although the extra term (10) is of order O(∆t) and hence disappears in241

the small step size limit, we stress that in the context of multi-scale problems one is242

often interested in step size regimes that are insensitive to fast dynamics and O(1)243

with respect to the slow dynamics.244

Backward error analysis [16, 22] has been successfully employed to understand245

finite time step effects observed in numerical simulations. The truncation error of a246

numerical discretization of an ordinary differential equation (ODE) can be expanded247

as an asymptotic series in the step size ∆t with terms involving successively higher248

derivatives of the vector field. In backward error analysis, the terms of the truncated249

series are interpreted as a higher order approximation to another, perturbed vector250

field.251

3.1. Lowest order modified equations. We consider a generic differential252

equation253

(11) ż = v(z),254

the solution of which is to be approximated using a numerical method.255

To understand the qualitative behavior of the numerical solution for finite step256

size ∆t, one constructs a modified vector field as an asymptotic expansion257

(12) ż = ṽ(z) = v(z) + ∆t v1(z) + ∆t2 v2(z) + · · · ,258

where the terms v1, v2, etc. are to be determined such that the solution to (12)259

matches the expansion of a numerical method applied to (11) to a higher order of ac-260

curacy. The continuous-time solutions to the truncated modified differential equation261

(12) approximate to higher order the numerical output than do those of the original262

differential equation (11), allowing the modified equation to be used to interpret finite263

time step effects observed in the numerical time series.264

The solution to (12) is expanded in a Taylor series about z(t) to give265

(13) z(t+∆t) = z(t) + ∆t ṽ +
∆t2

2
ṽ′ṽ +

∆t3

6
[ṽ′′(ṽ, ṽ) + ṽ′ṽ′ṽ] +O(∆t4),266
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where all terms on the right are evaluated at z(t), and where ṽ′ denotes the Jacobian267

matrix of ṽ, ṽ′′ denotes its (symmetric) three-tensor of second partial derivatives,268

and ṽ′′(·, ·) denotes the contraction of this tensor with the two vector arguments.269

Substituting the expansion (12) into the above and gathering terms of like order270

yields271

272

(14) z(t+∆t) = z(t) + ∆t v +∆t2
[

v1 +
1

2
v′v

]

+273

∆t3
[

v2 +
1

2
(v′v1 + v′1v) +

1

6
(v′′(v, v) + v′v′v)

]

+O(∆t4).274
275

Next, one determines the functions v1, v2, etc. to match the expansion of a numerical276

integrator to higher order.277

Euler’s method is given by zn+1 = zn +∆t v(zn). This formula is consistent with278

(14) up to terms of O(∆t2), and is consequently a first order approximation to (11).279

However by choosing280

v1 = −1

2
v′v281

in (12), one finds that Euler’s method agrees with (14) up to terms of O(∆t3). Con-282

sequently, while Euler’s method is a first order approximation of (11), it is a second283

order approximation to the modified differential equation284

ż = v − ∆t

2
v′v.(15)285

286

This process may be repeated to derive higher order corrections (v2, v3, etc.) in the287

modified equation. The asymptotic expansion generally does not converge for fixed288

∆t, but may be optimally truncated [16]. Although for general systems there is no289

guarantee that the lowest order corrections will have the most significant impact on290

the observed statistics, in our numerical experiments this does appear to be the case.291

Next consider the second order Runge-Kutta method (i.e. Heun’s method)292

zn+1 = zn +
∆t

2
[v(zn) + v(zn +∆tv(zn))] .(16)293

294

Expanding the right-hand side about zn gives295

zn+1 = zn +
∆t

2

[

2v(zn) + ∆tv′(zn)v(zn) +
∆t2

2
v′′(v, v)(zn) +O(∆t3)

]

.296

By choosing297

v1 = 0, v2 =
1

12
v′′(v, v)− 1

6
v′v′v298

in (12) we make this formula agree with (14) up to terms of O(∆t4) so the modified299

equation associated with the second order Runge-Kutta method (16) is (up to terms300

of O(∆t2))301

ż = v(z) +
∆t2

12
(v′′(v, v)− 2v′v′v),(17)302

303

and the second order Runge-Kutta method (16) applied to the ODE (11) is a third304

order approximation to (17).305

306
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Note that the modified equation (15) suggests a correction to Euler’s method to307

eliminate the second order term in (14). Specifically, one can apply Euler’s method308

to the differential equation with corrected vector field309

ż = v(z) +
∆t

2
v′(z)v(z).310

Doing so yields the second order Taylor method311

(18) zn+1 = zn +∆t v(zn) +
∆t2

2
v′(zn)v(zn),312

which can be efficiently implemented using a finite difference approximation in the313

last term:314

v′(zn)v(zn) ≈
1

τ
(v(zn + τv(zn))− v(zn)) , τ =

√
ǫm,315

with machine precision ǫm. Matching (18) with (14) shows the Taylor method has316

modified equation expansion (up to terms of O(∆t2))317

(19) ż = v(z)− ∆t2

6
(v′′(v, v) + v′v′v),318

and is hence is a second order scheme for the original ODE (11). This will turn out319

to be advantageous for problems of the form considered here.320

3.2. Homogenization of modified equations. In the limit ε → 0, the time321

step scales as ∆t = κ ε2, where κ > 0 is fixed and small. As we will take this limit to322

homogenize the modified equation, we use κ = ∆t/ε2 as our expansion parameter for323

the backward error analysis.324

The modified vector fields v1, v2, etc. each in turn can be expressed as expansions325

in ε. Upon homogenization, the lowest order term of O(1/ε) contributes to the diffu-326

sion and the O(1) term contributes to the drift. Terms of higher order in ε vanish in327

the homogenization limit ε → 0.328

Substituting the vector fields of the deterministic multi-scale system (1)–(2) into329

the modified equation for a first order Euler discretization (15) with z = (x, y) we330

obtain331

ẋ =
1

ε
h(x)f0(y) + f(x, y)(20)332

− κ

2

(

1

ε
h(x)f ′

0(y) g̃(y) + h(x)h′(x)f2
0 (y) + ∂yf(x, y)g̃(y) +O(ε)

)

+O(κ2)333

ẏ =
1

ε2
g̃(y), g̃ = g(y) +

κ

2K
g′(y)g(y) +O((κ/K)2).(21)334

335

In the remainder of the Section we substitute the vector field g(y) for the vector336

field g̃(y) of the fast modified equation, and similarly substitute ϕt for ϕ̃t, the flow337

of g̃, which is again independent of ε since κ and K are fixed. This is admissible338

if the numerical scheme for the fast dynamics is sufficiently accurate to resolve its339

statistical behaviour and in particular, the autocorrelation function; given the relation340

δt = ∆t/K and the scaling ∆t = κ ε2, it is clear that κ/K should be chosen small341

enough to accurately approximate autocorrelation functions of the unscaled chaotic342

system with vector field g(y), to allow for the substitution of ϕt for ϕ̃t.343

We now show that the associated stochastic limit system of the continuous-time344

modified equation of the Euler method (15) is the same as that of the discrete Euler345
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discretization (5). The homogenized dynamics, approximating the dynamics of (20)346

on time scales of order O(1), is given up to O(κ) by347

dX = F (X) dt+ σh(X) ◦ dWt, X(0) = ξ.(22)348349

where F (X) is the expectation with respect to y ∼ µ of the terms of O(1) in ε in (20).350

Noting that g(y) = ε2ẏ, we observe that the terms f ′
0(y)g(y) and ∂yf(x, y)g(y) in the351

slow modified equation (20) can be written as a total derivative (taking x constant352

up to terms of O(ε) on the homogenization time scale). Consequently, these terms353

vanish in expectation as in, for example,354

(23) E [∂yf(X, y)g(y)] = E

[

d

dt
f(X, y(t))

∣

∣

Xfixed

]

= 0,355

and we are left with the drift term356

F (X) = E[f(X, y)]− κ

2
h(X)h′(X)E[f2

0 ]357

= E[f(X, y)] + E.(24)358359

The diffusion coefficient is given by360

361

(25)
1

2
σ2 =

∫ ∞

0

E
[

f0(y)f0(ϕ̃
ty)

]

dt362

+
κ

2
h(X)

∫ ∞

0

(

E

[

f0(y) (
d

dt
f0)(ϕ̃

ty)

]

+ E

[

f0(ϕ̃
ty) (

d

dt
f0)(y)

])

dt .363
364

Using ergodicity of the fast dynamics the spatial average in the second integral can365

be expressed as a time-average; partial integration then can be used to show that the366

second integral sums to zero. The Green-Kubo formula (8) in the limit of ε → 0 is367

recovered provided we substitute ϕt for ϕ̃t in (25), which we argued above is admissible368

provided κ/K ≪ 1. Hence in the limit ε → 0 we recover the homogenized equation (9)369

for the forward Euler map (5), and the long term statistics of the Euler discretization370

captures well the statistics of its associated continuous-time modified equation.371

For a second order method, such as the Runge-Kutta method (16) or second order372

Taylor method (18), the additional drift term E is absent from the modified equation.373

Nevertheless there are terms ofO(κ2) that could potentially influence the homogenized374

limit. When the Runge-Kutta method (16) is applied to the deterministic multi-scale375

system (1)–(2), the lowest order modified equation (17) yields, for the slow variable:376

377

(26) ẋ =
1

ε
h(x)f0(y) + f(x, y)378

+
κ2

12

(

1

ε

[

h(x)
(

f ′′
0 (y)g

2(y)− 2f ′
0(y)g

′(y)g(y)
)]

379

+
[

∂yyf(x, y)g
2(y)− 2∂yf(x, y)g

′(y)g(y)
]

+O(ε)

)

+O(κ3).380
381

The homogenized drift term becomes382

F (X) = E

[

f(X, y) +
κ2

12

(

∂yyf(X, y)g2(y)− 2∂yf(X, y)g′(y)g(y)
)

]

+O(κ3),383
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which implies an O(κ2) bias in the drift of the slow variables in the limit ε → 0. The384

homogenized diffusion parameter becomes385

1

2
σ2 = h(X)

∫ ∞

0

C
[

f0(y) +
κ2

12

(

f ′′
0 (y)g

2(y)− 2f ′
0(y)g

′(y)g(y)
)

]

(t) dt+O(κ3).386

Here, too, an O(κ2) bias occurs as ε → 0.387

Finally, when the Taylor method (18) is applied to the deterministic multi-scale388

system (1)–(2), the lowest order modified equation (19) yields, for the slow variable:389

(27) ẋ =
1

ε
h(x)f0(y) + f(x, y) +

κ2

6

(

1

ε
vdiff1 (x, y) + vdrift1 (x, y) +O(ε)

)

+O(κ3),390

where391

vdiff1 (x, y) = h(x)f ′′
0 (y)g

2(y) + h(x)f ′
0(y)g

′(y)g(y),392

and393

vdrift1 (x, y) = 3h(x)′h(x)f ′
0(y)f0(y)g(y) + ∂yyf(x, y)g

2(y) + ∂yf(x, y)g
′(y)g(y).394

Noting that g(y) = ε2ẏ, we observe that all terms in the drift perturbation can be395

written as total derivatives with x fixed and vanish in expectation (cf. (23)):396

E[vdrift1 (X, y)] = E

[

3h′(X)h(X)
d

dt

(

f2
0 (y)

2

)

+
d

dt
(∂yf(X, y)g(y))

Xfixed

]

= 0.397

Consequently, the Taylor method has no bias in drift to O(∆t3), and we expect the398

drift to be simply given by399

(28) F (X) = E [f(X, y)] .400

The diffusion term is also a total derivative:401

vdiff1 (x, y) =
1

ε
h(X)

d

dt
(f ′

0(y)g(y)) ,402

and the diffusion parameter σ is of the form403

1

2
σ2 = h(X)

∫ ∞

0

(

C[f0](t)−
κ2

3
C
[

d

dt
f0

]

(t)

)

dt+O(κ3).404

The term does not vanish; this is a correlation function, not just an expectation.405

In summary, we note that the additional drift term E of order O(κ) in (24)406

is absent in the modified equation of a numerical method which is at least second407

order, such as the Runge-Kutta method (16) or the second order Taylor method408

(18). For a second order time-stepping method the homogenized modified equation409

therefore agrees with the homogenized equation of the full multi-scale system (3)410

up to O(κ2). However, a second order scheme will generally also have additional411

corrections to the drift and diffusion which might be of the same magnitude for finite κ412

as those corresponding to the continuous-time multi-scale system under consideration.413

Remarkably, the second order Taylor method (18) does not have bias of O(κ2) in the414

drift. This can be traced to the fact that the scheme exactly agrees with the second415

order Taylor expansion of the error, and consequently its higher order terms are exact416

differentials.417
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4. Numerical demonstration. We now demonstrate that the additional terms418

in the backward error analysis may lead to significant bias in the probability density419

estimation for both the first order forward Euler scheme and, to a lesser degree, the420

second order Heun’s method. In particular we show that the numerical methods421

converge for ε → 0 with ∆t = κ ε2 to the homogenized limits of their respective422

modified equations, which are different from the long-time statistical limit of the423

original deterministic multi-scale system.424

We consider the deterministic multi-scale system (1)–(2) with425

f0(y) = ay, h(x) =
√
x, f(x, y) = b(c− x)y2,426

so the slow dynamics is described by the continuous-time system427

ẋ =
1

ε
a
√
xy + b(c− x)y2 .(29)428

429

We choose here a = 0.1, b = 0.005 and c = 0.75. The slow dynamics is driven by430

y = ζ2 + ζ3 generated by a fast chaotic Rössler system431

ε2ζ̇1 = −ζ2 − ζ3,(30)432

ε2ζ̇2 = ζ1 + rζ2,(31)433

ε2ζ̇3 = s+ (ζ1 − u)ζ3 ,(32)434435

with r = s = 0.25 and u = 7. We will compare the results of a numerical integration436

of this deterministic multi-scale system using first and second order discretization437

methods to results from the associated limiting homogenized SDE of this system,438

describing the long-time statistical behavior.439

The diffusive limiting equation of the multi-scale dynamical system (29)–(32) can be440

obtained via the homogenization techniques presented in Section 2 and is given by441

the Cox-Ingersoll-Ross (CIR) model [4, 5]442

dX = σa
√
X dWt + 2αb(β −X) dt,(33)443444

where Wt is unit 1-dimensional Brownian motion. The parameters are:445

α =
1

2
E[y2],(34)446

σ2 = 2

∫ ∞

0

E[(ϕty)y] dt,(35)447

β = c+
σ2a2

8αb
.(36)448

449

To approximate α, an ensemble simulation of the (unscaled) Rössler system was car-450

ried out using a 1000-member ensemble on a time interval t ∈ [0, 3.2×104] with initial451

conditions drawn approximately from µ (see below). We obtain α = 28.4 ± 0.1. To452

estimate σ2 we solve wn+1 = wn + ε∆t yn where ∆t = κ ε2 and κ = 0.5. Then for453

a time series of length N = ⌊1/ε2⌋, wN ∼ ∆t√
N

∑N−1

j=1
yj is approximate Brownian454

motion with variance V[wN ] = σ2 N∆t. In this way the diffusivity is estimated as455

σ2 ≈ 0.140± 0.002.456

The Cox-Ingersoll-Ross (CIR) model (33) has the closed form solution457

X(t)

c(t)
∼ H(t), c(t) =

σ2a2

8αb
(1− e−2αbt),(37)458
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459

where H(t) is a noncentral χ-squared distribution with 8αβb/(a2σ2) degrees of free-460

dom and noncentrality parameter c(t)−1e−2αbtX(0).461

462

To numerically integrate the two-scale system (29)–(32) we use a multiple time-463

stepping approach [22], with a step size ∆t = κ ε2 for (29) and step size δt = ∆t/K464

for the fast subsystem (30)–(32). For our illustration we choose successively ε ∈465

{0.05, 0.025, 0.0125, 0.00625} and integrate over the interval t ∈ [0, 2.5] using κ = 0.5466

and K = 50. For this scaling of time step the fast dynamics (30)–(32) is well resolved467

but is not solved with increasing accuracy in the limit ε → 0. The probability density468

function (pdf) of x(t) is estimated using an ensemble with 160000 members. Each469

member starts from x(0) = 1 but observes a distinct time series y(t). Each member470

initial condition y(0) is drawn from the invariant measure µ by letting a randomly471

drawn initial condition relax onto the attractor over a transient time of length 25.472

We initially compare two different numerical discretizations of the multi-scale system473

(29)–(32). Applied to the generic differential equation474

ẋ(t) = v(x(t), y(t)),475

these methods are: the forward Euler method476

(38) xn+1 = xn +∆t v(xn, yn),477

and the second order Runge-Kutta method (Heun’s method)478

(39) xn+1 = xn +
∆t

2
[v(xn, yn) + v (xn +∆tv(xn, yn), yn+1)] .479

In the above equations yn denotes the approximation to y(tn) obtained from nK steps480

of size δt.481

When the slow dynamics (29) is discretized using a forward Euler method (38) with482

time step ∆t we obtain the map483

xn+1 = xn +∆t
1

ε
a
√
xnyn +∆t b(c− xn)y

2
n.(40)484

485

We compare the following probability density functions at time t = 2.5:486

• [MS1] The empirical pdf of the multi-scale system (29)–(32) computed using487

the forward Euler scheme (38).488

• [MS2] The empirical pdf of the multi-scale system (29)–(32) computed using489

the second order Runge-Kutta scheme (39).490

• [HMC] The exact pdf (37) of the limiting homogenized stochastic CIR model491

(33) with parameters α given by (34) and σ and β given by (35)–(36) associ-492

ated with the continuous-time model (29)–(32).493

Empirical pdfs of the slow variable x are computed using Matlab’s histogram counter494

with bin size ∆x = 0.005.495

The rigorous homogenization results presented in Section 2 assert that the long-496

time statistics of the full deterministic multi-scale system is described by the pdf497

[HMC]. Figure 1 shows convergence of the empirical pdfs of the numerically ap-498

proximated multi-scale system, obtained with the forward Euler ([MS1], left frame)499

and Runge-Kutta ([MS2], right frame) methods for decreasing ε (dashed lines, with500
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ε = 0.05 in blue, ε = 0.025 in red, ε = 0.0125 in yellow, and ε = 0.00625 in pur-501

ple). The exact pdf [HMC] is also indicated in each frame (solid black line). Both502

numerically computed pdfs appear to converge, in the limit ε → 0, ∆t = κ ε2, to a503

density with the wrong mean. The pdf [MS2] of the RK method is significantly closer504

to [HMC] than is [MS1], but bias is nevertheless clearly present.505
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Fig. 1. Comparison of the pdfs of the numerically approximated multi-scale system (29)–(32)
with the exact density of the CIR model (37) at time t = 2.5 for the forward Euler scheme (38) (left)
and the second order Runge-Kutta scheme (39) (right). In each plot the solid black line indicates
the exact pdf associated with the homogenized CIR model (33) for the actual time-continuous multi-
scale system (29)–(32) (i.e. with parameters (34)–(36)). The dashed lines indicate the empirical
probability density function for the numerical simulations of the continuous-time multi-scale system
(29)–(32) for ε = 0.05 (blue), 0.025 (red), 0.0125 (yellow), and 0.00625 (purple).

For the first order forward Euler discretization (40) the homogenized SDE (22)506

describing the long-time behavior of the slow motion is also given by the CIR model507

(33), but now with parameters508

α =
1

2
E[y2],(41)509

σ̂2 = E[y2] + 2

∞
∑

n=1

E[(Φn y)y] = lim
n→∞

n−1
E[(

n−1
∑

j=0

Φj y)2],(42)510

β = c+
σ̂2∆t a2

8αb
− ∆ta2

4b
,(43)511

512

and σ̂2∆t ≈ σ2. Note that the only difference in the homogenized CIR systems513

associated with the continuous-time multi-scale system (1)–(2) and the discrete Euler514

map (40) is in the parameter β (cf. (36) and (43)). For a2/b ≫ 1 and σ2/4α ≪ 1 this515

difference is large and may cause significant discrepancy between the statistics of the516

continuous-time multi-scale system (29)–(32) and its first order Euler discretization517

(40). The latter condition, σ2/4α =
∫∞
0

E[(ϕty)y] dt/E[y2] ≪ 1 puts a requirement518

on the decay of the fast dynamics and states that the fast dynamics should be far519

from i.i.d. with σ2 = 2E[y2]. This requirement is satisfied for the Rössler system520

(30)–(32) with the parameters r = s = 0.25 and u = 7. For these parameters the521

autocorrelation function has a slow decay and E[y2] ≫ σ2/2. For comparison, we522

introduce an additional pdf:523

• [HMD] The exact pdf (37) of the limiting homogenized stochastic CIR model524

(33) with parameters α given by (34) and σ and β given by (42)–(43) associ-525

ated with the discrete Euler model (40).526
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The backward error analysis presented in Section 3 predicts that the empirical pdf527

[MS1] of the Euler method may be better approximated by the pdf [HMD], derived528

by homogenizing the modified equation of the Euler method. Figure 2 confirms this529

prediction, showing that as ε → 0, the statistical behavior of the discrete Euler scheme530

is well described by the pdf of its associated homogenized stochastic CIR model. The531

extra drift term E in the homogenized discrete model leads to an error of 16% in the532

mean of the pdf [HMD] with respect to the mean of the pdf of the original continuous533

time multi-scale system (29)–(32) to be modelled [HMC].534

We remark that for fast chaotic dynamics with rapidly decaying autocorrelation535

function such as the Lorenz 63 system with the classical parameters, we have E[y2] ≈536

σ2/2. The homogenized equation of the full multi-scale dynamics and its first order537

Euler discretization will be close (cf. (36) and (43)), and a first order discretization538

would be sufficient to capture the long-time statistics of the slow dynamics.539
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Fig. 2. Comparison of the pdfs of the numerically approximated multi-scale system (29)–(32)
with the exact density of the homogenized modified equation model at time t = 2.5 for the forward
Euler scheme (38). The solid black line indicates the exact pdf associated with the homogenized
modified equation (33) of the Euler scheme (i.e. with parameters (41)-(43)). The dashed lines
indicate the empirical probability density function computed with the forward Euler approximation
(40) applied to the continuous-time multi-scale system (29)–(32) for ε = 0.05 (blue), 0.025 (red),
0.0125 (yellow), and 0.00625 (purple).

Finally, the backward error analysis of the second order Taylor method (18) in-540

dicates there is no error in the drift (28) to O(κ3) for this method. Indeed, Figure 3541

confirms this result, illustrating that the empirical pdf of the Taylor method closely542

matches that of the pdf [HMC] as ε → 0. In fact both the mean and the variance of543

the distribution closely match that of the pdf [HMC], suggesting that errors in the544

diffusion parameter are also small for this parameter regime. The excellent approxi-545

mation of the drift makes the Taylor method an attractive alternative for multi-scale546

problems with stochastic limit behavior.547

5. Summary. To summarize, using backward error analysis we have demon-548

strated that the extraneous drift term (10) that arises in homogenization of the dis-549

crete map (5) compared to homogenization of the flow (1)–(2) can be traced to the550

relation between the map (5) and a forward Euler discretization of (1)–(2) with large551

step size ∆t = 1. In particular, we relate this drift term which appears in the litera-552

ture of homogenization for discrete time systems [15] and which neither corresponds553

to an Itô nor to a Stratonovich interpretation of the SDE to discretization errors of554

first order schemes using backward error analysis. We have shown that the local first555
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Fig. 3. Comparison of the pdfs of the numerically approximated multi-scale system (29)–(32)
with the exact density of the CIR model (37) at time t = 2.5 for the second order Taylor method
(18). The solid black line indicates the exact pdf associated with the homogenized CIR model (33)
for the actual time-continuous multi-scale system (29)–(32) (i.e. with parameters (34)–(36)). The
dashed lines indicate the empirical probability density function computed with the second order Taylor
method (18) applied to the continuous-time multi-scale system (29)–(32) for ε = 0.05 (blue), 0.025
(red), 0.0125 (yellow), and 0.00625 (purple).

order errors contribute to a well-defined drift error, leading to potentially strong bias,556

in the long-time statistical behavior. The accumulated local error, as quantified by557

the backward error analysis, was shown to account for the long-time statistical error558

of the discretization scheme as provided by homogenization theory.559

We further quantified the requirement for a dynamical system such that its Euler560

scheme discretization reliably recovers its long-time statistical behavior. In particular,561

we found that for sufficiently rapidly decaying fast dynamics an Euler scheme is suffi-562

cient. On the contrary, the failure of first order discretization methods to capture the563

statistics of the full continuous-time multi-scale system was shown to be exacerbated if564

the fast dynamics exhibits slow decay of correlations. We remark that the slow decay565

of correlation is not hampering the validity of the homogenized limit system and the566

validity of the underlying functional central limit theorem which is assured solely by567

requiring ε ≪ 1. The difference is entirely given by the failure to match the limiting568

homogenized SDE of the first order discretization with the limiting homogenized SDE569

associated with the original time-continuous multi-scale system.570

Here we discussed deterministic skew product systems of the form (1)–(2). In571

order to obtain a stochastic homogenized equation for the slow dynamics, the fast dy-572

namics is required to support an ergodic invariant measure and generate an integrable573

autocorrelation function of f0 (cf. the Green-Kubo formula (4)). Hence the conclu-574

sions drawn here for the deterministic setting remain valid in the case when the fast575

dynamics is stochastic. For a large class of stochastic ordinary differential equations576

stochastic integrators were constructed which accurately approximate the invariant577

measure [1]. Their construction also uses the framework of modified equations and the578

analysis is not restricted to the multi-scale setting. It would be interesting to compare579

the higher order methods developed there in the multi-scale setting considered here.580

This is a topic for further research.581

582

In this article, we have examined the limit ε → 0, ∆t ∼ O(ε2) in multi-scale583

systems (1)–(2) which approach a rigorous SDE limit under homogenization. In this584
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limit, with constant κ = ∆t/ε2 > 0, the fast motion of the system remains resolved,585

but does not converge as ∆t → 0. The limit is achieved by choosingK to be sufficiently586

large and κ/K to be sufficiently small. Our numerical experiments demonstrate sig-587

nificant bias in the pdf of the slow variables in the limit ∆t → 0 under this scaling.588

This bias may be mitigated by reducing the ratio κ = ∆t/ε2 in the numerical ex-589

periments as the bias is multiplied by κ (cf. 10). However, full convergence requires590

κ = ∆t/ε2 → 0 as ε → 0.591

We assumed throughout that the fast dynamics is numerically sufficiently resolved592

such that the statistical properties, e.g. the auto-correlation structure, is sufficiently593

reproduced. If this were not the case, errors arising from the flow map associated with594

the fast modified equation enter the Green-Kubo formulae (see, for example, (25) for595

the Euler method) implying errors in the diffusion coefficient in addition to the bias596

error.597

We remark that special numerical methods are often specifically tailored to multi-598

scale problems to accommodate time steps that are large with respect to the fast time599

scale. It is precisely in this regime that statistical bias may occur. The implication600

of this for numerical integration of multi-scale systems is that, to avoid statistical601

bias, it may be important to use a higher order method for the slow variables. The602

second order Taylor method (18) offers an interesting alternative here, as it may be603

efficiently implemented and is unbiased with respect to the drift up to O(∆t3). To604

avoid statistical bias altogether, one might want to solve the actual limiting SDE605

instead of the deterministic multi-scale system provided that ǫ is sufficiently small to606

allow for the central limit theorem to hold.607
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