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Abstract. We consider the problem of sampling from an unknown distribution for
which only a sufficiently large number of training samples are available. In this paper,
we build on previous work combining Schrödinger bridges and plug & play Langevin
samplers. A key bottleneck of these approaches is the exponential dependence of the
required training samples on the dimension, d, of the ambient state space. We propose
a localization strategy which exploits conditional independence of conditional expec-
tation values. Localization thus replaces a single high-dimensional Schrödinger bridge
problem by d low-dimensional Schrödinger bridge problems over the available training
samples. In this context, a connection to multi-head self attention transformer archi-
tectures is established. As for the original Schrödinger bridge sampling approach, the
localized sampler is stable and geometric ergodic. The sampler also naturally extends
to conditional sampling and to Bayesian inference. We demonstrate the performance of
our proposed scheme through experiments on a high-dimensional Gaussian problem,
on a temporal stochastic process, and on a stochastic subgrid-scale parametrization
conditional sampling problem. We also extend the idea of localization to plug & play
Langevin samplers using kernel-based denoising in combination with Tweedie’s for-
mula.
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1. Introduction

In this paper, we consider the problem of sampling from an unknown probability measure ν(dx)
on Rd for which we only have access to a finite set of training samples x(j) ∼ ν, j = 1, . . . ,M .
This problem has recently attracted widespread interest in the context of score-generative or
diffusion modeling [28, 12, 27, 29, 36]. If the probability measure ν(dx) possesses a probability
density function π(x), then a popular non-parametric approach to generative modeling is to
estimate the score function s(x; θ) ≈ ∇ log π(x) by minimizing an appropriate loss function such
as

(1) L(θ) =
∫
Rd

∥s(x; θ)−∇ log π(x)∥2π(x)dx

in the parameters θ ∈ Rdθ [13]. This estimate can then be used in combination with overdamped
Langevin dynamics to yield

(2) Ẋ(τ) = s(X(τ); θ) +
√
2 Ẇ (τ),

where W (τ) denotes standard d-dimensional Brownian motion [21]. The stochastic differential
equation is typically discretized by the Euler–Maruyama (EM) method to yield an iterative
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update of the form

(3) X(n+ 1) = X(n) + ϵs(X(n); θ) +
√
2ϵΞ(n), Ξ(n) ∼ N(0, I),

for n ≥ 0, where ϵ > 0 denotes the step size and X(n) provides the numerical approximation to
the solution of (2) at time τn = n ϵ. The EM algorithm is initialized at one of the training data
points; i.e., X(0) = x(j

∗) with j∗ ∈ {1, . . . ,M} appropriately chosen, and the resulting discrete
trajectory X(n), n ≥ 1, delivers approximate samples from the target distribution π(x).

Instead of first estimating the score function from samples and then discretizing (2) in time, it
has been proposed in [10] to employ Schrödinger bridges and to directly estimate the conditional
expectation value

(4) µ(x; ϵ) := E[X(ϵ)|X(0) = x]

from the given samples {x(j)}Mj=1 for given time-step ϵ > 0. We denote the Schrödinger bridge

approximation obtained from the samples by m(x; ϵ) : Rd × R+ → Rd and obtain the iteration
scheme

(5) X(n+ 1) = m(X(n); ϵ) +
√
S(X(n); ϵ) Ξ(n), Ξ(n) ∼ N(0, I),

with appropriately defined diffusion matrix S(x; ϵ) ∈ Rd×d. Broadly speaking, m(x; ϵ) controls
the drift while S(x; ϵ) moderates the noise. An obvious choice for S(x; ϵ) is S(x; ϵ) = 2ϵI, which
corresponds to the EM discretization (3). A data-aware S(x; ϵ) has been introduced in [10],
which is defined as the Schrödinger bridge approximation to the covariance matrix

(6) Σ(x; ϵ) := E[X(ϵ)X(ϵ)⊤|X(0) = x]− µ(x; ϵ)µ(x; ϵ)⊤.

Provided the measure ν(dx) possesses a smooth density π(x), it holds asymptotically that

(7) Σ(x; ϵ) = 2ϵI +O(ϵ2).

Remark 1. We emphasize that the discrete-time formulation (5) can be considered even in
case the probability measure ν(dx) does not possess a probability density function π(x) with
respect to the Lebesgue measure on Rd; e.g., the measure ν is concentrated on a submanifold
M⊂ Rd, as long as the conditional expectation values (4) and (6) can be defined appropriately.
The Schrödinger bridge approximation allows for such an extension [10]. Indeed, the, so called,
manifold hypothesis states that many applications of generative modeling lead to measures ν(dx)
which concentrate on a low-dimensional manifold M in a high-dimensional ambient space Rd
[8, 27, 33].

We note that (5) is closely related to the plug & play unadjusted Langevin sampler (PnP-ULA)
of [14], where a denoiser D(x; ϵ) takes the role of m(x; ϵ) in (5), which should satisfy

(8) ∇ log π(x) ≈ D(x; ϵ)− x
ϵ

and S(x; ϵ) = 2ϵI. An additional stabilizing term of the form

(9)
ϵ

λ
(PC(X(n))−X(n))

is required for the associated PnP-ULA scheme to satisfy an appropriate growth condition. Here
λ > 0 is a suitable parameter and PC(x) projects x onto a compact set C ⊂ Rd which should
contain most of the probability mass of ν(dx). In particular, if ν(dx) is supported on a manifold
M⊂ Rd, then C ⊆ M. See [14] for more details and [5] for a related approach using a Moreau–
Yoshida regularised score function. We note that the Schrödinger bridge sampler (5) has been
shown to be stable and geometric ergodic [10] without any additional stabilization term.
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The sampler (5) can be used in the general context of score-generative or diffusion modeling,
however, our main motivation is in Bayesian inference and in conditional sampling with applica-
tions to multi-scale processes. Applications to Bayesian inference, for which ν(dx) takes the role
of the prior for given likelihood function π(y|x), immediately suggest the modified update

(10) X(n+ 1) = m(X(n); ϵ) + ϵ∇ log π(y|X(n)) +
√
S(X(n); ϵ) Ξ(n), Ξ(n) ∼ N(0, I).

Furthermore, a particular choice of π(y|x) can be used for conditional sampling [10]. We note
that (10) fits into the general plug & play approach to data-aware Bayesian inference [31, 3, 14].

While it has been demonstrated in [10] that (5) and (10) work well for low-dimensional prob-
lems, the required number of training samples, M , increases exponentially in the dimension, d,
of the samples [35]. In order to remedy this manifestation of the curse of dimensionality, we
propose to utilize conditional independence in order to replace the Schrödinger bridge estimator
for the conditional expectation value m(x; ϵ) ∈ Rd by appropriately localized Schrödinger bridge
estimators in each of the d components of m(x; ϵ) and similarly for the diffusion matrix S(x; ϵ).
The proposed localization strategy resembles localization strategies used in the ensemble Kalman
filter (EnKF) [7, 25, 4]; but is fundamentally different in at least two ways: (i) For Gaussian
measures with covariance matrix C, the EnKF would localize the empirical estimator of C while
our approach relies on the localization of the precision matrix C−1 as dictated by conditional in-
dependence. (ii) Localized Schrödinger bridge estimators are not restricted to Gaussian measures
as long as conditional independence can be established. Furthermore, we extend the proposed
localization strategy to conditional mean estimators based on kernel denoising [20].

The paper is organized as follows. The Schrödinger bridge formulation for m(x; ϵ) and S(x; ϵ)
in (5) is summarized in the subsequent Section 2. There we also discuss connections to minimum
mean square error (MMSE) denoising and kernel-based denoising, in particular to [20]. The
localized variant is subsequently developed in Section 3 first for a Gaussian distribution for which
C−1 has a tri-diagonal structure and then for general target measure ν(dx) for which conditional
independence holds. An algorithmic summary is provided in Algorithm 1 and a discussion of
numerical properties is provided in Section 3.3. Localization is extended to kernel-based denoising
in Section 3.4. We discuss a connection between the Schrödinger bridge sampler and self attention
transformers [30] in Remark 2 and its localized variant in the context of multi-head transformers
in Remark 3. As applications, we consider sampling temporal stochastic processes in Section 4
and conditional sampling for a closure problem arising from the multi-scale Lorenz-96 model [16]
in Section 5. The paper closes with some conclusions and suggestions for further work.

2. Plug & play Langevin sampler

In this section, we summarize two particular variants of plug & play Langevin samplers [14].
The first sampler has been proposed in [10] and is based on a Schrödinger bridge approximation
of the Langevin semi-group with invariant measure ν(dx) [35]. The second sampler builds upon
kernel denoising [20] and Tweedie’s formula [6].

2.1. Schrödinger bridge sampler. In this subsection, we briefly recall how to approximate the
conditional estimates (4) and (6) using Schrödinger bridges. One first introduces the symmetric
matrix T ∈ RM×M of (unnormalized) transition probabilities

(11) (T )jk = exp

(
− 1

4ϵ
∥x(k) − x(j)∥2

)
for j, k = 1, . . . ,M . See [10] for a more general definition involving a state-dependent scaling
matrix K(x) and variable bandwidth implementation K(x) = ρ(x)I with ρ(x) > 0 a suitable
scaling function.
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One next introduces the uniform probability vector w∗ = (1/M, . . . , 1/M)⊤ ∈ RM over the
samples {x(j)}Mj=1. The associated Schrödinger bridge problem can be reformulated into finding

the non-negative scaling vector v ∈ RM such that the symmetric matrix

(12) P = D(v)T D(v)

is a Markov chain with invariant distribution w∗, i.e.,

(13) P w∗ = w∗.

Here D(v) ∈ RM×M denotes the diagonal matrix with diagonal entries provided by v ∈ RM .
We remark that the standard scaling used in Schrödinger bridges would lead to a bistochastic
matrix P̃ , which is related to (12) by P̃ =M−1P [22].

The next step is to extend the discrete Markov chain (12) to all x ∈ Rd. For that purpose one
introduces the vector-valued function t(x) ∈ RM with entries

(14) t(j)(x) = exp

(
− 1

4ϵ
∥x− x(j)∥2

)
for j = 1, . . . ,M . One then defines the probability vector w(x) ∈ RM using the Sinkhorn weights,
v, obtained in (12), i.e.,

(15) w(x) =
D(v) t(x)

v⊤t(x)
∈ RM

for all x ∈ Rd. This vector gives the transition probabilities from any x to the data samples,
which we collect in the data matrix of samples

(16) X = (x(1), . . . , x(M)) ∈ Rd×M .

Hence, the desired sample-based approximation of the conditional mean is given by

(17) m(x; ϵ) := X w(x),

which provides a finite-dimensional approximation of the conditional expectation value µ(x; ϵ)
of the true underlying diffusion process (2). Note that the conditional mean m(x; ϵ) lies in the
convex hull of the data since 0 ≤ w(x) ≤ 1 is a probability vector for all x

We also recall a data-aware choice of the covariance matrix S(x; ϵ) [10]. Using (15) and (16),
one can define the conditional covariance matrix

(18) S(x; ϵ) = X D(w(x))X⊤ −m(x; ϵ)m(x; ϵ)⊤ ∈ Rd×d,

which is the empirical covariance matrix associated with the probability vector w(x); compare
(6).

It has been found advantageous in [10] to replace the time-stepping method (5) by the split-
step scheme

X(n+ 1/2) = X(n) +
√
S(X(n); ϵ) Ξ(n), Ξ(n) ∼ N(0, I),(19a)

X(n+ 1) = m(X(n+ 1/2); ϵ),(19b)

which can be viewed as sequential noising and denoising steps. The key property of the Schrödinger
bridge sampler is that the final step of the Langevin sampler (19b) amounts to a projection into
the convex hull of the samples, independent of the outcome of the noising step (19a). This
renders the sampling scheme numerically stable for any finite sample size M . This is in con-
trast to traditional Langevin samplers such as score generative models which directly solve the
typically stiff Langevin equation (2); e.g., in case the probability measure ν(dx) concentrates on
a submanifold M ⊂ Rd, simulating the Langevin equation necessitates computationally costly
sufficiently small time steps to resolve the fast attraction toward the submanifold [27].
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Remark 2. We point to a connection of (19b) to self-attention transformer architectures [30]. We
recall that the attention function acts on a matrix Q ∈ RN×d of N queries, a matrix K ∈ RM×d

of M keys, and a matrix V ∈ RM×d of M values in the form of

(20) Attention (Q,K, V ) = softmax

(
QKT

√
d

)
V.

In the context of (19b) we find that Q = X(n+ 1/2)T and K = V = XT. Hence N = 1 and the
output of the softmax function becomes a probability vector of dimension 1×M which we denote
by w̆. Note that w̆ ∈ R1×M multiplies V = XT ∈ RM×d from the left resulting in essentially the
transpose of what has been used in (17) with, however, a differently defined probability vector.
Indeed, the Schrödinger bridge sampler defines the probability vector (15) in a manner closely

related to what has been proposed as Sinkformer in [26] and the scaling factor
√
d in (20) is

substituted by 2ϵ. More specifically, we note that (11) could be replaced by

(21) (T )jk = exp

(
(x(k))⊤x(j)

2ϵ

)
without changing the resulting Schrödinger bridge approximation P (albeit with a different
scaling vector v compared to (12)). One would then also have to replace (14) and (15) by

(22) t̂(j)(x) = v(j) exp

(
x⊤x(j)

2ϵ

)
= exp

(
x⊤x(j)

2ϵ
+ log v(j)

)
and

(23) ŵ(j)(x) =
t̂(j)(x)∑M
j=1 t̂

(j)(x)

for j = 1, . . . ,M , respectively, in line with self-attention transformer architectures which do not
involve the shift by log v(j) in (22).

The denoising step (19b) has a gradient structure since

(24) m(x; ϵ) = x+ ϵ∇ log pϵ(x)

with (unnormalised) density

(25) pϵ(x) =
(
v⊤t(x)

)2
and

(26) ∇ log pϵ(x) = −
1

ϵ

∑M
j=1(x− x(j))v(j)t(j)(x)

vTt(x)
=

1

ϵ
(X w(x)− x).

Hence the proposed sampler can be viewed as an EM approximation of the modified Langevin
dynamics

(27) Ẋ(τ) = ∇ log pϵ(X(τ)) +
√
2 Ẇ (τ).

A modified score has also been considered in the form of Moreau–Yosida regularised score func-
tions in [5] and smoothed score functions in the form of plug & play priors in [14]. Contrary to
those approaches, the modified score ∇ log pϵ(x) arises from the Schrödinger bridge approxima-
tion of the semi-group exp(ϵL) with generator L [21] given by

(28) Lf = ∇ log π(x) · ∇f +∆f.



6 GEORG A. GOTTWALD AND SEBASTIAN REICH

2.2. Kernel denoising and Tweedie’s formula. We note that (19b) is related to MMSE
denoising as widely used to reduce random fluctuations in a signal. The connection between
score estimation, autoencoders, and denoising has been discussed in [32, 1]. See also the recent
survey [20]. However, while MMSE denoising typically considers conditional mean estimators in
pseudo-linear form [20] or in the form of auto-encoders [1], our approach relies on (nonlinear)
conditional mean estimators of the form (17), which also arise from kernel denoising [20], which
is closely related to Tweedie’s formula [6] as we explain next.

Given the data distribution π and a scale parameter γ > 0, consider the extended (unnormal-
ized) distribution Πγ in (x, x′) ∈ R2d defined by

(29) Πγ(x, x
′) = exp

(
− 1

2γ
∥x− x′∥2

)
π(x′)

and its (unnormalized) marginal distribution

(30) πγ(x) =

∫
Πγ(x, x

′) dx′.

Tweedie’s formula [6] states that

(31) ∇ log πγ(x) = −
1

γ
(x− E[x′|x])

with the conditional expectation value defined by

(32) E[x′|x] =
∫
x′ Πγ(x, x

′) dx′

πγ(x)
.

We may now replace the data distribution πγ by the empirical measure over the training sam-

ples {x(j)}Mj=1 to obtain the equally weighted (unnormalized) Gaussian kernel density estimator
(KDE)

(33) π̃γ(x) =

M∑
j=1

exp

(
− 1

2γ
∥x− x(j)∥2

)
,

which, according to (31), leads to the score function

s(x; γ) = ∇ log π̃γ(x) = −
1

γ

x− ∑M
j=1 x

(j) exp
(
− 1

2γ ∥x− x
(j)∥2

)
∑M
j=1 exp

(
− 1

2γ ∥x− x(j)∥2
)

 .(34)

Using this score function in (3) with γ = ϵ results in a scheme of the form (5) with S(x; ϵ) = 2ϵI
and the conditional mean estimator m(x; ϵ) being replaced by the denoiser

(35) D(x; ϵ) :=

∑M
j=1 x

(j) exp
(
− 1

2ϵ∥x− x
(j)∥2

)∑M
j=1 exp

(
− 1

2ϵ∥x− x(j)∥2
) = X w̃(x),

where the weight vector w̃(x) ∈ RM is now defined by

(36) w̃(j)(x) =
exp

(
− 1

2ϵ∥x− x
(j)∥2

)∑M
j=1 exp

(
− 1

2ϵ∥x− x(j)∥2
) , j = 1, . . . ,M.

We find that m(x; ϵ) and D(x; ϵ) differ through the additional Sinkhorn weight vector v ∈ RM
in (15) and the scale parameter 2γ = 2ϵ in (33) compared to the scale parameter 4ϵ used in (14).
The connections drawn in Remark 2 to transformer architectures apply equally to (35).
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The results of [35] suggest that (17) provides a more accurate approximation to the condi-
tional expectation value (4) than (35), which is based on the equally weighted Gaussian mixture
approximation (33). In particular, it holds that

(37) m(x; ϵ) := exp(ϵL) id(x) = x+ ϵ∇ log π(x) +O(ϵ2)

in the limit M →∞, while Tweedie’s formula formally leads to

(38) D(x; ϵ) := x+ ϵ∇ log π̃ϵ(x) = x+ ϵ∇ log π(x) +O(ϵ2).

Here id(x) = x denotes the identity map. Hence, to leading order in ϵ, both approaches agree.
However, while Tweedie’s formula leads to an approximation error that arises from replacing
π by a regularized density π̃ϵ, the Schrödinger bridge sampler leads to higher-order corrections
which are consistent with the actual underlying Langevin dynamics. This becomes particularly
appealing when implemented together with the data-aware covariance matrix (18) instead of
a constant S(x; ϵ) = 2ϵI in (5) or when a variable bandwidth is implemented in (11) as was
done in [10]. A precise statement will be the subject of future research. We also stress that
the Schrödinger bridge sampler can easily be extended to Langevin dynamics with multiplicative
noise [10] while such an extension is unclear when based on a KDE.

While (17) works well for low-dimensional problems and sufficiently large sample sizes M ,
applications to medium- or high-dimensional problems have remained an open challenge since
accurate approximations of the Schrödinger bridge problem require an exponentially increasing
number of samples as the dimension, d, of the sample space Rd increases (cf. [35]). The curse of
dimensionality applies equally to the KDE-based approximation (35) and a failure to generalize
has been discussed recently in the context of score-generative models [15].

The key observation of this paper is that the approximation of conditional expectations (4) via
Schrödinger bridges does not necessarily require the full Markov chain (12) and that localization
can be applied provided conditional independence can be established. This idea will be developed
in the following section. Localization will subsequently be extended to kernel-based denoising in
Subsection 3.4.

3. Localized Schrödinger bridge sampler

To introduce the main idea of localizing the Schrödinger bridge sampler developed in [10] we
first consider an illustrative example of sampling from a multivariate Gaussian distribution. We
will see that localization allows for a significant reduction of the number of samples required to
achieve a certain accuracy. In particular, the number of samples required to achieve a certain
accuracy does not depend on the intrinsic dimension of the samples but rather is determined
by the conditional independence which typically leads to a sequence of much lower dimensional
estimation problems.

3.1. Motivational example: Gaussian setting. Let ∆h ∈ Rd×d denote the standard discrete
Laplacian over a periodic domain [0, L] of length L > 0 with mesh-size h = L/d. We assume
that the sampling distribution π(x) is Gaussian with zero mean and covariance matrix

(39) C = (I −∆h)
−1.

Instead of the distribution π(x), we are givenM samples x(j) ∼ N(0, C), j = 1, . . . ,M , and denote

their α-th entry by x
(j)
α for α = 1, . . . , d. The goal is to produce more samples from N(0, C)

using the time-stepping scheme (19) without making explicit reference to the unknown covariance
matrix C. This particular setting of a generative model can become arbitrarily challenging by
either increasing L for fixed mesh-size h or by decreasing the mesh-size h = L/d for fixed L.
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In order to gain some insight into the problem, we first consider the standard EM sampler in
case the distribution is known; i.e.,

(40) X(n+ 1) = X(n)− ϵ(I −∆h)X(n) +
√
2ϵΞ(n), Ξ(n) ∼ N(0, I).

Because of the structure of ∆h, we can rewrite the EM update in the components of X(n) in the
form

(41) Xα(n+ 1) = w−1Xα−1(n) + w0Xα(n) + w1Xα+1(n) +
√
2ϵΞα(n), α = 1, . . . , d,

with weights

(42) w±1 =
ϵ

2h2
, w0 = 1− ϵ

(
1 +

1

h2

)
and periodic extension of Xα for α = 0 and α = d + 1. We assume that the step size ϵ is
chosen such that w0 ≥ 0. The EM update (41) reveals that the conditional expectation value
of Xα(n+ 1) only depends on the value of the neighboring grid points of X(n) with weights w0

and w±1; i.e.,

E[Xα(n+ 1) |X(n)] = E[Xα(n+ 1) | (Xα−1(n), Xα(n), Xα+1(n))](43a)

= w−1Xα−1(n) + w0Xα(n) + w1Xα+1(n).(43b)

It is convenient to introduce the short-hand

(44) X[α] := (Xα−1, Xα, Xα+1)
T ∈ Rdα ,

with dα = 3, to denote the set of neighboring grid points of Xα.
To help the reader navigating the various indices and sub- and superscripts we summarize here

our notation. Superscripts (j) are reserved to denote samples j = 1, . . . ,M as well as components
of vectors in RM . For example, the components of the probability vector w ∈ RM are denoted
by w(j). The Greek subscript α with α = 1, . . . , d is reserved to denote components of a vector
x in state space Rd, i.e. xα for α = 1, . . . , d. Subscripts [α] are reserved to denote localization
around a component α; i.e., x[α] ∈ Rdα .

The dependency of the conditional expectation value (43) on the neighboring points is to be
exploited in the update step (19b), which we recall here in its component-wise formulation as

(45) Xα(n+ 1) =

M∑
j=1

x(j)α w(j)(X(n+ 1/2)),

for α = 1, . . . , d. We recall from our previous considerations that the conditional expectation
value of Xα(n+ 1) should depend on X[α](n+ 1/2) only. Hence the question arises whether we
can find appropriately localized probability vectors w(x) for the Schrödinger bridge sampler (19).
The following formal argument can be made. We restrict N(0, C) to x[α] ∈ Rdα and truncate

the samples x(j), j = 1, . . . ,M , accordingly to yield x
(j)
[α]. The covariance matrix Cr ∈ Rdα×dα

of the reduced random variables X[α] ∈ Rdα is simply the restriction of C to the corresponding
sub-space, which in this particular example is independent of α. Furthermore, using the Schur
complement, one finds

(46) C−1
r =

 ∗ − 1
2h2 ∗

− 1
2h2 1 + 1

h2 − 1
2h2

∗ − 1
2h2 ∗

 ,

where ∗ denotes entries which differ from the matrix which would be obtained by restricting C−1

to the corresponding sub-space. The important point is that the central elements remain identical
(cf. (42)) and that only those entries enter the approximation of the conditional expectation value
(43).
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We now describe a localized Schrödinger bridge approach for this specific problem. One
replaces the matrix T ∈ RM×M with entries (11) by localized matrices Tα ∈ RM×M with entries

(47) (Tα)jk = exp

(
− 1

4ϵ
∥x(j)[α] − x

(k)
[α]∥

2

)
, j, k = 1, . . . ,M,

for fixed α ∈ {1, . . . , d}. For each of these localized matrices Tα we employ the local Sinkhorn
algorithm to obtain the Sinkhorn weights vα ∈ RM for α = 1, . . . , d, which render

Pα = D(vα)TαD(vα)(48)

bistochastic (cf.(13)). The key point is that the Euclidean norm in Rd, d≫ 1, is replaced by the
Euclidean norm in Rdα with dα = 3. Furthermore, in this particular example, the corresponding
Schrödinger bridge approximately couples the restricted Gaussian distribution N(0, Cr) with
itself. Next, the single M -dimensional probability vector (15) is replaced by d M -dimensional
probability vectors

(49) wα(x[α]) :=
D(vα) tα(x[α])

v⊤α tα(x[α])
, α = 1, . . . , d,

which depend on x[α] ∈ Rdα and where the vector-valued function tα(x[α]) ∈ RM has entries

(50) t(j)α (x[α]) = exp

(
− 1

4ϵ
∥x(j)[α] − x[α]∥

2

)
, j = 1, . . . ,M.

Note that (49) depends on the restricted vectors x
(j)
[α] ∈ Rdα , j = 1, . . . ,M , only. It can be

verified by explicit calculation that the interpolation property

(51) w(j)
α (x

(k)
[α] ) = (Pα)jk, j, k = 1, . . . ,M,

holds.
We obtain the localized approximation

(52) mα(x[α]; ϵ) = Xα wα(x[α]), α = 1, . . . , d,

of the conditional expectation values, where

(53) Xα = (x(1)α , . . . , x(M)
α ) ∈ R1×M .

We also introduce the localized data matrix

(54) X[α] = (x
(1)
[α] , . . . , x

(M)
[α] ) ∈ Rdα×M ,

which enters into the computation of Tα.
For constant diffusion S(x; ϵ) = 2ϵI the localized variant of the iteration scheme (5) becomes

(55) Xα(n+ 1) = mα(X[α](n); ϵ) +
√
2ϵΞα(n), α = 1, . . . , d,

for Ξ(n) ∼ N(0, I). Similarly, the split-step scheme (19) becomes

X[α](n+ 1/2) = X[α](n) +
√
2ϵΞ[α](n),(56a)

Xα(n+ 1) = mα(X[α](n+ 1/2); ϵ).(56b)

In other words, we have replaced a single Schrödinger bridge update in Rd by d Schrödinger
bridge updates in Rdα .

Remark 3. In line with the discussion on transformer architectures from Remark 2, we wish to
point to a connection to multi-head attention [30]. More specifically, our localization procedure
has introduced d heads each relying on X[α] as matrix of key vectors, Xα as matrix of value
vectors, and X[α](n + 1/2) as query vector in order to produce an update in the scalar-valued
entries Xα(n+ 1/2) for α = 1, . . . , d.
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We finally discuss a localized version of the data-aware covariance matrix (18). Given localized
weights wα(x[α]) and localized data matrices X[α], we define the dα × dα-dimensional covariance
matrices

(57) Sα(x[α]; ϵ) = X[α]D(wα(x[α])X⊤
[α] −X[α]wα(x[α])wα(x[α])

⊤X⊤
[α]

for α = 1, . . . , d. Given a sample Ξ(n) ∼ N(0, I), one first computes the dα-dimensional vector√
Sα(x[α]; ϵ) Ξ[α](n) of which one picks its scalar entry corresponding to xα, which we denote by

ξα(n). The localized variant of (5) then becomes

(58) Xα(n+ 1) = mα(X[α](n); ϵ) + ξα(n), α = 1, . . . , d.
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Figure 1. Comparison of the samples obtained from three different vari-
ants of localized Schrödinger bridge samplers. We show the centered rows
of the empirical covariance matrix Ĉ (top row) and empirical histograms
(bottom row) obtained from using all d = 101 components. The blue
markers denote the empirical covariance for the given samples; the ma-
genta markers show the average over all d rows. Left column: Localized
EM-type sampler (55); middle column: Localized split-step sampler (56);
right column: Localized sampler (58) with data-aware diffusion matrix
(57). Given the large value of ϵ = 1, only (58) is able to faithfully repro-
duce the target measure N(0, C).

3.1.1. Numerical illustration. To illustrate how well the localized sampling strategy is able to gen-
erate samples from a multivariate Gaussian, we generate M training samples of a d-dimensional
multivariate Gaussian with

x(j) ∼ N(0, C)(59)

for j = 1, . . . ,M with a d×d covariance matrix of the form (6) with a tridiagonal precision matrix
with C−1

i,i = 2, C−1
i,i±1 = −0.5, and periodic conditions C−1

1,d = C−1
d,1 = −0.5. The corresponding

entries of the covariance matrix are Ci,i ≈ 0.58, Ci,i±1 ≈ 0.15, Ci,i±2 ≈ 0.04, and Ci,i±3 ≈ 0.01.
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We employ three different implementations of the localized Schrödinger bridge sampler with
a localization set comprised of two neighboring grid points, i.e. dα = 3. These implementations
are (i) the split-step scheme (56), (ii) the localized EM-type scheme (55), and (iii) the scheme
(58) with data-aware noise update.

In Figure 1 we compare the generated new samples with the given samples for all three
sampling strategies. We show the resulting empirical histograms as well as the rows of the
empirical covariance matrix Ĉ. The rows are centered at the middle point using periodicity. We
use M = 100 training samples and a bandwidth of ϵ = 1 for d = 101 to generate 10, 000 new
samples.

While the split-step scheme (56) underestimates the variance of the distribution, the EM-type
scheme (55) overestimates the variance. Only the localized scheme with data-aware diffusion
(58) captures the marginal distribution and the covariance structure with desirable accuracy.

In Figure 2 we investigate the behavior of the localized split-step scheme (56) for varying
parameter ϵ ∈ {0.01, 0.1, 1}. We find that ϵ = 0.1 improves the results while a further decrease
to ϵ = 0.01 leads to results comparable to ϵ = 1.0. Similar results are obtained for the EM-type
sampling scheme with constant diffusion (55). An optimal choice of ϵ depends, of course, on the
number of available training samples, which has been set to M = 100 for these experiments.

We remark that unlocalized Schrödinger bridge samplers generate samples with a rather noisy
correlation structure which is to be expected for M = 100 training samples.
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Figure 2. Comparison of the samples obtained from the localized split-
step sampler (56) for varying parameter ϵ. Left column: ϵ = 1.0; middle
column: ϵ = 0.1; right column: ϵ = 0.01. While ϵ = 0.1 leads to im-
proved results, it is found that larger and smaller values of ϵ degrade the
performance of the split-step sampler.

3.2. Localized Schrödinger bridge sampler for general measures. The strategy of con-
structing a dimension-reduced localized Schrödinger bridge sampler as presented in the previous
example of a multivariate Gaussian readily extends to general target measures ν(dx).

We need to introduce some further notation. For each α-th entry in the state vector x ∈ Rd
we introduce a subset Λ(α) ⊂ {1, . . . , d} and the associated restriction x[α] ∈ Rdα of x ∈ Rd
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of dimension dα = card (Λ(α)). The complementary part of the state vector is denoted by
x\[α] ∈ Rd−dα . In the example of the multivariate Gaussian introduced in Section 3.1, we have
Λ(α) = {α− 1, α, α+1} with the obvious periodicity extensions for α = 1 and α = d. With this
notation in place, the implementation of the localized Schrödinger bridge sampler proceeds as
described in Section 3.1.

The key assumption we make is that of conditional independence of xα on x\[α], which allows
for the dimension reduction. We consider variables x′α to be conditionally independent of x\[α]
if the conditional distribution in x′α, pα(xα|x; ϵ), satisfies

pα(x
′
α|x; ϵ) = pα(x

′
α|x[α]; ϵ),(60)

which implies E[x′α|x] = E[x′α|x[α]]. The conditional expectation value (52) turns out to be a
Monte-Carlo approximation of the conditional expectation under this assumption. More pre-
cisely, given the transition density of overdamped Langevin dynamics, denoted here by p(x′|x; ϵ),
we obtain

E[Xα(ϵ)|X(0) = x] =

∫
x′α p(x

′|x; ϵ) dx′ =
∫
x′α pα(x

′
α|x; ϵ) dx′α(61a)

=

∫
x′α pα(x

′
α|x[α]; ϵ) dx′α = E[Xα(ϵ)|X[α](0) = x[α]],(61b)

where the second line follows from the conditional independence assumption. It is reasonable to
assume that we can construct a reversible overdamped Langevin process with invariant distri-
bution πα(x[α]) and transition kernel pα(x

′
[α]|x[α]; ϵ) on Rdα . Here πα(x[α]) denotes the marginal

distribution of π(x) in x[α]. Then detailed balance of this dimension-reduced Langevin process
is given by

(62) pα(x
′
[α]|x[α]; ϵ)πα(x[α]) = pα(x[α]|x′[α]; ϵ)πα(x

′
[α]).

Note that in our localized Schrödinger bridge sampler detailed balance is ensured by the Sinkhorn
algorithm which renders the Markov chain reversible. Detailed balance then implies

E[Xα(ϵ)|X[α](0) = x[α]] =

∫
x′α pα(x

′
[α]|x[α]; ϵ) dx

′
[α](63a)

=

∫
x′α

pα(x[α]|x′[α]; ϵ)
πα(x[α])

πα(x
′
[α]) dx

′
[α](63b)

=

∫
x′α ρα(x

′
[α]|x[α]; ϵ)π(x

′
[α]) dx

′
[α],(63c)

with

(64) ρα(x
′
[α]|x[α]; ϵ) :=

pα(x[α]|x′[α]; ϵ)
πα(x[α])

.

We note that ρα(x
′
[α]|x[α]; ϵ) is a density with respect to the reference measure induced by

πα(x[α]). We finally approximate the integral in (63c) via Monte Carlo approximation using

the restricted data samples x
(j)
[α] ∼ πα(x[α]), j = 1, . . . ,M ; i.e.,

(65) E[Xα(ϵ)|X[α](0) = x[α]] ≈
M∑
j=1

x(j)α w(j)
α (x[α]), x(j)α ∼ πα,

with w
(j)
α (x[α]) ∝ ρα(x

(j)
[α]|x[α]; ϵ) such that

∑
j w

(j)
α (x) = 1. This expression is of the form

used in the localized Schrödinger bridge sampler (52). Furthermore, since the transition kernels
ρα(x

′
[α]|x[α]; ϵ) are not available in general, the weight vector wα(x[α]) ∈ Rdα is approximated by
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the Schrödinger bridge approach as in (49). Algorithm 1 summarizes the localized Schrödinger
bridge split-step sampler (56). The algorithm naturally extends to the sampler (58) with localized
data-aware covariance matrix (57).

Algorithm 1: Localized Schrödinger bridge sampler

Input: Samples X ∈ Rd×M .
Parameters : Bandwidth ϵ. Localization dimension dα. Desired number of new samples

N . Number of decorrelation steps nc.

Output: New samples x
(j)
s for j = 1, . . . , N .

1 Step 1: Construct transition Sinkhorn weights v[α]
2 for α← 1 to d do
3 construct localized data X[α];

4 construct kernel matrix Tα ∈ RM×M from localized data;

5 construct Sinkhorn weights vα from Tα;

6 end

7 Step 2: Generate N new samples x
(j)
s using the Sinkhorn weights vα

8 for j ← 1 to N do
9 each new sample is started from a random initial sample

10 X(0)← x(j
⋆) for 1 ≤ j⋆ ≤M and random j⋆;

11 for n← 0 to nc do
12 Ξ(n) ∼ N(0, I);

13 for α← 1 to d do
14 X[α](n)← X(n) ;

15 Ξ[α](n)← Ξ(n) ;

16 X[α](n+ 1/2) = X[α](n) +
√
2ϵΞ[α](n) ; /* noising step */

17 construct vector tα(X[α](n+ 1/2)) ∈ RM ;

18 construct conditional probability wα(X[α](n+ 1/2)) ∈ RM using vα ;

19 construct localized data Xα ;
20 Xα(n+ 1) = Xα wα(X[α](n+ 1/2)) ; /* projection step */

21 end

22 end

23 x
(j)
s ← X(nc);

24 end

Remark 4. We have assumed here a strong form of conditional independence by requesting that
(61) holds for all ϵ > 0. In general, such a condition will be satisfied approximately for sufficiently
small ϵ only. Compare the EM sampler (40), which provides an accurate approximation to the
true transition densities p(x′|x; ϵ) of the underlying diffusion process for ϵ > 0 sufficiently small by
ignoring higher-order dependencies. In practice, this requires a careful choice of the dependency
set Λ(α) which defines x[α] ∈ Rdα .

3.3. Algorithmic properties. We briefly discuss a few important results on the stability and
ergodicity of the proposed localized Langevin samplers, which they essentially inherit from the
unlocalized Schrödinger bridge sampler [10].



14 GEORG A. GOTTWALD AND SEBASTIAN REICH

The following lemma establishes that, since each wα(x[α]), α = 1, . . . , d, is a probability
vector for any ϵ > 0, the localized update step (56b) is stable. In order to simplify notations, we
denote by mloc(x; ϵ) ∈ Rd the vector of localized expectation values with components mα(x[α]),
α = 1, . . . , d, defined by (52).

Lemma 1. Let us introduce the set CM ⊂ Rd defined by

(66) CM = {x ∈ Rd : |xα| ≤ |Xα|∞}.

It holds that the vector mloc(x; ϵ) ∈ Rd of localized expectation value satisfies

(67) mloc(x; ϵ) ∈ CM

for all choices of ϵ > 0 and all x ∈ Rd.

Proof. The lemma follows from the fact that the α-component of mloc(x; ϵ) is given by (52) and
the fact that wα(x[α]) is a probability vector for all ϵ > 0 and all x ∈ Rd. □

Lemma 1 also establishes stability of the general Langevin sampler defined by (5) with localized
mloc(x; ϵ) and S(x; ϵ) = 2ϵI, i.e.,

(68) X(n+ 1) = mloc(X(n); ϵ) +
√
2ϵΞ(n), Ξ(n) ∼ N(0, I),

for all step sizes ϵ > 0. Note that X(n + 1) is no longer in the convex hull of the data as the
original unlocalized Schrödinger bridge (cf. (19)b), but instead is confined to CM in expectation.
The exact gradient structure of the conditional expectation value (24) does no longer hold for the
localizedmloc(x; ϵ). The next lemma shows that the localized sampler (68) remains geometrically
ergodic.

Lemma 2. Let us assume that the data generating density π has compact support. Then the
localized time-stepping method (68) possesses a unique invariant measure and is geometrically
ergodic.

Proof. Consider the Lyapunov function V (x) = ∥x∥2 and introduce the ball

(69) BR = {x ∈ Rd : ∥x∥ ≤ R}

of radius R > 0. Since mloc(x; ϵ) ∈ CM and π has compact support, one can find a radius R > 0,
which is independent of the training data X , such that CM ⊂ BR and

(70) E[V (X(n+ 1))|X(n)] ≤ λV (X(n))

for all X(n) /∈ BR with 0 ≤ λ < 1. Furthermore, because of the additive Gaussian noise in (68),
there is a constant δ > 0 such that

(71) n(x′;mloc(x; ϵ), 2ϵI) ≥ δ

for all x, x′ ∈ BR. Here n(x;m,C) denotes the Gaussian probability density function with mean
m and covariance matrix C. In other words, BR is a small set in the sense of [19]. Geometric
ergodicity follows from Theorem 15.0.1 in [19]. See also the self-contained presentation in [18]. □

Remark 5. We emphasize that, contrary to the unlocalized Schrödinger bridge sampler, the
localized mloc(x; ϵ) is not restricted to the linear subspace of Rd spanned by the training data
X ∈ Rd×M in caseM < d. The localized sampler shares this desirable property with the localized
EnKF [25, 4, 7].
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3.4. Localized kernel-denoising. Localizing the KDE-based denoiser (35) follows along the
same lines. We first note that a component-wise formulation of Tweedie’s formula (31) leads to

(72) ∂xα
log πϵ(x) = −

1

ϵ
(xα − E[x′α|x]) ,

α = 1, . . . , d. Upon assuming the conditional independence relation

(73) E[x′α|x] = E[x′α|x[α]]
one finds that

(74) ∂xα
log πϵ(x) = ∂xα

log πϵ(x[α]).

We approximate the restricted density πϵ(x[α]) by the localized KDE estimator

(75) π̃ϵ(x[α]) ∝
M∑
j=1

exp

(
− 1

2ϵ
∥x[α] − x

(j)
[α]∥

2

)
,

which results in

(76) ∂xα
log πϵ(x) ≈ −

1

ϵ

xα − M∑
j=1

x(j)α w̃(j)
α (x[α])


with localized weights

(77) w̃(j)
α (x[α]) :=

exp
(
− 1

2ϵ∥x[α] − x
(j)
[α]∥

2
)

∑M
j=1 exp

(
− 1

2ϵ∥x[α] − x
(j)
[α]∥2

)
for j = 1, . . . ,M . We collect these weights in the vector w̃α(x; ϵ) ∈ RM . One finally obtains the
following localized KDE update step for Xα(n+ 1/2):

(78) Xα(n+ 1) = Dα(X(n+ 1/2); ϵ) := Xα w̃α(X[α](n+ 1/2)), α = 1, . . . , d,

which can be employed whenever (73) holds to sufficient accuracy.

4. Localised Schrödinger bridge sampler for temporal stochastic processes

In this section, we consider temporal stochastic processes Z(tk) ∈ Rs with tk = k∆t and
k = 0, . . . ,K, and assume that M realizations

(79) x(j) = {Z(j)(tk)}Kk=0 ∈ Rd, d = (K + 1)s,

j = 1, . . . ,M , of such a process have become available. We furthermore assume that the gen-
erating process is Markovian, i.e., Z(tk+1) is conditionally independent of all Z(tl) with l < k
and l > k+1. Such a setting provides a perfect application of the localization strategy proposed
in Section 3. More specifically, we obtain the following subsets for localization in terms of the
entries xα of the augmented state vector x ∈ Rd: Λ(α) = {1, . . . , s} for α ∈ {1, . . . , s} and
(80) Λ(α) = {sl + 1, . . . , s(l + 2)}
for α ∈ {s(l + 1) + 1, . . . , s(l + 2)} and l = 0, . . . ,K − 2.

As a numerical illustration we consider the bimodal stochastic differential equation (SDE)

(81)
d

dt
Z(t) = −Z(t)3 + Z(t) +

√
0.2

d

dt
B(t), Z(0) ∼ N(0, 1),

where B(t) denotes standard Brownian motion. Here s = 1 and we sample solutions in time-
intervals of length ∆t = 5 over K = 100 intervals; hence the dimension of the augmented
state vector x ∈ Rd becomes d = 101. The training data consists of M = 1, 000 independent
realizations, which were obtained with a small step-size EM algorithm applied to (81).
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Results from the localized Schrödinger bridge split-step sampler (56) with constant diffusion
S(x; ϵ) = 2ϵI with ϵ = 0.0025 and N = 25, 000 generated samples can be found in Figures 3 and
4, respectively. The numerical results demonstrate that the localized Schrödinger bridge sampler
can successfully generated samples for this rather high-dimensional (d = 101) and nonlinear
problem given only M = 1, 000 training samples.

We also implemented the localized KDE-based denoiser (78). The results are virtually indis-
tinguishable from the results obtained from the localized Schrödinger bridge sampler.
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Figure 3. Generated trajectories for the bimodal SDE (81) using the
localized Schrödinger bridge split-step sampler with constant diffusion
(56). Left panel: 100 trajectories out of M = 1, 000 training samples;
right panel: 100 trajectories out of N = 25, 000 generated samples. The
computed transition rates (relative number of sign changes along trajec-
tories) agree well with 9% for the training data and 11% for the generated
data.

5. Conditional localized Schrödinger bridge sampler

As for the standard Schrödinger bridge sampler [10] the localized sampler lends itself to condi-
tional sampling. Consider samples x(j) = (z(j), ψ(j)) for j = 1, . . . ,M . The localized Schrödinger
bridge sampler described in Section 3 and Algorithm 1 allows us to learn the joint probability
measure ν(dz,dψ). To draw samples from the conditional probability measure ν(dψ|z) we may
use the localized conditional probability vector tα(x[α]) and the Sinkhorn weights vα obtained

from the samples x(j) , i.e., executing lines 1-6 in Algorithm 1. Conditional sampling is achieved
by ensuring that at each sampling step the z-component of the generated samples X(n) are set to
the value z∗ on which we wish to condition. To achieve this we add the conditioning assignment,
Z(n) ← z∗, between lines 11 and 12 of Algorithm 1. We demonstrate the performance of the
conditional sampler for the multi-scale Lorenz-96 model in the next subsection.

5.1. Conditional sampling for a closure problem. We apply the conditional localized
Schrödinger bridge sampler to the multi-scale Lorenz-96 model for K slow variables zk which are



LOCALIZED SCHRÖDINGER BRIDGE SAMPLER 17

Figure 4. Normalized empirical histograms of training and generated
data for the bimodal SDE (81) using the localized Schrödinger bridge
split-step sampler with constant diffusion (56). We show results over all
1, 000 training and 25, 000 generated data points. The invariant distribu-
tion of the bimodal SDE is well reproduced by the generated data; the
dispersion of the generated data in each of its two modes being slightly
smaller than the one from the training data, which has also been observed
for the split-step scheme in Figure 2.

each coupled to J fast variables yj,k and evolve according to

d

dt
zk = −zk−1(zk−2 − zk+1)− zk + F − hc

b

J∑
j=1

yj,k,(82a)

d

dt
yj,k = −cbyj+1,k(yj+2,k − yj−1,k)− cyj,k +

hc

b
zk(82b)

with periodic boundary conditions zk+K = zk, yj,k+K = yj,k and yj+J,k = yj,k+1. This d =
K(J + 1)-dimensional model was introduced as a caricature for the mid-latitude atmospheric
dynamics [16]. The degree of time-scale separation is controlled by the parameter c. The ratio
of the amplitudes of the large-scale variables zk and the small-scale variables yj,k is controlled
by the parameter b. The slow and fast dynamics are coupled with coupling strength h. The
parameter F denotes external forcing. As equation parameters we choose K = 12 and J = 24,
i.e. d = 300, and F = 20, c = b = 10 and h = 1 as in [34, 2, 9]. These parameters lead to
chaotic dynamics with a maximal Lyapunov exponent of λmax ≈ 18.29 in which the fast variables
experience temporal fluctuations which are 10 times faster and 10 times smaller than those of
the slow variables. This corresponds to the regime of strong coupling in which the dynamics is
driven by the fast sub-system [11].

In the climate science and other disciplines one is typically only interested in the slow large-
scale dynamics. A direct simulation of the multi-scale system (82), however, requires a small time
step adapted to the fastest occurring time scale, making long term integration to resolve the slow
dynamics computationally infeasible. Scientists hence aim to design a computationally tractable
model for the slow variables only in which the effect of the fast dynamics is parameterized. This
is the so called closure or subgrid-scale parameterization problem. In particular, we seek a model
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of the form

d

dt
zk = Gk(z) + ψk(z),(83)

for z = (z1, z2, . . . , zK) with Gk(z) = −zk−1(zk−2 − zk+1) − zk + F . We assume that scientists
have prior physics-based knowledge about the resolved vector field Gk(z) but lack knowledge
of the closure term ψk(z) which parametrizes the effect of the fast unresolved dynamics. The
closure term may be deterministic or stochastic, depending on the choice of equation parameters
in (82). We will employ the localized Schrödinger bridge sampler to generate samples of the
closure term ψ(z) conditioned on the current model state z(t). The sampler will be trained on
M samples x(j) = (z(j), ψ(j)), j = 1, . . . ,M , which consists of a time series with x(j) = x(tj)
with tj = j∆t and ∆t = 5× 10−3.

We obtain M = 40, 000 samples z(j) ∈ RK by integrating (82) using a fourth-order Runge–
Kutta method with a fixed time step δt = 5× 10−4 and collecting the state in time intervals of
∆t = 10 δt. Samples of the closure term ψ(j) ∈ RK are then determined from the samples z(j)

via

ψ(j) :=
z(j+1) − z(j)

∆t
−G(z(j)),(84)

for j = 1, · · · ,M − 1. This defines M − 1 samples x(j) = (z(j), ψ(j)) ∈ R2K for j = 1, . . . ,M − 1
to be used to train the Schrödinger bridge sampler.

To numerically integrate the closure model (83) in terms of the state vector z ∈ RK we employ
an Euler discretization

z(m+ 1) = z(m) + (G(z(m)) + ψ(m|z(m)))∆t(85)

with a time step ∆t. At each time step m ≥ 0 we generate a sample ψ(m|z(m)) conditioned
on the current state z(m). These samples should be uncorrelated to the samples drawn at
the previous time step. This is achieved by running the localized Schrödinger bridge sampler
conditioned on z∗ = z(m) at each time step m for nc = 100 decorrelation steps (cf. Algorithm 1).

For the localized Schrödinger bridge sampler we employ a parameter of ϵ = 0.1 and consider
a nearest neighbor localization with Λ(α) = {α − 1, α, α + 1, α,K + α − 1,K + α,K + α + 1}
with the obvious periodic extensions for α = 1 and α = d. To account for the varying ranges of z
and ψ when estimating the matrices (47) and (50) for fixed parameter ϵ, we replace the standard
Euclidean product with a scaled one where we divide the inner product in the z-variables by σz
and the ψ-variables by σψ, where σ

2
ψ and σ2

x denote the climatic variances of the slow variables

and the closure term, respectively, estimated from the samples x(j).
Figures 5 and 6 show a comparison of the outputs of the localized Schrödinger bridge sampler

with data obtained from simulating the full multi-scale Lorenz-96 system (82). We show results
for the covariance of the slow variables z, obtained from the samples z(j) of the full multi-
scale Lorenz-96 system (82), and of the discretization of the closure scheme (85). We show
in Figure 5 a comparison of the empirical histograms of z obtained by integrating the closure
model (85) with the original samples {z(j)}Mj=1 which were obtained from a simulation of the
full multi-scale Lorenz-96 system (82). The non-stiff trained stochastic closure model (85) is
able to reproduce the actual histogram well. We further show a scatter plot of the stochastic
closure term ψ obtained from the full Lorenz-96 system (82) and obtained from the localized
conditional Schrödinger bridge. The closure term is well represented by the localized conditional
Schrödinger bridge. In Figure 6 we show the entries of the rows of the empirical covariance
matrix, centered about k = 6 employing periodicity of the system. It is seen that our localized
sampler reproduces the covariance structure of the full system very well. We further show that



LOCALIZED SCHRÖDINGER BRIDGE SAMPLER 19

the temporal autocorrelation structure of the Lorenz-96 system is well reproduced by the localized
conditional Schrödinger bridge.
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Figure 5. Comparison of the samples obtained from the localized
Schrödinger bridge sampler and given samples drawn from the multi-
scale Lorenz-96 system (82) using nearest neighbor localization with
Λ(α) = {α − 1, α, α + 1K + α − 1,K + α,K + α + 1} with the obvi-
ous periodic extensions for α = 1 and α = d. We consider 40, 000 new
and given samples. Left: Empirical histograms. Right: Scatter plot of
the closure term ψ as a function of z.
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Figure 6. Comparison of the samples obtained from the localized
Schrödinger bridge sampler and given samples drawn from the multi-
scale Lorenz-96 system (82) using nearest neighbor localization with
Λ(α) = {α − 1, α, α + 1K + α − 1,K + α,K + α + 1} with the obvi-
ous periodic extensions for α = 1 and α = d. We consider 40, 000 new
and given samples. Left: Centered rows of the empirical covariance ma-
trix for z. The magenta line denotes the mean over all rows. The blue
markers denote the empirical covariance for the given samples. Right:
Autocovariance function R(τ).
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6. Conclusions

The construction of the previously proposed Schrödinger bridge sampler [10] is fraught with
an unfavorable dependency in the dimension d. The required number of samples scales for a
desired accuracy exponentially on the underlying intrinsic dimensionality of the data [35]. We
have shown here that for data which satisfy conditional independence one can successfully employ
localization to express the single Schrödinger bridge problem for d-dimensional data to d localized
Schrödinger bridge problems of smaller size dα ≪ d. The localized Schrödinger bridge sampler
can be used to generate samples from an unknown prior and readily lends itself to conditional
sampling and Bayesian inference.

We have numerically demonstrated the advantage of localization for several examples. We con-
sidered a Gaussian distribution for which the inverse covariance matrix has tri-diagonal structure,
a bimodal SDE and a conditional sampling problem of determining a closure term in a nonlinear
multi-scale system.

We have established theoretically that the proposed sampler is stable and geometric ergodic
under relatively mild conditions. The stability of our sampler allows for applications to data
drawn from a singular measure which arise when data are concentrated on a lower-dimensional
manifold. This sets it apart from score-generative models which rely on Tweedie’s formula and
the differentiability of a regularized measure.

We have established several connections with other sampling strategies. The Schrödinger
bridge sampler was shown to be closely related to kernel-based denoising. The Schrödinger
bridge sampler, however, has the advantage that it can employ a data-aware noising step, which
was demonstrated to be advantageous in Section 3.1.1, and can be constructed using a variable
bandwidth [10], which is desirable with training data that involve data-sparse regions in the state
space. Further, while this work has focused on overdamped Langevin dynamics as a mean of
sampling from a distribution, the methodology generalizes to more general formulations of score-
generative and diffusion modeling [12, 27, 29, 36] and transformers [30, 26]. We have shown
that the conditional mean of a Schrödinger bridge sampler is formally akin to self-attention in
transformer architectures and that localization naturally leads to multi-head self attention. It
will be interesting to further explore these connections.

The framework of localized Schrödinger bridges lends itself to numerous applications. In
particular, we mention here sequential data assimilation [25, 4, 7], feedback particle filter and
homotopy methods [37, 24, 23], which are implemented utilizing Schrödinger bridges, and in-
teracting particle sampling methods, which rely on grad-log density estimators such as (1) [17].
Finally, the proposed localized conditional estimator mloc(x) as well as its KDE-based variant
(78) could be of independent interest for MMSE denoising [20].
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