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Abstract. We consider the problem of sampling from an unknown distribution for
which only a sufficiently large number of training samples are available. Such set-
tings have recently drawn considerable interest in the context of generative modelling
and Bayesian inference. In this paper, we propose a generative model combining
Schrödinger bridges and Langevin dynamics. Schrödinger bridges over an appropri-
ate reversible reference process are used to approximate the conditional transition
probability from the available training samples, which is then implemented in a
discrete-time reversible Langevin sampler to generate new samples. By setting the
kernel bandwidth in the reference process to match the time step size used in the un-
adjusted Langevin algorithm, our method effectively circumvents any stability issues
typically associated with the time-stepping of stiff stochastic differential equations.
Moreover, we introduce a novel split-step scheme, ensuring that the generated sam-
ples remain within the convex hull of the training samples. Our framework can be
naturally extended to generate conditional samples and to Bayesian inference prob-
lems. We demonstrate the performance of our proposed scheme through experiments
on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale
parametrization conditional sampling problem as well as generating sample trajec-
tories of a dynamical system using conditional sampling.

1. Introduction

Generative modeling is the process of learning a mechanism for synthesizing new
samples that resemble those of the original data-generating distribution, given only a
finite set of samples. It has seen wide adoption and enormous success across diverse
application domains, from image [5, 24] and text generation [59, 32], to drug discovery
[3, 2] and anomaly detection [12, 49], to name but a few.

In this paper, we introduce a new nonparametric approach to generative modeling
that combines ideas from Schrödinger bridges [43, 7] and reversible Langevin dynamics

[41]. Suppose that we are given M training samples x(i) ∼ π, i = 1, . . . ,M , from
an unknown distribution π on Rd. Perhaps the simplest nonparametric approach to
generative modeling is to build a kernel density estimate (KDE) and then sample from
it; the KDE is essentially a mixture model with M components. Alternatively, one
could estimate the score function s(x) = ∇ log π(x), without directly estimating π(x),
and use this estimate in the Langevin dynamics

(1) Ẋτ = s(Xτ ) +
√
2Ẇτ ,

whereWτ denotes standard d-dimensional Brownian motion [41]. There is a plethora of
ways of estimating the score function [26, 53], and given an estimate for it, one needs
to discretize (1), for example using Euler–Maruyama, to obtain an implementable
scheme. However, the step size needs to be carefully chosen: a small step size leads
to slow convergence, while too large a step yields instability of the numerical scheme,
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especially for data that are supported on or are strongly concentrated about a compact
sub-manifold of Rd, e.g.,

(2) M = {x ∈ Rd : g(x) = 0},

for some unknown function g(x); a situation commonly encountered in high-dimensional
data and referred to as the manifold hypothesis [14, 57] and which is known to be chal-
lenging for generative models based on (1) [52]. Any estimated score function, denoted
here by ŝM (x), will take large values for x with ∥g(x)∥2 ≫ 0, rendering the Langevin
dynamics (1) stiff. This implies that an explicit time integration method such as
Euler–Maruyama will require very small step sizes ∆τ > 0.

Example 1.1. In order to illustrate this point consider the singular Gaussian distri-
bution on R2 with x = (x1, x2) ∈ R2 satisfying x1 ∼ N(0, 1) and x2 = 0. Let us assume

that the data samples x(i), i = 1, . . . ,M , have been polluted by noise from a Gaussian
in R2 with mean zero and covariance νI for 0 < ν ≪ 1. A standard score estimator
ŝM (x) will lead to

(3) ŝ∞(x) =

(
− 1

1+νx1
− 1

νx2

)
in the limit M → ∞ and an Euler–Maruyama discretization of the corresponding
Langevin dynamics (1) will require step-sizes ∆τ < 2ν, which become arbitrarily small
as ν → 0. We will return to this simple problem in Example 3.1 where it will be
used to demonstrate certain advantages of the methodology proposed in this paper and,
in particular, that we can circumvent the just described computational bottleneck as
ν → 0.

Motivated by this illustrative example, we follow an alternative approach in this paper.
Namely, instead of first estimating the score function s(x) and then discretising the
corresponding approximation to (1) in time, we employ Schrödinger bridges [43, 7] to
directly estimate the conditional expectation value

(4) µ(x; ϵ) := E[Xϵ|X0 = x]

from the given samples {x(i)}Mi=1 for given parameter ϵ > 0. We denote the data-driven
estimator by m(x; ϵ) : Rd → Rd.

More specifically, we first note that µ(x; ϵ) = exp(ϵL) id(x), where id : Rd → Rd

denotes the identity map and L the generator of the Langevin dynamics (1) [41].

We then approximate the semi-group exp(ϵL) from the given samples {x(i)}Mi=1 using
a Schrödinger bridge approximation [35, 58], which optimally couples the empirical
measure of the training samples with itself over an appropriate random walk reference
process. By solving the Schrödinger bridge problem, we construct a transition matrix
whose state space encompasses all the training points, which in turn defines m(x; ϵ)

for all x = x(i), i = 1, . . . ,M . We then extend this approximation beyond the training
data to all x ∈ Rd, which leads to the desired approximation m(x; ϵ).

The second key ingredient of our method is to interpret ϵ as a step size and to read
off a Gaussian transition kernel from the Schrödinger bridge approximation in the form
of

(5) Xn+1 = m(Xn; ϵ) +
√

Σ(Xn) Ξn,

with appropriately defined diffusion matrix Σ : Rd → Rd×d and Ξn ∼ N(0, ϵI).

Broadly, m(Xn; ϵ) controls the drift, while
√

Σ(Xn) Ξn introduces noise. An obvi-
ous choice for Σ(x) is Σ(x) = 2I, which corresponds to (1) and its Euler–Maruyama
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discretisation with step-size ∆τ = ϵ. In addition, we explore data-informed choices of
Σ(x) in (5).

Comparing to directly discretizing (1) using Euler–Maruyama with step-size ∆τ = ϵ,
we will demonstrate that the scheme (5) is stable and ergodic for all step-sizes ϵ > 0
and, hence, ϵ can be chosen solely on accuracy considerations. We also introduce a
novel split-step time-stepping scheme, which ensures that the generated samples lie in
the convex hull of the training samples.

In addition, we replace the constant diffusion matrix Σ(x) = 2I with a scaled matrix

(6) Σ(x) = 2ρ(x)I

for given bandwidth ρ(x) > 0, which requires appropriate modifications to the Schrödinger
bridges considered in [58]. As we demonstrate in our numerical experiments, the re-
sulting sampling scheme (5) provides a better representation of the underlying target
distribution. More precisely, we assess the quality of the generated samples using a
variable bandwidth kernel and using a fixed bandwidth kernel on synthetic data sets
drawn from non-uniform distributions supported on irregular domains and on low-
dimensional manifolds.

We then extend our method to cover Bayesian inference problems with π(x) as prior
and to create a conditional generative model. These extensions allow us to perform
Bayesian inference in the “simulation-based” setting, i.e., without explicit evaluation
of a prior density and, in the case of conditional sampling, even without evaluations
of the data likelihood. We demonstrate the performance of our conditional generative
model for a stochastic subgrid-scale parametrization problem and for the generation
of synthetic time series of dynamical systems.

1.1. Related work. Langevin dynamics (1) characterizes the motion of particles as
they experience a blend of deterministic and stochastic forces. Unlike in this paper, it
is typically assumed that the deterministic forcing term ∇ log π(x) is given. Langevin
dynamics has become a popular tool for sampling data from the target distribution
π(x). One variation of this is to introduce a symmetric preconditioning operator to
the Langevin dynamics and to consider reversible processes of the general form

(7) Ẋτ = K(Xτ )∇ log π(Xτ ) +∇ ·K(Xτ ) +
√

2K(Xτ )Ẇτ ,

which samples from the distribution π(x) for any symmetric positive definite matrix
K(x). We adopt here the Itô interpretation of the multiplicative noise term [41]. While
(7) has originally been discussed in molecular physics [15, 13, 25], popular choices of
K(x) arising from computational statistics include the empirical covariance [16] and the
Riemannian metric [17, 31], making this method converge faster and more geometry-
aware, while leaving the stationary distribution unchanged. The scaled diffusion matrix
(6) corresponds to the choice K(x) = ρ(x)I. Optimal choice of K(x) in terms of
convergence to equilibrium have recently been discussed in [30].

Our approximation of the semi-group exp(ϵL) relies on recent work on diffusion
maps and an accelerated Sinkhorn algorithm [35, 58]. The Sinkhorn algorithm solves
for the Markov transition kernel associated with a discrete Schrödinger bridge prob-
lem, where the coupling is between the empirical measure of the training samples with
itself. This approach results in a symmetric bi-stochastic matrix that, notably, approx-
imates the semi-group exp(ϵL) to higher accuracy in ϵ than standard diffusion map
approximations [9, 8]. Separately, the idea of using variable bandwidth kernels can
be found very early in the statistics community, for example, in the context of kernel
density estimation [47, 54]. Recently, [1] replaces the original fixed bandwidth kernel
with the variable bandwidth kernel in the construction of diffusion maps, making the
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approximation of the generator accurate on unbounded domains. Inspired by this con-
cept, we replace the fixed bandwidth kernel Σ = 2I with a variable bandwidth kernel
(6) for given ρ(x) > 0. The resulting Schrödinger bridge approximates the semi-group
of the reversible Langevin diffusion process (7) with K(x) = ρ(x)I.

Several recent studies have combined a range of score function estimation techniques
with Langevin dynamics. For example, [52] introduces a noise conditional score net-
work to learn the score function and then uses annealed Langevin dynamics to generate
samples. [4] studies the convergence rate of a Langevin based generative model, where
the score is estimated using denoising auto-encoders. Such techniques are also studied
within the Bayesian imaging community, commonly referred to as “plug and play” [29].
These approaches typically use neural networks for the estimation of the score func-
tion. The Schrödinger bridge sampler proposed in this paper is instead built upon a
direct discrete-time approximation to (1). In addition, [29] uses an explicit projection
to ensure that samples stay on the compact manifold given by (2) which is assumed
to be explicitly known. In contrast, we do not assume any knowledge of M.

We finally mention diffusion models or score generative models (SGM), which have
been successfully used for generative modelling, in particular in image generation [23,
52]. These methods solve both a forward and a reverse stochastic differential equation
(SDE). The forward SDE introduces noise to the sample, evolving the prior into the
standard normal distribution, while the reverse SDE evolves samples from the standard
normal distribution back to the original data distribution, yielding a different sample
than the one initially fed into the forward SDE. During the training process, the score
function is learned for the nonstationary distribution at each time. We mention that
Schrödinger bridges have also been implemented in the context of SGMs in order to
exactly couple the target distribution with the standard normal distribution [55, 11,
51, 6, 42]. Here we consider a completely different application of Schrödinger bridges;
namely the estimation of conditional expectation values from training data.

1.2. Outline. In Section 2 we construct a Markov chain using a Schrödinger bridge
approximation that samples from the given discrete data distribution. In Section 3,
we extend this Markov chain to the continuous state space setting by constructing a
Gaussian transition kernel which extracts its conditional mean and covariance matrix
from the underlying diffusion map approximation. We introduce two discrete-time
Langevin samplers; one with a data-unaware diffusion and one with a data-aware dif-
fusion matrix in Section 3.1. Theoretical properties such as stability and ergodicity
are discussed in Section 3.2. We further discuss the application of variable band-
width kernels when constructing the Schrödinger bridge in Section 3.3. Here the goal
is to approximate the tails of the reference distribution π(x) better from the avail-
able training samples. In terms of practical applications, we explore the extension
of our proposed scheme to a conditional sampling setting and Bayesian inference in
Section 4. We demonstrate our proposed methods in Section 5 in a suite of examples.
We start with a couple of synthetic examples demonstrating among others the benefit
of variable bandwidth implementations. In terms of applications, we employ condi-
tional sampling to provide a data-driven stochastic subgrid-scale parametrization for
multi-scale systems. Furthermore, we show how our approach can be used to generate
realistic synthetic trajectories of a dynamical system, given only a single time series
for training. We conclude in Section 6 with a summary and an outlook.

2. Discrete Schrödinger bridges

In this section, we collect some preliminary building blocks by considering the sim-
pler task of building a discrete Markov chain over the samples {x(i)}Mi=1, which leaves
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the associated empirical probability measure

(8) µem(dx) =
1

M

M∑
i=1

δx(i)(dx)

in Rd invariant. Here δx(dx) denotes the Dirac delta distribution centred at x. In the
subsequent section, we will generalise the finding from this section to approximately
sample from π(x), allowing for the generation of new samples which are distinct from
the given training samples.

We consider the Schrödinger bridge problem of coupling µem(dx) with itself along a
reversible reference process with (unnormalized) transition probabilities

(9) tij = exp

(
− 1

2ϵ
(x(i) − x(j))⊤

(
K(x(i)) +K(x(j))

)−1
(x(i) − x(j))

)
,

which we collect into a symmetric matrix T ∈ RM×M . Here ϵ > 0 is a tuneable
parameter and K(x) is a symmetric positive definite matrix for all x ∈ Rd. Popular
choices include K = I, K = ΣM , where ΣM is the empirical covariance matrix of
the training samples {x(i)}Mi=1, and K = ρ(x)I, where ρ(x) > 0 is a scaling function
representing variable bandwidth.

Instead of working with the empirical measure µem(dx), we introduce the probability

vector p∗ = (1/M, . . . , 1/M)⊤ ∈ RM over {x(i)}Mi=1. Then the associated Schrödinger
bridge problem can be reformulated into finding the non-negative scaling vector v ∈
RM such that the symmetric matrix

(10) P = D(v)TD(v)

is a Markov chain with invariant distribution p∗, i.e.,

(11) Pp∗ = p∗.

Here D(v) ∈ RM×M denotes the diagonal matrix with diagonal entries provided by
v ∈ RM . We remark that the standard scaling used in Schrödinger bridges would lead
to a bi-stochastic matrix P̃ , which is related to (10) by P̃ =M−1P .

Given P , one can now construct a Monte Carlo scheme that samples from µem.
Assume the Markov chain is currently in state x(j), then the transition probabilities
to the next state x ∈ {x(i)}Mi=1 are given by

(12) pj = Pej ∈ RM ,

where ej ∈ RM denotes the j-th unit vector in RM . Since all entries in P are bounded

from below provided all samples satisfy x(i) ∈ C, where C is a compact subset in Rd,
the constructed Monte Carlo scheme possesses a unique invariant measure given by
p∗ and is geometrically ergodic. The rate of convergence can be determined by the
diffusion distance

(13) d(x(i), x(j)) = ∥pi − pj∥2.

If the diffusion distance is small, then x(i) and x(j) are well connected. Furthermore, if
d(x(i), x(j)) is small for all points, then the Markov chain will mix quickly. In particular,
larger values of ϵ will lead to faster mixing.

However, the goal is to approximately sample from the underlying distribution π(x)
and not just the empirical distribution µem(dx). The required extension of our baseline
algorithm is discussed in the following section.
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3. Approximating the conditional mean

In order to implement (5), we need to define m(x; ϵ) and Σ(x) for any x ∈ Rd. In
this section, we discuss how one can obtain these functions from the training samples
{x(i)}Mi=1 and the Markov chain approximation (10).

We introduce the vector-valued function t(x) ∈ RM with entries

(14) ti(x) = exp

(
− 1

2ϵ
(x(i) − x)⊤

(
K(x) +K(x(i))

)−1
(x(i) − x)

)
for i = 1, . . . ,M . We then define the probability vector using the Sinkhorn weights, v,
obtained in (10), i.e.,

(15) p(x) =
D(v)t(x)

v⊤t(x)
∈ RM

for all x ∈ Rd. This vector gives the transition probabilities from x to training samples
{x(i)}Mi=1 and provides a finite-dimensional approximation to the conditional proba-
bility distribution πϵ(·|x) of the true underlying diffusion process; i.e., the semi-group
exp(ϵL) with generator L corresponding to the generalized reversible diffusion process
(7).

Finally, using the probability vector p(x), which implicitly depends on ϵ, and intro-
ducing the data matrix of training samples

(16) X = (x(1), . . . , x(M)) ∈ Rd×M ,

our sample-based approximation of the conditional mean is provided by

(17) m(x; ϵ) := Xp(x).

Remark 3.1. The construction of the conditional mean m(x; ϵ) is known as the
barycentric projection of the entropy-optimally coupling [50, 44]. In optimal transport,
v plays the role of the optimizer of the dual problem. We also mention the connection
to de-noising schemes which utilize a structure similar to (17). See the recent review
[40].

3.1. Sampling algorithms. We now present our main Langevin sampling strategies
based on the previously introduced probability vector p(x) in (15). Sampling schemes
of the form (5) have the same drift term (17), but differ in the way the diffusion
matrix Σ(x) is defined. We consider a data-unaware diffusion as well as a data-aware
diffusion which turns out to be advantageous in generating new samples from the data
distribution π (see the numerical experiments in Section 5).

3.1.1. Langevin sampler with data-unaware diffusion. Using mϵ(x), we propose the
recursive sampler

(18) Xn+1 = Xn +∆τ

(
m(Xn; ϵ)−Xn

ϵ

)
+
√
2K(Xn)Ξn

as an approximation to (7), where ∆τ is the time step and Ξn ∼ N(0,∆τI). If K = I,
we obtain the score function approximation

(19) s(x) =
m(x; ϵ)− x

ϵ

in (1). Furthermore, by taking ∆τ = ϵ, we have

(20) Xn+1 = m(Xn; ϵ) +
√
2K(Xn)Ξn.

Note that (20) fits into the general formulation (5) with Σ(x) = 2K(x).
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Let us briefly discuss the qualitative behavior of the time-stepping method (20) as
a function of ϵ > 0. For large ϵ, the expected value m(x; ϵ) will become essentially
independent of the current state Xn and the diffusion process will sample from a
centred Gaussian. For ϵ → 0, on the other hand, the probability vector p(x) can
potentially degenerate into a vector with a single entry approaching one with all other
entries essentially becoming zero. Hence a key algorithmic challenge is to find a good
value for ϵ and a suitable K(x), which guarantee both good mixing and accuracy, i.e.,
Xn ∼ π as n→ ∞.

In terms of initialisation, it is often best to initialise from one of the training data
x(j

∗) with j∗ ∈ {1, . . . ,M} chosen at random.

3.1.2. Langevin sampler with data-aware diffusion. From (15) and (16), one can also
define the scaled conditional covariance matrix,

(21) C(x) = ϵ−1(X −m(x; ϵ)1⊤M )D(p(x))(X −m(x; ϵ)1⊤M )⊤ ∈ Rd×d,

which is the (scaled) covariance matrix associated with the probability vector p(x).
Here 1M ∈ RM denotes the M -dimensional vector of ones. Therefore, one can more
directly implement a Gaussian approximation associated with the transition probabil-
ities p(x) and introduce the update

(22) Xn+1 = Xn +∆τ

(
m(Xn; ϵ)−Xn

ϵ

)
+
√
C(Xn)Ξn.

Similar to the previous case, setting ∆τ = ϵ implies

(23) Xn+1 = m(Xn; ϵ) +
√
C(Xn)Ξn,

which we found to work rather well in our numerical experiments since it directly
captures the uncertainty contained in the data-driven coupling P . The scheme (23)
corresponds to setting Σ(x) = C(x) in (5). Also note that the scheme (23) still depends
on K(x) through the probability vector p(x).

3.2. Algorithmic properties. We briefly discuss several important properties on the
stability and the ergodicity of the proposed Langevin samplers. The following Lemma
establishes that, since each p is a probability vector, m(x; ϵ) = Xp(x) is a convex

combination of the training sample {x(i)}Mi=1.

Lemma 3.1. Let us denote the convex hull generated by the data points {x(i)}Mi=1 by
CM . It holds that

(24) m(x; ϵ) ∈ CM
for all choices of ϵ > 0 and all x ∈ Rd.

Proof. The Lemma follows from the definition (17), which we write as m(x; ϵ) =∑M
j=1 x

(j)pj(x), and the fact that p(x) is a probability vector with 0 ≤ pj(x) ≤ 1

for all ϵ > 0 and all x ∈ Rd. □

This establishes stability of the Langevin samplers (20) and (23) for all step-sizes ϵ > 0.
The next lemma shows that the Langevin sampler (20) is geometrically ergodic.

Lemma 3.2. Let us assume that the data generating density π(x) has compact sup-
port. Then the time-stepping method (20) possesses a unique invariant measure and
is geometrically ergodic provided the norm of the symmetric positive matrix K(x) is
bounded from above and below for all x ∈ Rd.
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Proof. We consider K(x) = I for simplicity. We introduce the Lyapunov function
V (x) = ∥x∥2 and balls

(25) BR = {x ∈ Rd : ∥x∥ ≤ R}

of radius R > 0 in Rd. Since mϵ(Xn) ∈ CM and π(x) has compact support, one can

find radii R∗ > 0 and R >
√
R2

∗ + 2ϵ, which are independent of the training data

{x(i)}Mi=1, such that CM ⊂ BR∗ and

(26) E[V (Xn+1)|Xn] ≤ λV (Xn)

for allXn /∈ BR and suitable 0 ≤ λ < 1. This follows from the fact that E[V (Xn+1)|Xn] <
R2

∗ + 2ϵ, while V (x) > R2 for all x /∈ BR. One then chooses λ = (R2
∗ + 2ϵ)/R2 < 1.

Furthermore, there is a constant δ > 0 such that

n(x′;m(x; ϵ), 2ϵI) ≥ δ

for all x, x′ ∈ BR. Here n(x;m,Σ) denotes the Gaussian probability density function
with mean m and covariance matrix Σ. In other words, BR is a small set in the
sense of [39]. Geometric ergodicity follows from Theorem 15.0.1 in [39]. See also the
self-contained presentation in [37]. □

We note that extending Lemma 3.2 to the time-stepping scheme (23) with a data-aware
diffusion is non-trivial since the covariance matrix (21) may become singular.

Lemma 3.3. If K(x) = I, the conditional mean estimator m(x; ϵ) is equivalent to

(27) m(x; ϵ) = x+ ϵ∇x log Π(x; ϵ), Π(x; ϵ) := (vTt(x))2.

Hence, the update (20) is equivalent to an Euler–Maruyama discretization of Langevin
dynamics (1) with modified probability density

(28) π̃(x; ϵ) :=
Π(x; ϵ)∫
Π(x; ϵ) dx

.

In other words, for ϵ sufficiently small and K(x) = I, (20) samples approximately from
π̃(x; ϵ).

Proof. Formula (27) follows from (15) and (14). □

Lemma 3.1 suggests to replace the sampling step (20) by the associated split-step
scheme

Xn+1/2 = Xn +
√
2K(Xn)Ξn,(29a)

Xn+1 = m(Xn+1/2; ϵ).(29b)

This scheme now satisfies Xn ∈ CM for all n ≥ 1 and any choice of ϵ. Similarly, one
can replace (23) by the split-step scheme

Xn+1/2 = Xn +
√
C(Xn)Ξn,(30a)

Xn+1 = m(Xn+1/2; ϵ).(30b)

These split-step schemes have been used in our numerical experiments. We note that
(29b) can be viewed as a de-noising step applied to a noisy Xn+1/2. See [40] for a
recent survey of de-noising techniques used in image processing and their connection
to SGM.
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Figure 1. Histograms of the x1- and x2-components of the training as
well as generated data for Example 3.1. One finds that the split-step
scheme effectively denoises the x2-component while faithfully reproduc-
ing the standard normal distribution in the x1-component.

Example 3.1. We return to Example 1.1 and demonstrate the performance of the
proposed split-step scheme (29) for this simple linear problem. We sample M = 103

training samples from the Gaussian distribution with mean zero and covariance matrix

(31) C =

(
1 + ν 0
0 ν

)
with ν = 10−4. The split-step scheme (29) is implemented with ϵ = 0.1 and a total
of 105 samples are generated. See Figure 1 for numerical results. It is found that
the proposed scheme samples correctly from the normal distribution in x1 and, at the
same time, denoises the x2-component. We recall that a standard Euler–Maruyama
discretisation would require step-sizes ∆τ < 0.0002 and would sample from the noisy
distribution N(0, C).

We finally discuss the computational complexity of the proposed algorithms in terms of
the size, M , of the training data and the dimension, d, of the samples space Rd. In the
off-line phase of the algorithm, the accelerated Sinkhorn algorithm of [58] converges
essentially in order O(M0) iterations and each iteration requires matrix-vector mul-
tiplications; hence being of order O(M2). Computing T involves calculating O(M2)
distances between vectors in Rd. The online phase requires the multiplication of the
d ×M -dimensional data matrix X with the M -dimensional weight vector p(x). The

computation of p(x) in turn involves the computation of M distances ∥x− x(j)∥2 and
inner products ofM -dimensional vectors. Overall the computational complexity of the
online phase is of order O(dM).

The more problematic part is the accuracy of the Schrödinger bridge approximation
to the semi-group exp(ϵL). Optimal scaling of ϵ as a function of M leads to an

approximation error of order O(M−2/(8+d)), which requires an exponential increase
of the sample size M as a function of the dimension, d, of sample space in order
to reach a desired accuracy. While improvements in accuracy can be obtained by
the variable bandwidth techniques discussed next for low dimensional problems, a
localized formulation of the Schrödinger bridge sampler, as proposed in [22], can lead
to an effectively dimension-independent accuracy.

3.3. Variable bandwidth diffusion. It is well-known from the literature on diffu-
sion maps that a variable bandwidth can improve the approximation quality for fixed
sample size M [1]. Here we utilize the same idea. However, we no longer insist on
approximating the standard generator with K = I, since we only wish to sample from
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the distribution π rapidly. Hence, we consider reversible diffusion processes (7) with

(32) K(x) = ρ(x)I.

It is an active area of research to select a ρ that increases the spectral gap of the
associated generator L, given by

(33) Lf = π−1∇ · (πρ∇f) = ∇ · (ρ∇f) + ρ∇ log π · ∇f,

while not increasing computational complexity. A larger spectral gap implies a faster
convergence rate [46], indicating that the generated samples are closer to the reference
at a finite time, exhibiting a high accuracy. We demonstrate numerically in Section
5 that ρ can indeed be used to increase the sampling accuracy. More specifically, the
bandwidth ρ(x) is chosen as

(34) ρ(x) = π(x)β,

where β ≤ 0 is a parameter and the unknown sampling distribution π is approximated
by an inexpensive low accuracy density estimator [47, 54]. One finds that the variable
bandwidth parameter β in (34) and the scaling parameter ϵ both influence the effective
step-size in the Markov chain approximation (10) for (32). In order to disentangle the
two scaling effects we modify the construction of the entries (9) in Tϵ as follows. We first

compute πi ≈ π(x(i)) over all data points and then rescale these typically unnormalized
densities:

(35) π̃i = Z−1πi, Z :=
1

M

∑
j

πj .

The variable scaling length is then set to

(36) ρi = π̃βi = Z−βπβi

for i = 1, . . . ,M , i.e., K(x(i)) = ρiI in (9) and, more generally,

(37) K(x) = Z−βπ(x)β.

The proposed scaling implies that a constant target density π(x) leads to K(x(i)) = I
in (9) regardless of the chosen β value. See Section 5 below for our numerical findings.

In order to derive an appropriate time-stepping scheme, we note that the drift term
in the Itô formulation (7) with K(x) = ρ(x)I can be expressed as

(38) L id(x) = ρ∇ log π +∇ρ

and, hence, it holds that

(39) m(x; ϵ) = Xp(x) ≈ exp(ϵL) id(x) = µ(x; ϵ),

and

exp(ϵL) id(x) ≈ x+ ϵL id(x) = x+ ϵs(x)(40)

as desired (cf. (19)). We emphasize that the drift now satisfies s(x) = ρ(x)∇ log π(x)+
∇ρ(x) and is no longer equivalent to the score ∇ log π(x). For the numerical vari-
able bandwidth experiments conducted in Section 5, we therefore used (29) with
K(x) = ρ(x)I. We remark that our aim is not to reproduce the actual dynamics
of an underlying stochastic process, i.e. the process associated with the generator (33),
but rather to sample from the distribution π(x).
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4. Bayesian inference and conditional sampling

We note that the previously discussed sampling methods can easily be extended to
reversible diffusion processes of the form

(41) Ẋτ = −∇V (Xτ ) +∇ log π(Xτ ) +
√
2Ẇτ ,

where V (x) denotes a known potential such as the negative log-likelihood function
in case of Bayesian inference with π(x) taking the role of the prior distribution. We
obtain, for example, the adjusted time-stepping scheme

Xn+1/2 = Xn − ϵ∇V (Xn) +
√
2Ξn,(42)

Xn+1 = m(Xn+1/2; ϵ)(43)

for given samples {x(i)}Mi=1 from an unknown (prior) distribution π(x). This numerical
scheme approximately samples from the invariant distribution

π̃(x) ∝ e−V (x)π(x).

Remark 4.1. We briefly divert to optimization of a regularised minimization problem
of the form

(44) x∗ = argmin
x

{V (x)− log π(x)}

for given potential V (x) and regulariser − log π(x). Again assuming that only samples

{x(i)}Mi=1 of π(x) are available, an algorithm for approximating x∗ can be defined as
follows:

xn+1/2 = xn − ϵ∇V (xn),(45a)

xn+1 = m(xn+1/2; ϵ).(45b)

Here m(x; ϵ) = Xp(x) approximates the optimization update associated with the regu-
lariser − log π(x). The iteration is stable and any limiting point x∞ is contained in

the convex hull of the data points {x(i)}Mi=1.

The sampling schemes (29) and (30) can furthermore be extended to conditional gen-
erative modeling. More specifically, consider a random variable x = (y, z), which we
condition on the first component for given y = y∗. We assume here that the decompo-
sition of x into the parts z and y is given, and we wish to sample from π(z|y∗) given
samples x(i) = (y(i), z(i)), i = 1, . . . ,M , from the joint distribution π(x) = π(y, z).

In order to perform the required conditional sampling, we propose a method which
combines approximate Bayesian computation (ABC) with our diffusion map based
sampling algorithm. As before, we construct vectors of conditional expectation value
m(x; ϵ) based on the samples {x(i)}Mi=1. We assume that the bandwidth parameter ϵ
used in the diffusion map approximation is also applied in the ABC misfit function,
i.e.,

(46) L(y, y∗) =
1

2ϵ
∥y − y∗∥2.

This suggests the following split-step approximation scheme. Given the last sample
Xn = (Yn, Zn), we first update the y-component using

(47) Ŷn = Yn − ϵ∇yL(Yn, y
∗) = y∗.
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In other words, we replace the current Xn = (Yn, Zn) by X̂n = (y∗, Zn). Next we apply

the split-step scheme (29) to X̂n, i.e.,

Xn+1/2 = X̂n +

√
2K(X̂n)Ξn,(48)

Xn+1 = m(Xn+1/2; ϵ),(49)

where m(x; ϵ) = Xp(x) with X = (x(1), . . . , x(M)), and the definition of the probability
vectors p(x) follows from (15). The split-step scheme (30) generalises along the same
lines.

We show in Section 5.3 how conditional sampling with the Schrödinger bridge en-
ables drawing inaccessible random variables compatible with a known macroscopic
state, a problem known as stochastic subgrid-scale parametrization. We further em-
ploy conditional sampling in Section 5.4 to draw random trajectories of a dynamical
system where a future state is conditioned on the current state.

5. Numerical experiments

In this section, we illustrate our method through three numerical examples encom-
passing different ranges and focal points. In the first two examples, we generate samples
using synthetic datasets with increasing dimensions. Our emphasis is on exploring the
impact of different diffusions and of employing a variable bandwidth kernel. In the
third example, we showcase the proposed conditional generative modeling in Section 4,
applied to a stochastic subgrid-scale parametrization problem. In the final example in
Section 5.4, we employ conditional sampling to generate trajectories of the Lorenz-63
system [33] from previously computed training samples.

5.1. One-dimensional manifold. To illustrate how well the proposed methods gen-
erate statistically reliable samples we consider first the case of M samples x ∈ R2. In
particular, we consider samples with a polar representation with radius r = 1 + σrξr
and angle θ = π/4 + σθξθ with σr = 0.06 and σθ = 0.6 and ξr,θ ∼ N(0, 1). We used
M = 2, 000 samples to learn the transition kernel and then generated 10, 000 new
samples with an initial condition from the data-sparse tail of the distribution, chosen
to be the data point corresponding to the smallest angle.

We begin by investigating the effect of the two noise models proposed, namely a
constant diffusion as in (20) with constant bandwidth K(x) = I and the case when
the diffusion reproduces the sample covariance C as in (23). In both cases we use a
constant bandwidth K = I in (9) and (14) when forming the Schrödinger bridge. We
employ a Langevin sampler with the splitting scheme (29) with ϵ = 0.009 and (30),
respectively. Figure 2 shows that choosing the sample covariance as the noise model
is clearly advantageous. Whereas both noise models generate samples that reproduce
the angular distribution the noise model using a constant diffusion is overdiffusive in
the radial direction. In contrast the noise model using the sample covariance nicely
reproduces the radial distribution.

We now investigate the effect of a variable bandwidth K(x). We employ the noise
model (30) with the sample covariance but use K(x) to determine the diffusion map
(cf. (14)). The Langevin sampler (30) is again initialized with the coordinates of
the data point corresponding to the smallest angle in the data-sparse tail. Figure 3
(left) shows the samples projected onto the convex hull of the data, i.e. outputs of
step (30b), when a uniform bandwidthK(x) = I with ϵ = 0.009 is employed. Although
the mean behaviour is well reproduced, it is seen that the generative model fails near
the data-sparse tails for large and small angles. Here the value of ϵ is too small
to generate significant diffusion and the samples are aligned on the (linear) convex
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hull of the widely separated data samples. To mitigate against this behaviour we
employ a variable bandwidth ρ(x) = πβ with β = −1/5 and a kernel density estimate
π(x). Figure 3 (right) shows how the variable bandwidth kernel better reproduces the
distribution in the data-sparse tail regions. Figure 4 shows the empirical histograms
for the radius and the angle variables of the noisy samples corresponding to Figure 3
(i.e. outputs of step (30a)). Whereas both, the uniform and the variable bandwidth
kernels, reproduce the radial distribution very well, the uniform bandwidth fails to
reproduce the angular distribution in the tails where the diffusion is not sufficiently
strong to allow for efficient mixing and the diffusion process gets stuck in the data
sparse region.

We have seen that a constant uniform bandwidth generates samples which are con-
centrated in the bulk of the data and which are overly diffusive in the radial direction
(cf. Figure 2 (right)). One may wonder if employing a smaller virtual time step ∆τ < ϵ
in the Langevin sampler (18) will allow a Langevin sampler with constant bandwidth
to generate more faithful samples. Figure 5 shows that choosing a smaller time step
∆τ in (22), here with ∆τ = ϵ/4 is indeed able to reproduce the radial distribution.
However, if the Langevin sampler is initialised with a data point in the center of the
data samples, it is not able to diffuse into the tail of the distribution distribution,
leading to an under-diffusive empirical histogram for the angles.

The numerical experiments above suggest that we employ a noise model using the
sample covariance C combined with a variable bandwidth K(x) to control eventual
data sparse regions. When employing a variable bandwidth our method contains two
hyper-parameters which require tuning: the bandwidth factor ϵ and the exponent β in
the arbitrary choice of the variable bandwidth ρ(x). Their role will be explored in the
following subsection.

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. Comparison of the different noise models employed by the
generative model. We employed a constant bandwidth with ϵ = 0.009.
Left: Original (blue) and generated data using a constant covariance
(red) and the sample covariance C(x) (magenta). Middle: Empirical
histograms of the angular variable θ. Right: Empirical histograms of
the radial variable r.

5.2. Multi-dimensional manifolds. In this numerical example, we show our pro-
posed method on hyper semi-spheres of dimension d = {3, 4, 9}, using both a fixed
bandwidth kernel and a variable bandwidth kernel. Data are generated by firstly

sampling z(i) = (z
(i)
1 , · · · , z(i)d ) from a d-dimensional standard normal distribution, and

then setting y(i) = (z
(i)
1 , · · · , αz(i)d ), with α = 5 to promote non-uniformity. Finally, the

samples x(i) are obtained by normalizing y(i) to achieve the unit length, i.e., y(i)/
∥∥y(i)∥∥,

and perturbing y(i)/
∥∥y(i)∥∥ in the radial direction with U(0, 0.01) noise. An instance

of the target samples of three dimensions can be seen in Figure 6. Given a bandwidth
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Figure 3. Effect of a variable bandwidth K(x) = ρ(x)I in data-sparse
regions. For the generative model the Langevin sampler (30) is used and
we set ϵ = 0.009. Results are shown for the output of step (30b). Left:
Original (blue) and generated data for a constant bandwidth K(x) = I
(red). Right: Original (blue) and generated data for a variable band-
width K(x) = ρ(x)I with ρ(x) = π(x)β with β = −1/5 (magenta).

Figure 4. Effect of a variable bandwidthK(x) = ρ(x)I on the angular
and radial distributions (left and right, respectively). Shown are the
original data (blue), generated data for a constant bandwidth K(x) = I
(red) and for a variable bandwidth K(x) = ρ(x)I with ρ(x) = π(x)β

with β = −1/5. The data were generated using a constant covariance
noise model in (30) and ϵ = 0.009.
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Figure 5. Effect of a variable time step ∆τ in the Langevin sampler
(29) with constant diffusion K = 1. Results are shown for the original
data, and for ∆τ = ϵ and ∆τ = ϵ/4. Throughout a constant bandwidth
is used. Left: Empirical histogram of the angular variable θ. Middle:
Empirical histograms of the radial variable r. Right: Original (blue)
and generated data in the (x1, x2)-plane with ∆τ = 1 (red) and with
∆τ = ϵ/4 (green).
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ϵ and a bandwidth function ρ(x), we implement the proposed scheme (30). For the
fixed bandwidth kernel we set ρ(x) = 1. For the variable bandwidth kernel (37), we set
ρ(x) = π(x)β, with β < 0, and π(x) is approximated using a kernel density estimator.
We use M = 1, 000 training samples to learn the transition kernel and run a Langevin
sampler to generate 50, 000 samples, with the initial data point being (1, 0, · · · , 0) ∈ Rd.
To obtain a better mixing of the Langevin sampler, we take one every 20 samples of
the last 20, 000 generated samples of the chain, resulting in a total of 1, 000 samples.
To evaluate the quality of the generated samples, we compute the regularized optimal

transport (OT) distance between the generated samples {x(i)gen}Mg

i=1 and the original

reference samples {x(j)ref}
Mr
j=1. The regularized OT distance with entropy penalty 1/λ is

defined as

dλ(xgen, xref) = min
P

∑
i,j

PijCij −
1

λ
h(P ),

subject to the constraints that

Mr∑
j=1

Pij =M−1
g ,

Mg∑
i=1

Pij =M−1
r ,

where

h(P ) = −
∑
i,j

Pij logPij

is the information entropy. The entries of C ∈ RMg×Mr are set to be the pairwise

Euclidean distances between {x(i)gen}Mg

i=1 and {x(j)ref}
Mr
j=1, and each sample is assigned

equal weight marginally. We compute the OT distance using the Sinkhorn–Knopp
algorithm [10, 28]. The number of reference samples is chosen to be Mr = 50, 000,
and the entropic regularization penalty is set to be 1/λ = 100. We consider the OT
distance as a diagnostic to quantify the statistical accuracy of the sampling scheme.

We then optimize over the parameters ϵ for a fixed λ using grid search. To be
more precise, for the Langevin sampler with a fixed bandwidth kernel, we vary ϵ, and
compute the OT distance of the generated samples. The best performed ϵ is chosen
to be the one that corresponds to the smallest OT distance, and we call it ϵ∗. For the
variable bandwidth kernel, we fix ϵ = ϵ∗. In order to disentangle the effect of varying
ϵ and varying β we use the normalized variable bandwidth as described in (37). We
set β = −0.01 × 2n with n = {0, · · · , 8} for d = {3, 4, 9}. The optimal bandwidth ϵ∗

is reported in Table 1 and the comparisons between the fixed bandwidth kernel and
the variable bandwidth kernel are presented in Figure 7. We observe that by keeping
ϵ fixed, the OT distance becomes smaller for a wide range of β.

We then examine the quality of generated samples at the optimal ϵ and β along
the last coordinate (the nonuniform direction). Similar to the previous study, we
compute the one dimensional OT distance of the marginal distribution (see Figure 7
(right)) and show the histograms and the cumulative density function (CDF) of the
samples generated using the fixed bandwidth kernel and using the variable bandwidth
kernel in Figure 8. The benefit of using the variable bandwidth kernel becomes more
prominent when focusing on the marginal samples. In the case where we sample
a 4-dimensional hyper-semisphere with non-uniformity along the last coordinate, we
see in Figure 8 that the empirical CDF of the samples generated with the variable
bandwidth kernel closely aligns with the reference (constructed using samples from
the target distribution) for the most part. In contrast, the samples generated using
the fixed variable bandwidth kernel noticeably diverge from the reference. This aligns
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d optimal bandwidth
3 ϵ∗ = 0.008
4 ϵ∗ = 0.010
9 ϵ∗ = 0.050

Table 1. Optimal bandwidth parameters leading to minimal OT dis-
tance for different dimensions d, obtained using grid search.

with what we observed in Figure 3 and Figure 4 — the data generated using the variable
bandwidth kernel better resemble the original data. In the cases where the samples
are drawn from a 9-dimensional hyper-semisphere, while both methods struggle to
generate samples that mirror those from the target distribution, primarily due to
the inherent limitations of kernel methods in high-dimensional scenarios, employing a
variable bandwidth kernel produces samples that exhibit a closer resemblance to those
from the target distribution.

Figure 6. Nonuniform samples x(i) on a 2-dimensional semisphere.
The non-uniformity is along the last coordinate x3.

5.3. Stochastic subgrid-scale parametrization. The conditional sampling algo-
rithm described in Section 4 can be used to perform stochastic subgrid-scale parametriza-
tion, a central problem encountered in, for example, the climate sciences. The problem
of subgrid-scale parametrization, or more generally of model closure, is the following:
given a potentially stiff dynamical system

ż = Fz(z) + g(z, y; ε)(50a)

ẏ = Fy(z, y; ε),(50b)

where ε < 1 denotes the time scale separation between the slow resolved variables of
interest z ∈ Rds and the unresolved fast degrees y ∈ Rdf . Note the notational difference
between the time scale separation parameter ε and the bandwidth parameter ϵ used
to define the diffusion map. For ε ≪ 1 the system is stiff and to ensure numerical
stability a small time step ∆t < ε is needed. This, together with the potential high-
dimensionality of the fast subspace df ≫ ds, constitutes a computational barrier for
simulating the dynamics (50a)–(50b) on the slow time scale of interest. Hence one is
interested in obtaining an effective evolution equation for the slow resolved variables z
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Figure 7. The straight dashed lines denote the OT distances of the
samples using a fixed bandwidth kernel, and the solid lines denote the
OT distances of the samples using a variable bandwidth kernel. Left:
comparison between the OT distance of samples generated using a fixed
bandwidth kernel and using a variable bandwidth kernel. Right: com-
parison between the one-dimensional marginal OT distance of samples
generated using a fixed bandwidth kernel and using a variable band-
width kernel, along the last coordinate (non-uniform direction). Here
the Langevin sampler is initialized at (1, 0, · · · , 0) for all cases.

Figure 8. Comparisons of empirical histograms (top row) and CDFs
(bottom row) of the marginal distribution of the generated samples
along the last coordinate. From left to right: the data are sampled
from a {3, 4, 9}-dimensional (hyper-)semisphere.

only which captures the essential effect of the unresolved variables y. Hence, we seek
to determine the effective reduced dynamics

ż = Fz(z) + ψ(z).

Here Fz(z) denotes a deterministic drift which we assume to be known a priori, possibly
based on physical reasoning. The term ψ(z) denotes the unknown closure term to be
learned which may be deterministic or stochastic, and which parametrizes the unknown
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unresolved fast processes. Deterministic machine learning methods have previously
been used to learn ψ(z) as the average effect of the unresolved variables, i.e. the
average of g(z, y; ε) over the (conditional) invariant measure of the fast process [20,
21]. Deterministic maps, however, are not able to capture the resolved dynamics
with sufficient statistical accuracy, and it is by now well established that the effective
equation is often of a stochastic nature [38, 19, 27, 18]. In the case of infinite time scale
separation there are explicit expressions for the effective drift and diffusion term of the
effective slow dynamics. However, these terms include integrals over auto-correlation
functions and are notoriously hard to estimate. Instead we propose to learn the closure
term ψ(z) and generate realisations ψ(z) on the fly employing the conditional sampling
algorithm described in Section 4. We consider the situation in which scientists have
a good understanding of the resolved dynamics and know the slow vector field Fz(z).

Given data of the resolved variables {z(i)}Mi=0 sampled at equidistant times ∆t, the

associated closure term ψ(i) capturing the effect of the unresolved dynamics (50b) can
then be estimated as

ψ(i) := z(i) − z(i−1) − Fz(z
(i−1))∆t,

for i = 1, · · · ,M . This produces the training samples {x(i) = (z(i−1), ψ(i))}Mi=1 which
we collect in the 2ds ×M data matrix X .

The effective dynamics is then provided by the discrete stochastic surrogate model

zk = zk−1 + Fz(zk−1)∆t+ ψk(51)

for k ≥ 1 and given z0, where the subgrid-scale terms ψk are generated as follows:
Given the conditional mean m(x; ϵ) as described in Section 3, we perform the discrete
Langevin sampler

X̂n = (zk−1, P2Xn)(52a)

Xn+1/2 = X̂n +
√
2Ξn(52b)

Xn+1 = m(Xn+1/2; ϵ),(52c)

for n = 1, · · · , ns with ns = 100 and Ξn ∼ N(0, ϵI). Here P2 : R2ds → Rds is a projector
with P2x = ψ. We finally set ψk = P2Xns . The assignment of the first component

of X̂n to zk−1 ensures the conditioning of ψk on zk−1, and ns = 100 ensures that
the generated samples ψk are close to independent from ψk−1. We choose a fixed
bandwidth with ϵ = 0.001.

We consider here the particular example with ds = 1 and df = 3 given by

ż = z(1− z2) +
4

90ε
h(z) y2,(53)

where the fast dynamics is given by the Lorenz-63 system [33]

ε2ẏ1 = 10(y2 − y1)(54a)

ε2ẏ2 = 28y1 − y2 − y1y3(54b)

ε2ẏ3 = −8

3
y3 + y1y2.(54c)

We look at the case of effective additive noise with h(z) = 1 which does not require
conditioning on the slow variable z, as well as at the case of multiplicative noise
with h(z) = z. We used MATLAB’s built-in ode45 routine [36] to generate the
time series with a time-scale separation parameter of ε = 0.01. The time series is
subsequently sub-sampled with ∆t = 0.1. Figure 9 shows a comparison between the full
multi-scale system (53)–(54) with additive noise h(z) = 1 and the stochastic surrogate
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model (51). The slow z-dynamics exhibits stochastic bimodal dynamics. Figure 10
shows a comparison for the multiplicative case h(z) = z which yields unimodal slow
dynamics. It is clearly seen that the surrogate model (51) obtained by the generative
conditional sampler generates statistically reliable dynamics.

We remark that the above proposed method to draw random samples from the
closure term does not require the knowledge of the time-scale separation parameter ε.
The closure term ψ only depends on the time series {z(i)}Mi=0 of the resolved variables
and the knowledge of the slow vector field Fz (which may be zero).

In the next subsection we show that one can indeed draw full sample trajectories
of a dynamical system even without any time-scale separation using the conditional
Schrödinger bridge sampler.
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Figure 9. Results for the stochastic subgrid-scale parametrization for
the multi-scale system (53)–(54) with ε = 0.01 and with additive noise
h(z) = 1. Shown are results obtained by integrating the full multi-
scale system and by the stochastic subgrid-scale parametrization scheme
using our generative sampler (52) trained with M = 120, 000. Left:
Empirical histograms of the closure term ψ = ψ(z). Middle: Time
series of the slow variable z(t). Right: Empirical histograms of the
slow variable z.
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Figure 10. Results for the stochastic subgrid-scale parametrization
for the multi-scale system (53)–(54) with ε = 0.01 and with multiplica-
tive noise h(z) = z. Shown are results obtained by integrating the full
multi-scale system and by the stochastic subgrid-scale parametrization
scheme using our generative sampler (52), trained with M = 20, 000.
Left: Empirical histograms of the closure term ψ = ψ(z). Middle: Time
series of the slow variable z(t). Right: Empirical histograms of the slow
variable z.

5.4. Generative modelling of dynamical systems. We now employ the Schrödinger
bridge sampler to perform sequential conditional sampling and generate typical tra-
jectories from a dynamical system. We consider the Lorenz-63 system [33] for y =
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(y1, y2, y3) given by (54) with ε = 1. Given a long time trajectory {y(i)}Mi=0 with

equidistantly sampled data points y(i) = y(ti) with ti+1−ti = ∆t for all i, we construct
the Schrödinger bridge as a coupling for the joint probability function π(y(t), y(t+∆t))

from the M training pairs x(i) = (y(i−1), y(i)) ∈ R6. Our aim is to generate new trajec-
tories {yk}k≥0 in time intervals of ∆t for given y0 = y(t0) and y1 = y(t1) sequentially,
similarly to the generative modelling of texts: Given xk−1 = (yk−1, yk), generate a new
xk = (yk, yk+1), which is not part of the initial training samples. Obviously the first
component of xk needs to be conditioned on the second component of xk−1. As in
Section 5.3, to decorrelate we perform ns = 20 Langevin sampling steps

X̂n = (yk, P2Xn)(55a)

Xn+1/2 = X̂n +
√
2Ξn(55b)

Xn+1 = m(Xn+1/2; ϵ),(55c)

for given yk with Ξn ∼ N(0, ϵI). Here P2 : R6 → R3 denotes the project onto the
second three components of x ∈ R6. We finally set yk+1 = P2Xns .

In Figure 11 we show that the conditional sampling produces trajectories which
resemble those of the actual Lorenz-63 system, as well as having the same asymptotic
statistical behaviour as seen by the reconstruction of the famous butterfly attractor.
We choose a fixed bandwidth with ϵ = 0.05, and used 10, 000 training data x(tn) with
∆t = 0.1.

The proposed approach can be compared to a direct approximation of the time-∆t-
propagator

(56) yn+1 = Ψ(yn)

via, for example, a random feature map approximation as proposed in [20]. More
specifically, using a smaller observation interval of ∆t = 0.02 and noisy data, highly
accurate predictions were achieved in [20] using Dr = 300 randomly chosen feature
maps. The output weights W ∈ R3×Dr were learned using the ensemble Kalman
filter [45]. In comparison, the proposed Schrödinger bridge sampler requires a larger
training set (M = 10, 000 versus M = 4, 000 in [20]), but involves only a single tuning
parameter ϵ and repeated computation of (17).

0 10 20 30 40 50
-20

0

20

0 10 20 30 40 50
-20

0

20

Figure 11. Comparison of generated data from the Schrödinger bridge
sampler with the original dynamics of the Lorenz-63 system (54). Left:
Typical trajectories of y1 obtained from a simulation of (54) (top) and
the generated data using conditional sampling (55) (bottom). Right:
The corresponding attractor for the simulated and generated data.



STABLE GENERATIVE MODELING USING SCHRÖDINGER BRIDGES 21

6. Summary and outlook

We have introduced a Schrödinger bridge based Langevin scheme for generative
modeling. Our method combines sample-based Markov chain approximations with
discrete-time Langevin-type sampling, yielding a non-parametric generative model that
is unconditionally stable and geometrically ergodic. Even though the approach is
entirely data-driven, the generative model possesses a single tuning parameter, which
is the choice of the step-size ϵ > 0. Practical choices of ϵ depend both on the number
of training samples, M , and the properties of the target distribution π(x) on Rd. We
showed numerically that employing a variable bandwidth kernel, in contrast to a fixed
bandwidth kernel, results in generated samples with enhanced accuracy. However,
employing variable a bandthwith kernel comes with an added layer of complexity and
requires delicate tuning.

In terms of practical applications, the performance of the conditional generative
model was showcased through its applications to a stochastic subgrid-scale parametriza-
tion problem and the generation of trajectories of the chaotic Lorenz-63 system. In
both cases, the conditional sampler relied on the availability of a single simulated tra-
jectory, which served as the training samples. A constant bandwith kernel has been
employed in all these examples.

We considered in this paper only equally weighted training samples x(i) ∼ π(x). If
there is a change of measure due to, for example, observed data with a given likelihood,
then the measure and the couplings can be appropriately modified to take into account
the non-uniform measure, i.e, weighted training samples.

Furthermore, all computational examples considered in this paper were low-dimensional,
which is intrinsic to Schrödinger bridge approximations of the semi-group exp(ϵL) [58].
This could be seen as a major disadvantage in comparison to the sophisticated deep
neural network architectures typically used in high-dimensional SGMs [23, 52]. A first
step to close this gap has been taken in [22], where a localized Schrödinger bridge sam-
pler has been proposed and implemented for high-dimensional generative sampling
problems. Interestingly, and worth further investigation, the localized Schrödinger
bridge sampler can be viewed as a variant of multi-head self attention [56, 48].

Additional future research will delve into the theoretical foundations of the pro-
posed scheme, including its convergence rate and scalability extending results from
[58]. Finally, the proposed methodology can be extended to score generative modeling
by replacing all required score functions by Schrödinger bridge-based approximations
and to interacting particle approximations of the Fokker–Planck equation, where the
score function represents now diffusion [34].
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[18] G. Gottwald, D. Crommelin, and C. Franzke. Stochastic climate theory. In C. L. E.
Franzke and T. J. O’Kane, editors, Nonlinear and Stochastic Climate Dynamics,
pages 209–240. Cambridge University Press, Cambridge, 2017.

[19] G. A. Gottwald and I. Melbourne. Homogenization for deterministic maps and
multiplicative noise. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Science, 469(2156), 2013.

[20] G. A. Gottwald and S. Reich. Supervised learning from noisy observations: Com-
bining machine-learning techniques with data assimilation. Physica D: Nonlinear
Phenomena, 423:132911, 2021.

[21] G. A. Gottwald and S. Reich. Combining machine learning and data assimila-
tion to forecast dynamical systems from noisy partial observations. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 31:101103, 2021.

[22] G. A. Gottwald and S. Reich. Localized schrödinger bridge sampler. Technical
report, arXiv:2409.07968, 2024.

[23] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020.

[24] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans. Cascaded
diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23:
47:1–47:33, 2021.
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