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ABSTRACT

We introduce a general model of a one-dimensional three-component wave system with cubic nonlinear-

ity. Linear couplings between the components prevent intersections between the corresponding dispersion

curves, which opens two gaps in the system’s linear spectrum. Detailed analysis is performed for zero-

velocity solitons, in the reference frame in which the group velocity of one wave is zero. Disregarding the

self-phase-modulation (SPM) term in the equation for that wave, we find an analytical solution which

shows that there simultaneously exist two different families of generic solitons: regular ones, which may

be regarded as a smooth deformation of the usual gap solitons in the two-wave system, and cuspons with

a singularity in the first derivative at the center, while their energy is finite. Even in the limit when

the linear coupling of the zero-group-velocity wave to the other two components is vanishing, the soliton

family remains drastically different from that in the linearly uncoupled system: in this limit, regular

solitons whose amplitude exceeds a certain critical value are replaced by peakons. While the regular

solitons, cuspons, and peakons are found in an exact analytical form, their stability is tested numerically,

showing that they all may be stable. In the case when the cuspons are unstable, the instability may

trigger onset of spatio-temporal collapse in the system. If the SPM terms are retained, we find that there

again simultaneously exist two different families of generic stable soliton solutions, which are regular ones

and peakons. The existence of the peakons depends, in this case, on the sign of certain parameters of the

system. Direct simulations show that both types of the solitons may be stable in this most general case

too.
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I. INTRODUCTION

A. Gap-soliton models

Gap solitons (GS) is a common name for solitary waves in nonlinear systems which feature one or more

gaps in their linear spectrum [1]. A soliton may exist if its frequency belongs to the gap, as then it does

not decay into linear waves.

Gaps in the linear spectrum are a generic phenomenon in two- or multicomponent systems, as intersec-

tion of dispersion curves belonging to different components is, generically, prevented by a linear coupling

between the components. Excluding cases when the zero solution in the system is unstable [2], the in-

tersection avoidance alters the spectrum so that a gap opens in place of the intersection. Approximating

the two dispersion curves, that would intersect in the absence of the linear coupling, by straight lines,

and assuming a generic cubic nonlinearity, one arrives at a generalized massive Thirring model (GMTM)

for two wave fields u1,2(x, t):

i(
∂u1

∂t
− ∂u1

∂x
) + u2 +

(
σ|u1|2 + |u2|2

)
u1 = 0 , (1)

i(
∂u2

∂t
+
∂u2

∂x
) + u1 +

(
σ|u2|2 + |u1|2

)
u2 = 0 , (2)

where the group velocities of the two waves are normalized to be ±1, the linear-coupling constant and

the coefficient of the nonlinear cross-phase-modulation (XPM) coupling may also be normalized to be 1,

and σ ≥ 0 is the self-phase-modulation (SPM) coefficient.

The model based on Eqs. (1) and (2) with σ = 1/2 has a direct, and very important, application to

nonlinear optics, describing co-propagation of left- and right-traveling electromagnetic waves in a fiber

with a resonant Bragg grating (BG) written on it [3,4,1]. The version of the model corresponding to

σ →∞, i.e., with the SPM nonlinearity only,

i(
∂u1

∂z
− ∂u1

∂τ
) + u2 + |u1|2u1 = 0 , (3)

i(
∂u2

∂z
+
∂u2

∂τ
) + u1 + |u2|2u2 = 0 , (4)

may also be realized in terms of nonlinear fiber optics, describing co-propagation of light in a dual-core

fiber with a group-velocity mismatch between the cores (which is normalized to be 1), while the intrinsic

dispersion of the cores is neglected [5]. In Eqs. (3) and (4), the evolutional variable is not time, but rather
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the propagation distance z, while the role of x is played by the so-called reduced time, τ ≡ t − z/V0,

where V0 is the mean group velocity of the carrier wave.

It had been demonstrated more than twenty years ago that the massive Thirring model proper, which

corresponds to Eqs. (1) and (2) with σ = 0, is exactly integrable by means of the inverse scattering

transform, and, moreover, it can be explicitly transformed into the sine-Gordon equation [6]. On the

other hand, it was also demonstrated that GMTM with any σ 6= 0 is not integrable (this conclusion

follows, for instance, from an early observation that collisions between solitons are inelastic if σ 6= 0 [4].

Nevertheless, the general model (1), (2) with an arbitrary value of σ has a family of exact GS solutions

that completely fill the gap in its spectrum. Gap solitons, first predicted theoretically [3,4], were observed

in experiments with light pulses launched into a short piece of the BG-equipped fiber [7] (in fact, optical

solitons that were first observed in the BG fiber [8] were, strictly speaking, not of the GS type, but more

general ones, whose central frequency did not belong to the fiber’s bandgap).

Models giving rise to GSs are known not only in optics but also in other areas, for instance, in hydro-

dynamics of density-stratified fluids, where dispersion curves pertaining to different internal-wave modes

can readily intersect. Taking into regard the nonlinearity, one can easily predict the occurrence of GS in

density-stratified fluids [10].

B. Introducing a three-wave model

In this work, we aim to study GSs in a system of three coupled waves, assuming that the corresponding

three dispersion curves are close to intersection at a single point, unless linear couplings are taken into

regard. Of course, the situation with three curves passing through a single point is degenerate. Our

objective is to investigate GS not for this special case, but in its vicinity in the parameter space. We

will demonstrate that families of GS solutions in the three-wave systems is drastically different from that

in the two-wave GMTM. In particular, generic solutions will include not only regular solitons, similar

to those known in GMTM, but also cuspons and peakons, i.e., solitons with a divergence or jump of the

first derivative, but, nevertheless, with finite amplitude and energy. Moreover, we will demonstrate that

a part of the cuspon and peakon solutions are completely stable ones. Another principal difference of the

three-wave system from its two-wave counterpart is that the former one may give rise to spatio-temporal

collapse, i.e., formation of a singularity of the wave fields in finite time. We will demonstrate that, in the
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cases when cuspons or peakons are unstable, their instability may easily provoke the onset of the collapse

[9].

Three-wave systems of this type can readily occur in the above-mentioned density-stratified flows [11],

and are also possible in optics. For instance, this case takes place in a resonantly absorbing BG, which

are arranged as a system of thin (∼ 100 nm) parallel layers of two-level atoms, with the spacing between

them equal to half the wavelength of light. This system combines the resonant Bragg reflection and

self-induced transparency (SIT), see Ref. [12] and references therein. A model describing the BG-SIT

system includes equations for three essential fields, viz., local amplitudes of right- and left-traveling

electromagnetic waves, and the inversion rate of the two-level atoms (which, obviously, has zero group

velocity in the laboratory reference frame). This model indeed produces a linear spectrum with three

dispersion curves close to intersecting at one point, so that two gaps open in the system’s spectrum.

Another realization of gaps between three dispersion curves is possible in terms of stationary optical

fields in a planar nonlinear waveguide equipped with BG in the form of parallel scores [13]. In this case,

the resonant Bragg reflection linearly couples waves propagating in two different directions. To induce

linear couplings between all the three waves in the system, it is necessary to have a planar waveguide with

two different BG systems of parallel scores, oriented in different directions. Postponing a consideration

of this rather complicated model to another work, we here give a simple example for a case when the

single BG is aligned along the axis x, perpendicular to the propagation direction z. Two waves u1,2 have

opposite incidence angles with respect to the BG, while the third wave u3 has its wave vector parallel

to x, see Fig. 1 in Ref. [13]. Then, assuming that the size of the sample is much smaller than the

diffraction length of a broad spatial beam, but is larger than a characteristic length induced by strong

artificial diffraction induced by BG, normalized equations governing the spatial evolution of the fields in

the planar waveguide with the usual Kerr nonlinearity are

i(
∂u1

∂z
− ∂u1

∂x
) + u2 +

(
1
2
|u1|2 + |u2|2 + |u3|2

)
u1 = 0 , (5)

i(
∂u2

∂z
+
∂u2

∂x
) + u1 +

(
1
2
|u2|2 + |u1|2 + |u3|2

)
u2 = 0 , (6)

i
∂u3

∂z
+
(

1
2
|u3|2 + |u1|2 + |u2|2

)
u3 = k0u3 , (7)

where k0 is a wavenumber mismatch between the third and first two waves.
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The model based on Eqs. (5) - (7) represents a particular case only, as it does not include linear

couplings between the waves u1,2 and u3. We aim to introduce a generic model describing a nonlinear

system of three waves with linear couplings between all of them. We assume that the system can be

derived from a Hamiltonian, and confine attention to the case of cubic nonlinearities. Taking into regard

these restrictions, and making use of scaling invariances to diminish the number of free parameters, we

arrive at a system

i(
∂u1

∂t
− ∂u1

∂x
) + u2 + κu3 + α

(
ασ1|u1|2 + α|u2|2 + |u3|2

)
u1 = 0 , (8)

i(
∂u2

∂t
+
∂u2

∂x
) + u1 + κu3 + α

(
ασ1|u2|2 + α|u1|2 + |u3|2

)
u2 = 0 , (9)

i
∂u3

∂t
+ κ (u1 + u2) +

(
σ3|u3|2 + α|u1|2 + α|u2|2

)
u3 = ω0u3 . (10)

Here, we consider the evolution in the temporal domain, unlike the spatial-domain evolution in Eqs. (5)

- (7), and without loss of generality, we use a reference frame in which the third wave u3 has zero group

velocity. Note that the coefficient of the linear coupling between the first two waves is normalized to be 1,

while κ accounts for their linear coupling to the third wave, and it may always be defined to be positive.

We assume full symmetry between the two waves u1,2, following the pattern of the GMT model; in

particular, the group velocities of these waves are normalized to be ∓1. However, we note that this

assumption is not essential, and we shall comment later on the case when the group-velocity terms in

Eqs. (8) and (9) are generalized as follows:

−∂u1

∂x
→ −c1

∂u1

∂x
, +

∂u2

∂x
→ +c2

∂u1

∂x
, (11)

where c1 and c2 are different, but have the same sign. Note that the symmetry of the system’s dispersion

law ω = ω(k) is assumed with respect to the sign of k, but not of ω. To this end, the parameter ω0 was

added to Eq. (3). This parameter breaks the “ω-symmetry”, that, unlike the “k-symmetry”, does not

have any natural cause to exist.

The coefficients σ1,3 and α in Eqs. (8) - (10) account for the nonlinear SPM and XPM nonlinearities,

respectively. In particular, α is defined as a relative XPM coefficient between the first two and the

third waves, hence it is an irreduceable parameter. As for the SPM coefficients, both σ1 and σ3 may be

normalized to be ±1, unless they are equal to zero; however, it will be convenient to keep them as free

parameters, see below (note that the SPM coefficients are always positive in the optical models, but in

those describing stratified fluids they may have either sign).
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Equations (8) - (10) conserve the norm, which is frequently called energy in optics,

N ≡
∑

n=1,2,3

∫ +∞

−∞
|un(x)|2 dx, (12)

the Hamiltonian,

H ≡ Hgrad +Hcoupl +Hfocus, (13)

Hgrad ≡
i

2

∫ +∞

−∞

(
u∗1
∂u1

∂x
− u∗2

∂u1

∂x

)
dx+ c.c., (14)

Hcoupl ≡ −
∫ +∞

−∞
[u∗1u2 + κu∗3 (u1 + u2)] dx+ c.c., (15)

Hfocus ≡ −
∫ +∞

−∞

[
1
2
α2σ1

(
|u1|4 + |u2|4

)
+

1
2
σ3 |u3|4 + α2 |u1|2 |u2|2 + α |u3|2

(
|u1|2 + |u2|2

)]
dx , (16)

and the momentum, which will not be used here. In these expressions, the asterisk and c.c. both stand

for complex conjugation, Hgrad, Hcoupl and Hfocus being the gradient, linear-coupling, and self-focusing

parts of the Hamiltonian.

C. Solitons in the three-wave models

Our objective is to find various types of solitons existing in the generic three-wave system (8) - (10)

and investigate their stability. The existence of various types of the solitons is considered in section 3.

Focusing first on the case (suggested by the analogy with GMTM) when the SPM term in Eq. (10) may

be neglected (i.e., σ3 = 0), we will find a general family of zero-velocity solitons in an exact analytical

form. We will demonstrate that the family contains solutions of two drastically different types: regular

GSs, and cuspons, i.e., solitons with a cusp singularity at the center, while their energy is finite (this

singularity assumes that the function remains finite at the cusp point, while its first derivative diverges).

Cuspons are known to exist in degenerate models without linear terms (except for the evolution term

such as ∂u/∂t), a well-known example being the Camassa-Holm (CH) equation [17,18]. As well as the

massive Thirring model (1), (2) with σ = 0, the CH equation is exactly integrable by means of the

inverse scattering transform. Our nonintegrable model, as well as the CH one, gives rise to coexisting

solutions in the form of regular solitons and cuspons. However, the cause for the existence of cuspons in

our model is very different: looking for a zero-velocity soliton solution, one may eliminate the field u3 by

means of an algebraic relation following, in this case, from Eq. (10). The subsequent substitution of this

result into the first two equations (8) and (9) produces a non-polynomial (in fact, rational) nonlinearity in
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them. The corresponding rational functions feature a singularity at some (critical) value of the soliton’s

amplitude. If the amplitude of a formal regular-soliton solution exceeds the critical value, it actually

cannot exist, and, in the case when σ3 = 0, it is replaced by a cuspon, whose amplitude is exactly equal

to the critical value.

In the limit κ→ 0, which corresponds to the vanishing linear coupling between the first two and third

waves, the cuspon resembles a peakon, which is a finite-amplitude solitary wave with a jump of its first

derivative at the center. Note that peakon solutions, coexisting with regular solitons (they also coexist

our model), are known in a slightly different version of the CH equation (which is also integrable by

means of the inverse scattering transform), see, e.g., Ref. [17,19,20].

Then, we show that, when the SPM term in Eq. (10) is restored in Eq. (10) (i.e., σ3 6= 0; the presence

or absence of the SPM term ∝ σ1 in Eqs. (8) and (9) is not crucially important), the system supports a

different set of soliton families. These are regular GSs and, depending on the sign of certain parameters,

a family of peakons, which, this time, appear as generic solutions, unlike the case σ3 = 0, when they

only exist as a limiting form of the solutions corresponding to κ → 0. As far as we know, the model

formulated in the present work is the first non-degenerate one (i.e., a model with a nonvanishing linear

part) which yields both cuspons and peakons.

D. Stability of the solitons and spatiotemporal collapse

As concerns the dynamical stability of the various solitons in the model (8) -(10), in this work we

limit ourselves to direct simulations, as a more rigorous approach, based on numerical analysis of the

corresponding linear stability-eigenvalue problem [21], is technically difficult in the case of cuspons and

peakons. In fact, direct simulations of perturbed cuspons and peakons is a hard problem too, but we have

checked that identical results concerning the stability are produced (see section 3 below) by high-accuracy

finite-difference and pseudo-spectral methods (each being implemented in more than one particular form),

which lends the results credibility. A general conclusion is that the regular solitons are always stable.

As for the cuspons and peakons, they may be either stable or unstable. If the cusp is strong enough,

instability of the cuspon initiates formation of a genuine singularity, i.e., onset of a spatiotemporal collapse

[9] in the present one-dimensional model.

Note that a simple virial-type estimate for the possibility of collapse can be made, assuming that the
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field focuses itself in a narrow spot with a size L(t), amplitude ℵ(t), and a characteristic value K(t) of the

field’s wavenumber [9]. The conservation of the norm (12) imposes a restriction ℵ2L ∼ N , i.e., L ∼ N/ℵ2.

Next, the self-focusing part (13) of the Hamiltonian (13), which drives the collapse, can be estimated as

Hfocus ∼ −ℵ4L ∼ −Nℵ2. (17)

On the other hand, the collapse can be checked by the gradient term (14) in the full Hamiltonian, that, in

the same approximation, can be estimated as Hgrad ∼ ℵ2KL ∼ NK. Further, Eqs. (8) - (10) suggest an

estimate K ∼ ℵ2 for a characteristic wavenumber of the wave field (the same estimate for K follows from

an expression (24) for the exact stationary-soliton solution given below), thus we have Hgrad ∼ Nℵ2.

Comparing this with the expression (17), one concludes that the parts of the Hamiltonian promoting

and inhibiting the collapse scale the same way as ℵ → ∞ (or L → 0), hence a weak collapse [9] may

be possible (but not necessarily) in systems of the present type. In the models of GSs studied thus far

and based on GMTM, collapse has never been reported. The real existence of the collapse in the present

one-dimensional three-wave GS model is therefore a novel dynamical feature, and it seems quite natural

that cuspons and peakons, in the case when they are unstable, play the role of catalysts stimulating the

onset of the collapse.

II. ANALYTICAL SOLUTIONS FOR SOLITONS

A. The dispersion relation

The first step in the investigation of the system is to understand its linear spectrum. Substituting

u1,2,3 ∼ exp(ikx − iωt) into Eqs. (8 -10), and omitting nonlinear terms, we arrive at a dispersion

equation,

(ω2 − k2 − 1)(ω − ω0) = 2κ2(ω − 1). (18)

If κ = 0, the third wave decouples, and the coupling between the first two waves produces a commonly

known gap, so that the solutions to Eq. (18) are ω1,2 = ±
√

1 + k2 and ω3 = ω0. If κ 6= 0, the spectrum

can be easily understood by treating κ as a small parameter. However, the following analysis is valid for

all values of κ in the range 0 < κ2 < 1.

First, consider the situation when k = 0. Then, three solutions of Eq. (18) are
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ω = 1, ω = ω± ≡ (ω0 − 1)/2±
√

(ω0 + 1)2/4 + 2κ2. (19)

It can be easily shown that ω− < min{ω0,−1} ≤ max{ω0,−1} < ω+, so that one always has ω− < −1,

while ω+ > 1 if 1 − ω0 > κ2, and vice versa. Next, it is readily seen that, as k2 → ∞, either ω2 ≈ k2,

or ω ≈ ω0. It can also be shown that each branch of the dispersion relation generated by Eq. (18) is

a monotonic function of k2. Generic examples of the spectrum are shown in Fig. 1, where the panels

(a) and (b) pertain, respectively, to the cases ω0 < 1 − κ2 with ω+ < 1, and ω0 > 1 with ω+ > 1. The

intermediate case, 1− κ2 < ω0 < 1, is similar to that shown in panel (a), but with the points ω+ and 1

at k = 0 interchanged. When ω0 < 1, the upper gap in the spectrum is min{ω+, 1} < ω < max{ω+, 1},

while the lower gap is ω− < ω < ω0. When ω0 > 1, the upper gap is ω0 < ω < ω+, and the lower one is

ω− < ω < 1.

B. A generic family of gap solitons

The next step is to search for GS solutions to the full nonlinear system. In this work, we confine

ourselves to the case of zero-velocity GS, substituting into Eqs. (8) - (10)

un(x, t) = Un(x) exp(−iωt) , n = 1, 2, 3, (20)

where it is assumed that the soliton’s frequency ω belongs to one of the gaps. In fact, even the description

of zero-velocity solitons is quite complicated. Note, however, that if one sets κ = 0 in Eqs. (8) - (10),

keeping nonlinear XPM couplings between the first two and third waves, the gap which exists in the two-

wave GMT model remains unchanged, and the corresponding family of GS solutions does not essentially

alter, in accord with the principle that nonlinear couplings cannot alter gaps or open a new one if the

linear coupling is absent [14]; nevertheless, the situation is essentially different if κ is vanishingly small,

but not exactly equal to zero, see below.

First, the substitution of (20) into Eqs. (8) and (9) leads to a system of two ordinary differential

equations for U1(x) and U2(x),

iU ′1 = ωU1 + U2 + κU3 + α
(
ασ1|U1|2 + α|U2|2 + |U3|2

)
U1, (21)

−iU ′2 = ωU2 + U1 + κU3 + α
(
ασ1|U2|2 + α|U1|2 + |U3|2

)
U2, (22)
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where the prime represents d/dx. To solve these equations, we substitute U1,2 = A1,2(x) exp (iφ1,2(x))

with real An and φn. After simple manipulations, it can be found that
(
A2

1 −A2
2

)′ = 0 and (φ1 + φ2)′ = 0.

With regard to the condition that the soliton fields vanish at infinity, we immediately conclude that

A2
1(x) = A2

2(x) ≡ S(x); (23)

as for the constant value of φ1 + φ2, it may be set equal to zero without restriction of the generality, so

that φ1(x) = −φ2(x) ≡ φ(x)/2, where φ(x) is the relative phase of the two fields. After this, we obtain

two equations for S(x) and φ(x) from Eqs. (21) and (22),

φ′ = −2ω − 2 cosφ− 2α2 (1 + σ1)S − S−1U2
3

(
ω0 − ω − σ3U

2
3

)
, (24)

S′ = −2S sinφ− 2κ
√
SU3 sin (φ/2) , (25)

and Eq. (10) for the third wave U3 takes the form of a cubic algebraic equation

U3

(
ω0 − ω − 2αS − σ3|U3|2

)
= 2κ

√
S cos (φ/2) , (26)

from which it follows that U3 is a real-valued function.

This analytical consideration can be readily extended for more general equations (8) and (9) that do not

assume the symmetry between the waves u1 and u2, i.e., with the group-velocity terms in the equations

altered as per Eq. (11). In particular, the relation (23) is then replaced by c1A2
1(x) = c2A

2
2(x) ≡ S(x). It

can be checked that results for the asymmetric model are not qualitatively different from those presented

below for the symmetric one.

Equations (24) and (25) have a Hamiltonian structure, as they can be represented in the form

dS

dx
=

∂H

∂φ
,

dφ

dx
= −∂H

∂S
, (27)

with the Hamiltonian

H = 2S cosφ+ α2 (1 + σ1)S2 + 2ωS + U2
3 (ω0 − ω − 2αS)− 3

2
σ3U

4
3 , (28)

which is precisely a reduction of the Hamiltonian (13) of the original system (8) - (10) for the solutions of

the present type. Note that H is here regarded as a function of S and φ, and the relation (26) is regarded

as determining U3 in terms of S and φ. For soliton solutions, the boundary conditions at x = ±∞ yield

H = 0, so that the solutions can be obtained in an implicit form,
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2S cosφ+ α2 (1 + σ1)S2 + 2ωS + U2
3 (ω0 − ω − 2αS)− (3/2)σ3U

4
3 = 0. (29)

In principle, one can use the relations (26) and (29) to eliminate U3 and φ and so obtain a single equation

for S. However, this is not easily done unless σ3 = 0 [no SPM term in Eq. (10)], therefore we proceed to

examine this special, but important, case first. Recall that the zero-SPM case also plays an important

role in the case of the two-wave GMTM based on Eqs. (1) and (2), as precisely in this case (which

corresponds to the massive Thirring model proper) the equations are exactly integrable by means of the

inverse scattering transform [6].

C. Cuspons in the zero-self-phase-modulation case (σ3 = 0)

Setting σ3 = 0 makes it possible to solve Eq. (26) for U3 explicitly in terms of S and φ,

U3 =
2κ
√
S cos (φ/2)

ω0 − ω − 2αS
. (30)

For simplicity, we also set σ1 = 0 in Eqs. (8) and (9) and subsequent equations, although the latter

assumption is not crucially important for the analysis developed below. If σ1 6= 0 is restored, the

conclusions of this subsection will not be substantially altered.

As the next step, one can also eliminate φ, using Eqs. (29) and (30), to derive a single equation for S,

(dS/dx)2 = 4S2F (S), (31)

F (S) ≡ (1− ω − 1
2
α2S)

[
2
(

1 +
κ2

ω0 − ω − 2αS

)
− (1− ω − 1

2
α2S)

]
. (32)

The function F (S) has either one or three real zeros S0. One is

S01 = 2 (1− ω) /α2, (33)

and the remaining two, if they exist, are real roots of the quadratic equation,

(2 + 2ω + α2S0)(ω0 − ω − 2αS0) + 4κ2 = 0. (34)

Only the smallest positive real root of Eq. (34), to be denoted S02 (if such exists), will be relevant below.

Note, incidentally, that F (S) cannot have double roots. A consequence of this fact is that Eq. (31)

cannot generate kink solutions, which have different limits as x→ ±∞. Indeed, if S(x)→ const ≡ S as

x → ±∞, then one needs to have dS/dx ∼
(
S − S

)
in the same limit, which implies that the function

F (s) in Eq. (31) must have a double zero at S = S.
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For a soliton solution of (31), we need first that F (0) > 0, which can be shown to be exactly equivalent

to requiring that ω belongs to either the upper or the lower gap of the linear spectrum. We note that the

coupling to the third wave gives rise to the rational nonlinearity in the expression (32), despite the fact

that the underlying system (8) - (10) contains only linear and cubic terms. Even if the coupling constant

κ is small, it is clear that the rational nonlinearity may produce a strong effect in a vicinity of a critical

value of the squared amplitude at which the denominator in the expression (32) vanishes,

Scr = (ω0 − ω) /2α. (35)

As it follows from this expression, one must have α(ω0 − ω) > 0 for the existence of the critical value.

If Scr exists, the structure of the soliton crucially depends on whether, with an increase of S, the

function F (S) defined by Eq. (32) first reaches zero at S = S0, or, instead, it first reaches the singularity

at S = Scr, i.e., whether 0 < S0 < Scr, or 0 < Scr < S0. In the former case, the existence of Scr plays no

role, and the soliton is a regular one, having the amplitude
√
S0. This regular soliton may be regarded

as obtained by a smooth deformation from the usual GS known in GMTM at κ = 0.

As the soliton cannot have an amplitude larger than
√
Scr, in the case 0 < Scr < S0 the squared

amplitude takes the value Scr, rather than S0. The soliton is singular in this case, being a cuspon [see

Eqs. (41) and (42) below], but, nevertheless, it is an absolutely relevant solution. If Scr < 0 and S0 > 0 or

vice versa, then the soliton may only be, respectively, regular or singular, and no soliton exists if both S0

and Scr are negative. Further, it is readily shown that for all these soliton solutions, S(x) is symmetric

about its center, which may be set at x = 0, that is, S(x) is an even function of x. For the cuspon

solutions, and for those regular solutions whose squared amplitude is S01, it can also be shown that the

phase variable ψ(x) = φ(x)− π and U3(x) are odd functions of x, while for those regular solutions whose

squared amplitude is S02 the phase variable φ(x) and U3(x) are, respectively, odd and even functions of

x.

It is now necessary to determine which parameter combinations in the set (ω, ω0, α) permit the options

described above. The most interesting case occurs when ω0 > ω (so that ω belongs to the lower gap,

see Fig. 1) and α > 0 (the latter condition always holds in the applications to nonlinear optics). In this

case, it can be shown that the root S02 of Eq. (34) is not relevant, and the options are determined by

the competition between S01 and Scr. The soliton is a cuspon (0 < Scr < S01) if

α(ω0 − ω) < 4(1− ω). (36)
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In effect, the condition (36) sets an upper bound on α for given ω0 and ω. In particular, the condition is

always satisfied if 0 < α < 4.

If, on the other hand, the condition (36) is not satisfied (i.e., 0 < S01 < Scr), we obtain a regular

soliton. In a less physically relevant case, when again ω0 > ω but α < 0, cuspons do not occur [as this

time Scr < 0, see Eq. (35)], and only regular solitons may exist.

Next we proceed to the case ω0 < ω, so that ω is located in the upper gap of the linear spectrum. For

α > 0, we have Scr < 0, hence only regular solitons may occur, and indeed it can be shown that there is

always at least one positive root S0, so a regular soliton exists indeed. If α < 0, then we have Scr > 0,

but it can be shown that, if ω0 < 1− κ2 (when also ω < 1), there is at least one positive root S0 < Scr;

thus, only a regular soliton can exist in this case too. On the other hand, if α < 0 and ω0 > 1− κ2 (and

then ω > 1), there are no positive roots S0, and so only cuspons occur.

Let us now turn to a detailed description of the cuspon’s local structure near its center, when S is

close to Scr. From the above analysis, one sees that cuspons occur whenever ω lies in the lower gap,

with ω0 > ω and α > 0, so that the criterion (36) is satisfied, or when ω lies in the upper gap with

1− κ2 < ω0 < ω and α < 0. To analyze the structure of the cuspon, we first note that, as it follows from

Eq. (29), one has cosφ = −1 (i.e., φ = π) when S = Scr, which suggest to set

Scr − S ≡ δ · κ2R, 1 + cosφ ≡ δ · ρ, (37)

where δ is a small positive parameter, and the stretched variables R and ρ are positive. At the leading

order in δ, it then follows from Eq. (29) that ρ = ρ0R, where

ρ0 ≡ α3(S01 − Scr). (38)

As it follows from the above analysis, ρ0 is always positive for a cuspon. We also stretch the spatial

coordinate, defining x ≡ δ3/2κ2y, the soliton center being at x = 0. Since S(x) is an even function of x,

it is sufficient to set x > 0 in this analysis. Then, on substituting the first relation from Eq. (37) into

Eq. (31), we get, to the leading order in δ, an equation

R (dR/dy)2 = ρ0S
2
cr/α

2 ≡ K2, (39)

so that

R = (3Ky/2)2/3
. (40)
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In the original unstretched variables, the relation (40) shows that, near the cusp,

Scr − S(x) ≈ (3Kκx/2)2/3, (41)

dS/dx ≈ (2/3)1/3 (Kκ)2/3 · x−1/3, (42)

and it follows from Eq. (30) that U3 is unbounded near the cusp,

U3 ≈ (Scr/α)(2αρ0K
2/3κx)1/3. (43)

In particular, Eq. (42) implies that, as Kκ decreases, the cusp gets localized in a narrow region where

|x| <∼K2κ2 (outside this region, |dS/dx| is bounded and shows no cusp). Note that this limit can be

obtained either as κ2 → 0, or as ρ0 → 0 [recall ρ0 is defined in Eq. (38)].

It is relevant to mention that, very close to the cusp, the underlying physical model, which is based

on the paraxial approximation in the application to optical systems, or on a long-wave expansion in the

case of internal waves in stratified fluids, may become irrelevant. However, this circumstance will lead

to a modification of the structure of the physical fields inside the cuspon only in a very small vicinity of

the singular point (for instance, on a scale of the order of the light wavelength in optical systems, or the

layer’s depth in the fluids). Thus, the cuspon solutions are quite relevant to applications, provided that

they are stable.

An example of the cuspon is shown in Fig. 2. Although the first derivative in the cuspon is singular at

its center, as follows from Eq. (42) [see also Fig. 2(a)], it is easily verified that the Hamiltonian (13) (and,

obviously, the norm (12) too) are finite for the cuspon solution. These solitons are similar to cuspons

found as exact solutions to the Camassa-Holm (CH) equation [17,18], which have a singularity of the type

|x|1/3 or |x|2/3 as |x| → 0, cf. Eqs. (41) and (42). The CH equation is integrable, and it is degenerate in

the sense that it has no linear terms except for ∂u/∂t (which makes the existence of the solution with a

cusp singularity possible). Our three-wave system (8) - (10) is not degenerate in that sense; nevertheless,

the cuspon solitons are possible in it because of the model’s multicomponent structure: the elimination

of the third component generates the non-polynomial nonlinearity in Eqs. (21), (22), and, finally, in Eqs.

(25) and (31), which gives rise to the cusp. It is noteworthy that, as well as the CH model, ours gives

rise to two different coexisting families of solitons, viz., regular ones and cuspons. It will be shown below

that the solitons of both types may be stable.
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In the special case κ � 1, when the third component is weakly coupled to the first two ones in the

linear approximation, a straightforward perturbation analysis shows that the cuspons look like peakons;

that is, except for the above-mentioned narrow region of the width |x| ∼ κ2, where the cusp is located,

they have the shape of a soliton with a discontinuity in the first derivative of S(x) and a jump in the

phase φ(x), which are the defining features of peakons ( [17,19]). An important result of our analysis

is that the family of solitons obtained in the limit κ → 0 is drastically different from that in the model

where one sets κ = 0 from the very beginning. In particular, in the most relevant case, with ω0 > ω

and α > 0, the family corresponding to κ→ 0 contains regular solitons whose amplitude is smaller than

√
Scr; however, the solitons whose amplitude at κ = 0 is larger than

√
Scr, i.e., the ones whose frequencies

belong to the region (36) [note that the definition of Scr does not depend on κ at all, see Eq. (35)], are

replaced by the peakons which are constructed in a very simple way: drop the part of the usual soliton

above the critical level S = Scr, and bring together the two symmetric parts which remain below the

critical level, see Fig. 2(b). It is interesting that peakons are known as exact solutions to a version of

the integrable CH equation slightly different from that which gives rise to the cuspons. As well as in the

present system, in that equation the peakons coexist with regular solitons [19]. In the next subsection,

we demonstrate that the peakons, which are found only as limit-form solutions in the zero-SPM case

σ3 = 0, become generic solutions in the case σ3 6= 0.

D. Peakons, the case σ3 6= 0

Before proceeding to the consideration of dynamical stability of various soliton solutions found above,

it is relevant to address another issue, viz., structural stability of the cuspon solutions. To this end, we

restore the SPM term in Eq. (10), that is, we now set σ3 6= 0, but assume that it is a small parameter.

Note that, in the application to nonlinear optics, one should expect that σ3 > 0, but there is no such

a restriction on the sign of σ3 in the application to the flow of a density-stratified fluid. We still keep

σ1 = 0, as the inclusion of the corresponding SPM terms in Eqs. (8) and (9) amounts to straightforward

changes in details of both the above analysis, and that presented below. On the other hand, we show

below that the inclusion of the SPM term in Eq. (10) is a structural perturbation which drastically

changes the character of the soliton solutions.

In view of the above results concerning the cuspons, we restrict our discussion here to the most
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interesting case when S(x) is an even function of x, while ψ(x) = φ(x)− π and U3(x) are odd functions.

In principle, one can use the relations (26) and (29) to eliminate φ and U3 and so obtain a single equation

for S (a counterpart to Eq. (31)), as it was done above when σ3 = 0. However, when σ3 6= 0, this

cannot be done explicitly. Instead, we shall develop an asymptotic analysis valid for x→ 0, which will be

combined with results obtained by direct numerical integration of Eqs. (24) and (25), subject, of course,

to the constraints (26) and (29). Since singularities only arise at the center of the soliton (i.e., at x = 0)

when σ3 = 0, it is clear that the introduction of a small σ3 6= 0 will produce only a small deformation of

the soliton solution in the region where x is bounded away from zero.

First, we consider regular solitons. Because the left-hand side of Eq. (26) is not singular at any x,

including the point x = 0 when σ3 = 0, we expect that regular solitons survive a perturbation induced

by σ3 6= 0. Indeed, if there exists a regular soliton, with S0 ≡ S(x = 0), and φ(x = 0) = π and

U3(x = 0) = 0, it follows from Eq. (29) that the soliton’s amplitude remains exactly the same as it was

for σ3 = 0, due to the fact that the regular soliton has U3(x = 0) = 0.

Next, we turn to the possibility of singular solutions, that is, cuspons or peakons. Since we are

assuming that S0 = S(x = 0) is finite, and that φ(x = 0) = π, it immediately follows from Eq. (26)

that when σ3 6= 0, U3 must remain finite for all x, taking some value U0 6= 0, say, as x → +0. As it

has been established above that U3 is an odd function of x, and U3(x = +0) ≡ U0 6= 0, there must be

a discontinuity in U3 at x = 0, i.e., a jump from U0 to −U0. This feature is in marked contrast to the

cuspons for which U3 is infinite at the center, see Eq. (43). Further, it then follows from Eq. (25) that,

as x → 0, there is also a discontinuity in dS/dx, with a jump from 2κU0

√
S0 to −2κU0

√
S0. Hence, if

we can find soliton solutions of this type, with U0 6= 0, they are necessarily peakons, and we infer that

cuspons do not survive the structural perturbation induced by σ3 6= 0.

Further, if we assume that U0 6= 0, then Eq. (26), taken in the limit x→ 0, immediately shows that

2α(Scr − S0) = σ3U
2
0 (44)

(recall that Scr is defined by Eq. (35)). Next, the Hamiltonian relation (29), also taken in the limit

x→ 0, shows that

−ρ0

α
S0 − α2S0(Scr − S0) =

1
2
σ3U

4
0 , (45)

where we have used Eq. (44) (recall that ρ0 is defined by Eq. (38)). Elimination of U0 from (44,45) yields

a quadratic equation for S0, whose positive roots represent the possible values of the peakon’s amplitude.
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We recall that for a cuspon which exists at σ3 = 0 one has ρ0 > 0, i.e., the amplitude of the corre-

sponding formal regular soliton exceeds the critical value of the amplitude, see Eq. (38). Then, if we

retain the condition ρ0 > 0, it immediately follows from Eqs. (44) and (45) that no peakons may exist if

the SPM coefficient in Eq. (10) is positive, σ3 > 0. Indeed, Eq. (44) shows that Scr − S0 > 0 if σ3 > 0,

which, along with ρ0 > 0, leads to a contradiction in the relation (45).

Further, it is easy to see that a general condition for the existence of peakons following from Eqs. (44)

and (45) is

σ3ρ0 < 0 , (46)

hence peakons are possible if σ3 < 0, or if we keep σ3 > 0 but allow ρ0 < 0. In the remainder of this

subsection, we will show that peakons may exist only if ρ0 > 0. Hence, it follows from the necessary

condition (46) that peakons may indeed be possible solely in the case σ3 < 0. On the other hand, regular

solitons do exist in the case σ3 > 0 (i.e., in particular, in nonlinear-optics models), as they have U0 = 0,

hence neither Eq. (44) nor its consequence in the form of the inequality (46) apply to regular solitons.

The existence of (stable) peakons for σ3 < 0, and of (also stable) regular solitons for σ3 > 0 will be

confirmed by direct numerical results presented in the next section.

To obtain a necessary condition (which will take the form of ρ0 > 0) for the existence of the peakons,

we notice that existence of any solitary wave implies the presence of closed dynamical trajectories in

the phase plane of the corresponding dynamical system, which is here based on the ordinary differential

equations (24) and (25), supplemented by the constraint (26). Further, at least one stable fixed point

(FP) must exist inside such closed trajectories, therefore the existence of such a stable FP is, finally, a

necessary condition for the existence of any solitary wave.

The FP are found by equating to zero the right-hand sides of Eq. (24) and (25), which together with

Eq. (26) give three equations for the three coordinates φ, S and U3 of the FP. First of all, one can find a

trivial unstable FP of the dynamical system,

cosφ = −ω + κ2/(ω0 − ω)
1 + κ2/(ω0 − ω)

, S = 0 ,

which does not depend on σ3. Then, three nontrivial FPs can be found, with their coordinates φ∗, S∗

and U3∗ given by the following expressions:

φ
(1)
∗ = π, S

(1)
∗ =

1− ω
α2

=
1
2
S01, U

(1)
3∗ = 0, (47)
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φ
(2)
∗ = π, (2− σ3)S(2)

∗ = 2Scr −
σ3

2
S01, (2− σ3)

[
αU

(2)
3∗

]2
= ρ0 − α3Scr , (48)

(2− σ3)S(3)
∗ = 2Scr −

1
2
σ3S01 +

κ2

α
, (2− σ3)

[
αU

(3)
3∗

]2
= ρ0 − α3Scr − α2κ2 ,

cos
(
φ

(3)
∗ /2

)
= −1

2
κU

(3)
3∗ /

√
S

(3)
∗ . (49)

To be specific, we now consider the case of most interest, when both S01 > 0 and Scr > 0. In this case,

the FP given by Eqs. (47) exists for all σ3 and all ρ0. However, for small σ3 (in fact σ3 < 2 is enough)

and small κ, the FPs given by Eqs. (48) and (49) exist only when ρ0 > 0. Indeed, they exist only for

ρ0 > α3S01 and ρ0 > α3S01 + κ2, respectively, or, on using the definition (38) of ρ0, when S01 > 2Scr

and S01 > 2Scr + κ2/α, respectively.

Let us first suppose that ρ0 < 0. Then there is only the single non-trivial FP, namely the one given by

Eqs. (47). This FP is clearly associated with the regular solitons, whose squared amplitude is S01. Hence,

we infer that for ρ0 < 0 there are no other solitary-wave solutions, and in particular, no peakons (and no

cuspons either when σ3 = 0, in accordance with what we have already found in subsection 2.3 above).

Combining this with the necessary condition (46) for the existence of peakons, we infer that there are no

peakons when σ3 > 0, thus excluding peakons from applications to the nonlinear-optics models, where

this SPM coefficient is positive. However, peakons may occur in density-stratified fluid flows, where there

is no inherent restriction on the sign of σ3. This case is considered below, but first we note that in the

case ρ0 < 0 and σ3 > 0 (which includes the applications to nonlinear optics), the same arguments suggest

that there may be periodic solutions with peakon-type discontinuities; indeed, our numerical solutions of

the system (24,25) (not displayed in this paper) show that this is the case.

Next, we suppose that ρ0 > 0. First, if S01 < 2Scr, then there again exists the single non-trivial FP

given by (47). But now, by analogy with the existence of cuspons when ρ0 > 0 and σ3 = 0, we infer that

the solitary-wave solution which is associated with this fixed point is a peakon, whose squared amplitude

S0 for small σ3 is close to Scr, while the FP has S(1)
∗ = S01/2 < Scr.

If, on the other hand, S01 > 2Scr, the FPs given by Eqs.(48) and (49) become available as well. We

now infer that the peakon solitary-wave solution continues to exist, and for sufficiently small σ3 and κ

it is associated with the FP given by Eq. (48). Although Eq. (48) implies that S(2)
∗ ≈ Scr, and the

peakon’s squared amplitude S0, determined by Eqs. (44) and (45), is also approximately equal to Scr, we

nevertheless have S0 > S
(2)
∗ as required. Note that, in the present case, the FPs given by Eqs. (47) and
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(49) lie outside the peakon’s homoclinic orbit. In Fig. 3, we show a plot of a typical peakon obtained, in

this case, by numerical solution of Eqs. (24) and (25).

III. NUMERICAL RESULTS

A. Simulation techniques

The objectives of direct numerical simulations of the underlying equations (8) - (10) were to check

the dynamical stability of regular solitons, cuspons, and peakons in the case σ3 = 0, and the existence

and stability of peakons in the more general case, σ3 6= 0. Both finite-difference and pseudo-spectral

numerical methods have been used, in order to check that the same results are obtained by methods of

both types. We used semi-implicit Crank-Nicholson schemes, in which the nonlinear terms were treated

by means of the Adams-Bashforth algorithm.

The presence of singularities required a careful treatment of cuspon and peakon solutions. To avoid

numerical instabilities due to discontinuities, we sometimes introduced a weak artificial high-wavenumber

viscosity into the pseudospectral code. We have found that viscosities ∼ 10−5 were sufficient to avoid the

Gibbs’ phenomenon in long-time simulations. When instabilities occur at a singular point (cusp or peak),

it is hard to determine whether the instability is a real one or a numerical artifact. Therefore, we checked

the results by means of a finite-difference code which used an adaptive staggered grid; motivated by the

analysis of the vicinity of the point x = 0 reported above, we introduced the variable ξ ≡ x2/3 to define

an adaptive grid, and also redefined U3 ≡
√
ξŨ3. In these variables, the cusp seems like a regular point.

We stress that this approach was solely used to check the possible occurrence of numerical instabilities.

In the following subsections we present typical examples of the numerical results for both cases con-

sidered above, viz., σ3 = 0 and σ3 < 0, when, respectively, the cuspons and peakons are expected.

B. The case σ3 = 0

First, we report results obtained for the stability of regular solitary waves in the case σ3 = 0. As

initial configurations, we used the corresponding stationary solutions to Eqs. (24) and (25). To test the

stability of the regular solitary waves, we added small perturbations to them. As could be anticipated, the

regular solitary wave sheds off a small-amplitude dispersive wave (radiation) and relaxes to a stationary
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soliton, see Fig. 4. If, however, regular solitons are taken at parameter values close to the border of

the cuspon region, an initial perturbation does not make the soliton unstable, but it excites persistent

internal vibrations in the soliton, see an example in Fig. 5. These and many other simulations clearly

show that the regular soliton is always stable, and, close to the parameter border with cuspons, it has a

persistent internal mode.

It was shown analytically above that Eqs. (21) and (22) (with σ3 = 0) support peakons when ρ0 > 0

and ρ0κ
2 is very small. Direct simulations show that the peakons do exist in this case, and are stable. In

Fig. 6, we display the time evolution of a typical stable peakon.

An essential result revealed by the simulations is that cuspons may also be stable, a typical example

being displayed in Fig. 7. A moving weak singularity seen in this figure is, actually, a small shock wave

which is initially generated at the cuspon’s crest. It seems plausible that this shock wave is generated by

some initial perturbation which could be a result of the finite mesh size in the finite-difference numerical

scheme employed for the simulations. We have observed that the emission of a small-amplitude shock

wave is quite a typical way of the relaxation of both cuspons and peakons to a final stable state.

However, unlike the regular solitons, which were found to be stable, the cuspons are sometimes unstable.

Typically, their instability triggers onset of the spatiotemporal collapse, i.e., formation of a singularity

in a finite time (see a discussion of the feasible collapse in systems of the present type, given in the

Introduction). Simulations of the collapse were possible with the use of an adaptive grid. A typical

example of the collapse is shown in Fig. 8, the inset illustrating the fact that the amplitude of the

solution indeed diverges in a finite time. In some other cases, which are not displayed here, the instability

of peakons could be quite weak, giving rise to their rearrangement into regular solitons by shedding small

amounts of radiation.

C. The case σ3 6= 0

The predictions of the analysis developed above for the most general case, when the SPM terms are

present in the model (σ3 6= 0), were also checked against direct simulations. As a result, we have found,

in accord with the predictions, that only regular solitons exist in the case σ3 > 0, while in the case σ3 < 0

both regular solitons and peakons have been found as generic solutions. Further simulations, details of

which are not shown here, demonstrate that both regular solitons and peakons are stable in this case.
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IV. CONCLUSION

In this work, we have introduced a generic model of three waves coupled by linear and nonlinear terms,

which describes a situation when three dispersion curves are close to intersection at one point. The model

was cast into the form of a system of two waves with opposite group velocities that, by itself, gives rise

to the usual gap solitons, which is further coupled to a third wave with the zero group velocity (in the

laboratory reference frame). Situations of this type are possible in various models of nonlinear optics

and density-stratified fluid flows. The consideration was focussed on zero-velocity solitons. In a special

case when the self-phase modulation (SPM) is absent in the equation for the third wave, soliton solutions

were found in an exact form. It was shown that there are two coexisting generic families of solitons:

regular solitons and cuspons. In the special case when the coefficient of the linear coupling between the

first two waves and the third one vanishes, cuspons are replaced by peakons. Direct simulations have

demonstrated that the regular solitons are stable (in the case when the regular soliton is close to the

border of the cuspon region, it has a persistent internal mode). The cuspons and peakons may be both

stable and unstable. If they are unstable, they either shed off some radiation and rearrange themselves

into regular solitons, or, in most typical cases, the development of the cuspon’s instability initiates onset

of spatiotemporal collapse. To the best of our knowledge, the present system gives the first explicit

example of the collapse in one-dimensional gap-soliton models.

The most general version of the model, which includes the self-phase modulation term in the equation

for the third wave, has also been considered. Analysis shows that cuspons cannot exist in this case, i.e.,

cuspons, although being dynamically stable, are structurally unstable. However, depending on the signs

of the SPM coefficient and some combination of the system’s parameters, it was shown that a generic

family of peakon solutions may exist instead. In accord with this prediction, the peakons have been found

in direct simulations. The peakons, as well as the regular solitons, are stable in the system including the

SPM term.

The next step in the study of this system should be consideration of moving solitons, which is suggested

by the well-known fact that the usual two-wave model gives rise to moving gap solitons too [1]. However,

in contrast to the two-wave system, one may expect a drastic difference between the zero-velocity and

moving solitons in the present three-wave model. This is due to the reappearance of a derivative term

in Eq. (10), when it is written for a moving soliton, hence solitons which assume a singularity or jump
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in the U3 component, i.e., both cuspons and peakons, cannot exist if the velocity is different from zero.

Nevertheless, one may expect that slowly moving solitons will have approximately the same form as the

cuspons and peakons, with the singularity at the central point replaced by a narrow transient layer with

a large gradient of the U3 field. However, detailed analysis of the moving solitons is beyond the scope of

this work.
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Fig. 1. Dispersion curves produced by Eq. (18) in the case κ = 0.5: (a) ω0 < 1− κ2; (b) ω0 > 1. The

dashed line in each panel is ω = ω0. The case with 1 − κ2 < ω0 < 1 is similar to the case (a) but with

the points ω+ and 1 at k = 0 interchanged.

Fig. 2. The shape of the cuspon for α = 2.0, ω0 = 0.1, ω = −0.5, and (a) κ = 0.5, i.e., in the general

case, and (b) κ = 0.1, i.e., for small κ. In the case (b) we also show the usual gap soliton (by the dashed

line), the part of which above the critical value S = Scr (shown by the dotted line) should be removed

and the remaining parts brought together to form the peakon corresponding to ρ0κ
2 → 0.

Fig. 3. The shape of the peakon in for the case when σ3 < 0. The parameters are σ3 = −0.01, κ = 0.1,

α = 2.0, ω0 = 0.1, and ω = −0.5. In this case, ρ0 = 4.8.

Fig. 4. The shape of an initially perturbed regular soliton in the case σ3 = 0 at t = 5, which illustrates

the stabilization of the soliton via the shedding of small-amplitude radiation waves. The plot displays

the field ReU1(x). The parameters are κ = 0.01, α = 1.0, ω0 = 0.2, and ω = 0.9.

Fig. 5. Internal vibrations of an initially-perturbed regular soliton, which was taken close to the border

of the cuspon region. The plot shown is the squared amplitude a ≡ |U1(x = 0)|2 of the U1(x) field vs.

time. The parameters are κ = 0.01, α = 1.9, ω0 = 1.5, and ω = 0.5, with ρ0 = 0.095 [see Eq. (38].

Fig. 6. An example of a stable peakon. The plot shown is the field ImU1 vs. x and t. The parameters

are κ = 1.0, α = 1.95, ω0 = 1.5, and ω = 0.5, with ρ0 = 0.04875.

Fig. 7. An example of a stable cuspon. The plot shown is the field ImU1 vs. x and t. The parameters

are κ = 1.0, α = 1.0, ω0 = 1.5, and ω = 0.5, with ρ0 = 0.5.

Fig. 8. The spatial profile is shown for an unstable cuspon in terms of ImU1 at t = 10−3. The

transition to collapse is additionally illustrated by the inset which shows the growth of the amplitude of

the field |U1|2 with time. The parameters are κ = 0.01, α = 1.1, ω0 = 0.1, and ω = −0.3, with ρ0 = 2.618.
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