
UNO: Unlearning via Orthogonalization in Generative
models

Pinak Mandal∗
University of Sydney

Georg A. Gottwald†

University of Sydney

Abstract

As generative models become increasingly powerful and pervasive, the ability
to unlearn specific data, whether due to privacy concerns, legal requirements, or
the correction of harmful content, has become increasingly important. Unlike in
conventional training, where data are accumulated and knowledge is reinforced,
unlearning aims to selectively remove the influence of particular data points without
costly retraining from scratch. To be effective and reliable, such algorithms need
to achieve (i) forgetting of the undesired data, (ii) preservation of the quality of
the generation, (iii) preservation of the influence of the desired training data on
the model parameters, and (iv) small number of training steps. We propose fast
unlearning algorithms based on loss gradient orthogonalization. We show that our
algorithms are able to forget data while maintaining the fidelity of the original
model. Using MNIST and CelebA data, we demonstrate that our algorithms
achieve orders of magnitude faster unlearning times than their predecessors, such
as gradient surgery.

1 Introduction

Machine learning models are often trained on datasets that contain personal or sensitive information,
such as medical records, financial data, or social media activity [30, 39]. This reliance on personal
data introduces substantial privacy risks, especially when models can unintentionally memorize or
leak identifiable information; see [8] for an in-depth exploration of this issue in the context of large
language models (LLMs). Legal frameworks such as the General Data Protection Regulation (GDPR)
and related EU laws have been established to address these issues [1]. One of the central provisions
is the right to be forgotten (RTBF), which grants individuals the ability to request the deletion of their
personal data [24]. It is increasingly likely that this obligation will become a standard requirement for
machine learning services. Retraining large models from scratch each time such a request is received
is computationally infeasible since the training costs are substantial [5, 18]. Machine unlearning
refers to removal of the influence of specific data points from a trained model without requiring full
retraining. In the context of generative models this can be formalized as follows. Given a training
datasetD = Dr ⊔Df partitioned into retain and forget datasetsDr andDf , respectively, and a model
Mθ trained on D, the objective of unlearning is to update the model parameters θ in a way such that
P (sim(x,Df) ≥ δ) ≤ ε where P denotes probability, x is a sample generated by the updated model,
sim is an appropriate similarity measure, and ε, δ are thresholds controlling the degree of forgetting.
For an unlearning algorithm to be effective, it should (i) prevent the model from generating data
resembling samples from Df , (ii) preserve the quality or fidelity of the generated samples, (iii) retain
the influence of Dr on the model parameters, and (iv) require only a small number of training steps.

A simple approach to machine unlearning is to reverse the model update steps by performing
gradient ascent on the loss computed over the forget dataset Df . However, this method is susceptible

∗pinak.mandal@sydney.edu.au
†georg.gottwald@sydney.edu.au

Preprint. Under review.

to catastrophic forgetting, where the model loses knowledge far beyond just the targeted forget
dataset [29, 28]. To mitigate this, several approaches combine gradient ascent on Df with gradient
descent on the retain dataset Dr [44]. The Gradient Difference (GDiff) method minimizes the
difference of losses evaluated on the retain and forget datasets. Balancing the opposing updates in
ascent-descent methods or weighing the loss terms properly in methods like GDiff is challenging
since the forget and retain datasets might have significant size disparity, and the risk of catastrophic
forgetting persists unless training hyperparameters such as the learning rate are finely tuned [6].
Recently, multi-task optimization (MTO) techniques [36, 45] have inspired several unlearning
algorithms. One such algorithm is gradient surgery [2] where gradient ascent is performed in a
direction that is orthogonal to the loss gradient computed over the retain dataset. While theoretically
sound, this method remains sensitive to the choice of hyperparameters and can suffer from catastrophic
forgetting without careful tuning, see Appendix 7 for an example.

In this work, we aim to advance the gradient surgery framework for unlearning in generative models.
Although our proposed algorithms are general-purpose and presented accordingly, we demonstrate
their effectiveness specifically using variational autoencoders (VAEs) [22, 34] for two widely used
benchmark image datasets MNIST [11] and CelebA [27].

Contributions

Our main contributions are as follows:

1. We propose two new unlearning algorithms that regularize the main loss function with an
additional term enforcing orthogonality between loss gradients computed over the retain
and forget datasets.

2. We compare our algorithms against prior approaches, including gradient surgery and gradient
ascent, evaluating both unlearning speed and the quality of generated samples. Our methods
achieve orders of magnitude faster unlearning than gradient surgery, while retaining the
influence of the desired training data unlike gradient ascent.

3. We explore unlearning in the presence of a classifier able to distinguish between the retain
and forget data and assess its impact on accelerating unlearning algorithms.

4. We provide implementations of both the proposed and baseline algorithms, along with the
experiment data, in this GitHub repository: https://github.com/pinakm9/forget.

2 Related work

Early foundational work by Koh and Liang [23] introduced influence functions as a principled
approach for quantifying the impact of removing individual training points from machine learning
models. Although influential, their technique is computationally demanding, limiting its scalability,
particularly for large-scale neural networks [3, 15]. To address these computational challenges, recent
studies have developed more efficient and scalable methodologies. For example, Schioppa et al. [35]
and Guo et al. [15] proposed efficient approximations of influence functions that significantly reduce
computational complexity. Further, innovative optimization-based frameworks such as SCRUB by
Kurmanji et al. [25] approximate data removal for classification models such as ResNet [16] using a
teacher-student distillation paradigm combined with checkpoint rewinding. Gradient-based methods
have emerged as an effective paradigm for machine unlearning. Golatkar et al. [13] approximate
the influence of individual data points on model parameters using the Fisher Information Matrix
and use it to execute unlearning in deep networks. Building on this, Mixed-Privacy Forgetting [12]
combines public and private data during training, enabling the selective removal of private data while
preserving the utility of public data. Neel et al. [31] propose Descent-to-Delete, a gradient-based
optimization technique that incrementally updates model parameters to approximate the behavior of
a model trained without the forgotten data.

Unlearning in generative models introduces distinct challenges due to their capacity to implicitly
memorize training data, complicating data removal without degrading generative quality. Addressing
these, Bae et al. [37] introduced methods specifically designed to detect and mitigate unintended
memorization in generative adversarial networks (GANs). Selective Amnesia [17], proposed by Heng
and Soh, leverages continual learning frameworks to selectively remove specific concepts from deep
generative models without compromising the overall data distribution learned by the model. In the

2

https://github.com/pinakm9/forget

context of LLMs, recent works have tackled critical challenges such as selective forgetting of harmful
or copyrighted content and aligning models to user preferences [20, 9, 33, 32]. These methods employ
parameter-efficient fine-tuning, low-rank adaptations, and in-context learning strategies to remove
specific learned knowledge while minimally impacting overall model performance.

Negative Preference Optimization (NPO) [46] offers an alignment-inspired approach to machine
unlearning by assigning lower preference or likelihood to data from the forget set. Through preference-
based training, the model learns to reduce its reliance on forget data, often using pairwise comparisons
or preference signals. Normalized Gradient Difference (NGDiff) [6] approaches unlearning as a
multi-task optimization problem, balancing the objectives of forgetting and retaining. By normalizing
the gradient differences between these tasks and employing an adaptive learning rate scheduler,
NGDiff provides stable training and effectively manages the trade-off between unlearning and model
utility. Cao et al. [7] propose a projection residual based method to remove the influence of undesired
data. In the same vein, gradient surgery [2] attempts to maximize the loss in a direction orthogonal to
the loss gradient evaluated on the retain dataset. While promising for generative models, gradient
surgery can suffer from inefficiency when there is significant overlap between loss gradients computed
on the retain and forget data, or even cause catastrophic forgetting. We aim to improve upon this
approach by explicitly enforcing orthogonality between these conflicting gradients. Our algorithms
exhibit no catastrophic forgetting, achieve fast unlearning speeds, and are robust to hyperparameter
selection.

For a comprehensive overview of unlearning techniques for large language models, including method
categorization and scale-specific challenges, see Blanco-Justicia et al. [4]. For a broad taxonomy of
machine unlearning across centralized, distributed, and privacy-critical settings with a focus on open
problems and verification, see Wang et al. [41].

3 Unlearning via orthogonalization

We now describe the unlearning algorithms used to produce the results presented in this paper. The
pseudocode for all the algorithms presented in this section can be found in Appendix 6.

3.1 Gradient ascent

We begin by introducing the most primitive approach, namely, gradient ascent. Given a modelMθ

with trainable parameters θ, trained using a loss function L on dataset D, unlearning can be induced
by maximizing the loss on the forget data, which can be done with the update step:

θk+1 = θk + ηgf , (A)

where θk represents the model parameters after the k-th training step, η is the learning rate, and gf is
the gradient of the loss evaluated over the forget data (we omit the index of θ in the definition below
for brevity),

gf =
1

|Df |
∑
x∈Df

∇θL(Mθ, x). (1)

This approach, however, may delete knowledge acquired on the retain data Dr if gf resembles gr,
the gradient of loss evaluated over the retain data,

gr =
1

|Dr|
∑
x∈Dr

∇θL(Mθ, x). (2)

A naive way to prevent the model from forgetting retain data is to perform alternating ascent in gf

direction and descent in gr:

θk+1 =

{
θk + ηgf , if k is even,
θk − ηgr, if k is odd.

(A-D)

This simple modification, however, does not safeguard against catastrophic forgetting, as we will see
in Section 4.

3

3.2 Gradient surgery

Similar challenges also arise in a related subfield of machine learning: multi-task optimization where
a model must learn to perform new tasks without compromising performance on earlier tasks [10].
If the loss gradient corresponding to the new task points in a direction opposing the loss gradients
corresponding to the old tasks, the model risks losing its previously learned skills with each new
gradient descent step, paralleling catastrophic forgetting. In multi-task optimization, gradient surgery
refers to techniques that modify task-specific gradients during training to reduce this interference
between tasks. When gradients from different tasks conflict, i.e., point in opposing directions,
methods like PCGrad project gradients to minimize this conflict, allowing the model to learn multiple
tasks more effectively without one task hindering the progress of another [45].

Gradient surgery can be used to reduce the potential conflict between gf and gr to improve the vanilla
gradient ascent [2]. We remove the orthogonal projection of gr from gf before taking the ascent step,

ḡf = gf −
gr · gf

gr · gr
gr,

θk+1 = θk + ηḡf .
(SA)

While this modified ascent reduces over-unlearning compared to vanilla ascent, it does not fully
resolve the issue, and still requires careful tuning of η to avoid catastrophic forgetting. Therefore, we
introduce another version of gradient surgery which we find to be more stable and use it throughout,
for generating the results in Section 4. Rather than perform ascent along modified gf direction, we
perform descent along modified gr direction resulting in the following update:

ḡr = gr −
gr · gf

gf · gf
gf ,

θk+1 = θk − ηḡr,
(S)

which aims at minimizing the loss in directions orthogonal to gf . This form of gradient surgery does
not suffer from catastrophic forgetting, is robust to the choice of η, and consequently can achieve
faster unlearning speeds compared to (SA) with larger values of η. For a comparison of these two
versions of gradient surgery: (SA) and (S), see Appendix 7.

3.3 UNO and UNO-S

In the ideal scenario, when gf is orthogonal to gr, (SA) is equivalent to gradient ascent (A) without
the risk of losing desired knowledge. In this case, (S) is equivalent to retraining the model on the
retain data, without the risk of relearning about the forget data. Therefore, we propose a modified
loss function that attempts to enforce this ideal scenario with the help of an orthogonality promoting
regularization term,

LUNO =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βo

(
gr · gf

∥gr∥∥gf∥

)2

, (3)

where βo is a regularization parameter. The unlearning via orthogonalization algorithm (UNO), can
be expressed as performing gradient descent on this modified loss,

θk+1 = θk − η∇θkLUNO. (UNO)

Note that we only use the retain data to construct the first term in (3) to mimic the ideal retraining
scenario mentioned above.

We further propose a hybrid algorithm that applies the (UNO) update step and the (S) update step
alternately which we refer to as UNO-S:

θk+1 =

{
θk − η∇θkLUNO, if k is even,
θk − ηḡr, if k is odd.

(UNO-S)

The UNO update step attempts to enforce orthogonality between gf and gr, which helps the subse-
quent surgery step effectively resolve the conflict between them.

4

3.4 Unlearning in the presence of a classifier able to distinguish between Dr and Df

If we have access to a binary classifier that distinguishes forget data from retain data, we can leverage
this extra information to accelerate unlearning algorithms. We can use this classifier to identify every
sample generated by our model as either a retain or forget sample, and compute the probability pr
that a generated sample is a retain sample. This associates our generative model with a Bernoulli
distribution with probability of success pr. We would like this distribution to have probability of
success close to 1 or 1− α where α is a small positive threshold controlling the degree of forgetting.
We can enforce this by simply adding the following term to our loss,

βhdKL = βh

[
pr log

(
pr

1− α

)
+ (1− pr) log

(
1− pr

α

)]
, (4)

where βh is a regularization parameter, and dKL represents the KL divergence between the computed
and desired Bernoulli distributions. Small positive values of α ensure stable computation of this KL
divergence term. Recalling that pr is a function of the model and its parameters, we can now use
the modified loss function in place of the original loss in the previously described algorithms. We
use the hat symbol (ˆ) to denote unlearning algorithms that operate with the additional loss term (4).
For example, gradient surgery (S), UNO, and UNO-S become Ŝ, UNÔ, and UNÔ-Ŝ, respectively,
when (4) is utilized. Addition of the new term yields the following modified definitions of gf and gr:

gf =
1

|Df |
∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL, (5)

gr =
1

|Dr|
∑
x∈Dr

∇θL(Mθ, x) + βh∇θdKL. (6)

Using (5), (6) with (S) gives us Ŝ. Similarly, the update rule for UNÔ can be written as,

LUNÔ =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βo

(
gr · gf

∥gr∥∥gf∥

)2

+ βhdKL,

θk+1 = θk − η∇θkLUNÔ.

(UNÔ)

Alternating update steps of UNÔ and Ŝ gives us UNÔ-Ŝ. Since the KL divergence term promotes
unlearning of the forget data by preventing generation of forget samples, we also test the following
update rule which is equivalent to UNÔ with βo = 0,

LH =
1

|Dr|
∑
x∈Dr

L(Mθ, x) + βhdKL,

θk+1 = θk − η∇θkLH .

(H)

We call the resulting unlearning algorithm histogram unlearning and denote it by H throughout the
remainder of this work.

4 Results

We test the algorithms described in Section 3 and Appendix 6 on VAEs trained on MNIST [11]
and CelebA [27]. Each algorithm was tested 10 times to generate statistics. For the training losses
used to train the original VAEs, training data, experiment hyperparameters, and model sizes, refer
to Appendix 9. The architecture of the models can be found in the code provided in Section 1. All
experiments were done on an A100 GPU provided by Google Colab.

4.1 Performance metrics

In order to assess the speed of unlearning we use classifiers trained on the datasets and track the
fraction of generated samples that are classified as forget samples after each model update or training
step. Our classifiers achieve ∼ 98% accuracy on unseen data. Therefore, we define the time to

5

unlearn as the execution time of the unlearning algorithm until the fraction of forget samples drops
below 0.02. We evaluate the quality of the generated images by computing the Fréchet Inception
Distance (FID) using 25, 000 samples from the model and an equal number of real images from
the dataset. We also report the execution time per training step, however, we do not highlight
these values in the tables, as a larger time per step does not necessarily indicate slower unlearning,
and vice versa. For the algorithms in Section 3.4, whenever applicable, we report the speed-up in
Table 2 which is simply the factor by which the time to unlearn decreases due to utilizing the extra
information provided by the classifier.

4.2 MNIST

We use a 0.6M-parameter VAE with a 2-dimensional latent space, trained for 200 epochs on 60, 000
images, as our original model. We attempt to unlearn the digit "1" by running the algorithms for
530 training steps with a mini-batch size of 128, and a learning rate of 10−3. Figure 1 shows
samples generated before and after unlearning with UNO, using the same noise samples for ease
of comparison. The 1’s in the original generation (left) transform into 7, 8 and 3 after unlearning
(right). The non-1 digits remain nearly unchanged. Even though 1’s can transform into many different
digits, they have an affinity for turning into 8’s, followed by 3’s, as seen in Figure 2. If the goal is
uniform generation across the retain classes, one may utilize a loss term similar to dKL for enforcing
uniformity, assuming the availability of a classifier for all classes.

Original model After unlearning

Figure 1: MNIST samples generated by the original model (left) and after unlearning digit "1" with
UNO (right), using identical noise inputs for the decoder.

Figure 3 and Table 1 show that UNO-S achieves the fastest unlearning time, closely followed by
UNO, with both having similar fidelity as the original model, indicated by the FID. Gradient ascent,
while fast at unlearning, suffers from catastrophic forgetting, resulting in a large FID. Ascent-descent
also experiences catastrophic forgetting and is significantly slower at unlearning than gradient ascent.
Gradient surgery, while preserving image quality, is ∼ 170 times slower than UNO and UNO-S
at unlearning. Even though UNO takes ∼ 1.6 times longer to execute a training step compared to
gradient surgery, it still achieves orders of magnitude faster unlearning speed. Since one step of
surgery is faster than one step of UNO, UNO-S overall is slightly faster than UNO, as the time per
training step is averaged over the two algorithms. UNO-S, while taking twice as long as gradient
ascent for a single training step, achieves the same unlearning speed.

4.3 CelebA

We use an 8.7M-parameter VAE with a 512-dimensional latent space, trained for 200 epochs on
202, 599 64 × 64 images, downsampled from the original 178 × 178 resolution, as our original

6

0 1 2 3 4 5 6 7 8 9
0.00

0.05

0.10

0.15

0.20

0.25
Original model

0 1 2 3 4 5 6 7 8 9

After unlearning

Figure 2: Distribution of generated digits before (left) and after unlearning (right), for a single run
of UNO. Each histogram shows data for 500 generated samples. A bar in the right panel is colored
green if the fraction of the corresponding digit increases after unlearning, and red if it decreases.

A
(1)

A-D
(3)

S
(4)

UNO
(2)

UNO-S
(1)

10 1

100

Ti
m

e
to

 u
nl

ea
rn

 (s
)

1 100 200 300 400 500 600
Training step

0.00

0.02

0.04

0.06

0.08

Fr
ac

tio
n

of
 1

's
in

 g
en

er
at

ed
 im

ag
es A

A-D
S
UNO
UNO-S

A
(5)

A-D
(4)

S
(1)

UNO
(2)

UNO-S
(3)

102FI
D

Original model

Figure 3: Time to unlearn (left) and FID (right) for various unlearning algorithms applied on MNIST.
The middle panel shows the fraction of generated images classified as "1", averaged over 10 runs, as
a function of training steps. Standard deviations over 10 independent runs are shown as one-sided
error bars in the left and right panels. For time to unlearn and FID, the rank of each algorithm is also
indicated below its name, with 1 being the best.

model. We attempt to unlearn "male" faces by running the algorithms for 659 training steps with
a mini-batch size of 128, and a learning rate of 10−3. Approximately 29% of the faces generated
by the original model are male. Figure 4 shows samples generated before and after unlearning with
UNO, using the same noise samples. We observe that male faces are successfully converted into
female faces, and that feminine features are enhanced after unlearning, even when the originally
generated face was already female. The original image remains nearly unchanged if it contains few
or no male-specific features; see, for example, the last pair from the left in Figure 4. One notable
effect of unlearning male-specific features is that the transformed images exhibit broader smiles. This
is due to the sociological phenomenon wherein women tend to smile more in photographs [42]. For
examples of these effects, see a larger collection of before/after unlearning pairs in Appendix 8.

Figure 5 and Table 1 show that UNO-S again achieves the fastest time to unlearn, followed by UNO.
Even after spending ∼ 200 times more execution time than the time to unlearn with UNO, gradient
surgery is unable to achieve the desired ≤ 2% male faces in the generated images. After the 659
allotted training steps gradient surgery is only able to reach ∼ 4% male faces (see Figure 5, middle
panel). All three algorithms result in similar values of FID, and the quality of the generated images is
perceptually indistinguishable from the originally generated images, as seen in Figure 4.

4.4 Unlearning with a classifier

Table 2 shows that Ŝ achieves orders of magnitude speed-up over S for both MNIST and CelebA. UNO
and UNO-S, already fast, gain an additional 10% and 20% speed-up respectively after incorporating
the new information provided by the classifier. Histogram unlearning (H), although successful, is

7

Or
ig

in
al

 m
od

el
Af

te
r u

nl
ea

rn
in

g

Male Female

Figure 4: CelebA samples generated by the original model (top) and after unlearning "male" faces
with UNO (bottom), using identical noise inputs for the decoder.

S
(3)

UNO
(2)

UNO-S
(1)

10 1

100

101

Ti
m

e
to

 u
nl

ea
rn

 (s
)

1 100 200 300 400 500 600
Training step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
ac

tio
n

of
 m

al
es

 in
 g

en
er

at
ed

 im
ag

es S
UNO
UNO-S

S
(2)

UNO
(1)

UNO-S
(3)

140

145

150

155

160

165

170

175

FI
D
Original model

Figure 5: Time to unlearn (left) and FID (right) for various unlearning algorithms applied on CelebA.
The middle panel shows the fraction of generated images classified as "male", averaged over 10 runs,
as a function of training steps. Standard deviations over 10 independent runs are shown as one-sided
error bars in the left and right panels. For time to unlearn and FID, the rank of each algorithm is also
indicated below its name, with 1 being the best.

Table 1: Performance of various algorithms for class/feature unlearning with VAE on MNIST and
CelebA. Each experiment is repeated 10 times, and the standard deviations are shown in parentheses.
Bold indicates the best score. ✗ indicates that the generated samples after unlearning are unrecog-
nizably different from the original model. ✓ indicates the generated samples after unlearning are
perceptually indistinguishable from the original model in terms of visual fidelity. ’*’ indicates the
algorithm was unable to achieve the desired fraction of forget samples in the generated images after
the allotted number of training steps.

Dataset Algorithm Time to unlearn (s) ↓ FID ↓ Time per step (s)

MNIST
(Class: 1)

Original FID: 20.7

Gradient ascent (A) 0.018 (0.003) 612.3 (4.9) ✗ 0.005 (0.0001)
Ascent descent (A-D) 0.725 (0.963) 266.9 (19.3) ✗ 0.005 (0.0002)
Gradient surgery (S) 3.094 (0.945) 23.0 (0.2) ✓ 0.007 (0.0007)
UNO 0.019 (0.005) 23.3 (0.5) ✓ 0.011 (0.0007)
UNO-S 0.018 (0.009) 23.6 (0.5) ✓ 0.010 (0.0023)

CelebA
(Feature: Male)

Original FID: 166.3

Gradient surgery (S) 11.81∗ (0.688) 176.0 (3.7) ✓ 0.018 (0.0003)
UNO 0.059 (0.009) 174.4 (1.7) ✓ 0.031 (0.0006)
UNO-S 0.039 (0.016) 176.7 (3.0) ✓ 0.024 (0.0067)

8

20–130 times slower than the other algorithms in Table 2. All algorithms in Table 2 preserve the
fidelity of the original model, with UNÔ producing the lowest FID for both datasets.

Table 2: Performance of various algorithms for class/feature unlearning with VAE on MNIST
and CelebA when a classifier able to distinguish between the retain and forget data is available.
Each experiment is repeated 10 times, and the standard deviations are shown in parentheses. Bold
indicates the best score. ✗ indicates that the generated samples after unlearning are unrecognizably
different from the original model. ✓ indicates the generated samples after unlearning are perceptually
indistinguishable from the original model in terms of visual fidelity. ’*’ indicates in the absence
of the classifier, the algorithm did not reach the desired fraction of forget samples in the generated
images after the allotted number of training steps.

Dataset Algorithm Time to unlearn (s) ↓ FID ↓ Time per step (s) Speed-up ↑

MNIST
(Class: 1)

Original FID: 20.7

H 2.181 (0.853) 23.4 (0.5) ✓ 0.006 (0.0003) -
Ŝ 0.014 (0.003) 24.1 (0.5) ✓ 0.008 (0.0008) 221.0
UNÔ 0.018 (0.006) 23.4 (0.3) ✓ 0.011 (0.0011) 1.1
UNÔ-Ŝ 0.015 (0.006) 23.6 (0.5) ✓ 0.009 (0.0022) 1.2

CelebA
(Feature: Male)

Original FID: 166.3

H 6.049 (2.155) 174.8 (1.9) ✓ 0.016 (0.0002) -
Ŝ 0.292 (0.247) 176.4 (3.5) ✓ 0.023 (0.0003) 40.4∗

UNÔ 0.053 (0.009) 174.4 (1.7) ✓ 0.031 (0.0006) 1.1
UNÔ-Ŝ 0.046 (0.015) 175.4 (3.3) ✓ 0.026 (0.0055) 1.2

5 Discussion

We advance the gradient surgery paradigm for machine unlearning by introducing two new algorithms
UNO and UNO-S. We show that they are as fast as gradient ascent at unlearning without suffering
from catastrophic forgetting, and substantially faster than gradient surgery. In the absence of a
classifier, UNO-S outperforms all other algorithms, and can be up to 1.5 times faster than UNO at
unlearning. The proposed algorithms preserve the quality of generation and the influence of the
desired training data on the knowledge acquired by the model. We also demonstrate how incorporating
the information provided by a classifier able to distinguish between desirable and undesired data, can
accelerate unlearning algorithms. Table 3 in Appendix 9 documents the hyperparameter used in our
experiments. The identical hyperparameter values across different scenarios in the table indicate that
our algorithms are robust to the selection of hyperparameters.

Limitations

Although we test 9 different unlearning algorithms across 2 datasets using a variety of models, and
report statistics over 10 independent runs, our study has the following limitations. The algorithms
were not tested on model sizes currently considered large. Since these algorithms are general-
purpose, it would also be interesting to apply them to other architectures, such as GANs [14] and
transformers [40].

Future work

It is straightforward to conceptualize low-rank adapted [19, 43] variants of the unlearning algorithms
presented here. Such modifications are essential for enabling efficient unlearning in large-scale
generative models, and we leave their exploration to future research. The CelebA experiments
show that, unlearning can easily produce male-to-female face filters. Applications of unlearning
for designing a broader range of filters is an interesting topic for further exploration. Machine
learning models used to simulate or predict physical systems, such as climate models, often generate
unphysical states [26]. A similar issue arises in video generation models like Sora [21], which can
produce physically implausible outputs. Use of unlearning to prevent generation of such unphysical
outputs can be an extremely impactful research direction.

9

Acknowledgements

The authors acknowledge support from the Australian Research Council under Grant No.
DP220100931.

References
[1] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 april 2016 on the protection

of natural persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation). https://eur-lex.europa.
eu/eli/reg/2016/679/oj/eng, 2016. OJ L 119, 4.5.2016, pp. 1–88.

[2] Seohui Bae, Seoyoon Kim, Hyemin Jung, and Woohyung Lim. Gradient surgery for one-shot unlearning
on generative model. arXiv preprint arXiv:2307.04550, 2023.

[3] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile. arXiv
preprint arXiv:2006.14651, 2020.

[4] Alberto Blanco-Justicia, Najeeb Jebreel, Benet Manzanares-Salor, David Sánchez, Josep Domingo-Ferrer,
Guillem Collell, and Kuan Eeik Tan. Digital forgetting in large language models: A survey of unlearning
methods. Artificial Intelligence Review, 58(3):90, 2025.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[6] Zhiqi Bu, Xiaomeng Jin, Bhanukiran Vinzamuri, Anil Ramakrishna, Kai-Wei Chang, Volkan Cevher, and
Mingyi Hong. Unlearning as multi-task optimization: A normalized gradient difference approach with an
adaptive learning rate. arXiv preprint arXiv:2410.22086, 2024.

[7] Zihao Cao, Jianzong Wang, Shijing Si, Zhangcheng Huang, and Jing Xiao. Machine unlearning method
based on projection residual. In 2022 IEEE 9th International Conference on Data Science and Advanced
Analytics (DSAA), pages 1–8. IEEE, 2022.

[8] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee,
Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large
language models. In 30th USENIX security symposium (USENIX Security 21), pages 2633–2650, 2021.

[9] Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. arXiv preprint
arXiv:2310.20150, 2023.

[10] Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

[11] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[12] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto. Mixed-
privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 792–801, 2021.

[13] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9304–9312, 2020.

[14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

[15] Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif: Scalable
influence functions for efficient model interpretation and debugging. arXiv preprint arXiv:2012.15781,
2020.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pages 770–778,
2016.

10

https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng

[17] Yuan Heng and Yew-Soon Soh. Selective amnesia: Learning to forget in generative models. arXiv preprint
arXiv:2301.13580, 2023.

[18] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Eliza Noland, Kate Millican, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

[19] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arxiv 2021. arXiv preprint
arXiv:2106.09685, 2021.

[20] Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv preprint
arXiv:2210.01504, 2022.

[21] Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, and Jiashi Feng. How
far is video generation from world model: A physical law perspective. arXiv preprint arXiv:2411.02385,
2024.

[22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[23] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR, 2017.

[24] Christopher Kuner, Lee A. Bygrave, and Christopher Docksey, editors. The EU General Data Protection
Regulation (GDPR): A Commentary. Oxford University Press, Oxford, UK, 2020.

[25] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded machine
unlearning. Advances in neural information processing systems, 36:1957–1987, 2023.

[26] Ching-Yao Lai, Pedram Hassanzadeh, Aditi Sheshadri, Maike Sonnewald, Raffaele Ferrari, and Venkatra-
mani Balaji. Machine learning for climate physics and simulations. Annual Review of Condensed Matter
Physics, 16, 2024.

[27] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 3730–3738, 2015.

[28] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of catastrophic
forgetting in large language models during continual fine-tuning. arXiv preprint arXiv:2308.08747, 2023.

[29] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

[30] Fatemehsadat Mireshghallah, Huseyin A Inan, Marcello Hasegawa, Victor Rühle, Taylor Berg-Kirkpatrick,
and Robert Sim. Privacy regularization: Joint privacy-utility optimization in language models. arXiv
preprint arXiv:2103.07567, 2021.

[31] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for
machine unlearning. In Algorithmic Learning Theory, pages 931–962. PMLR, 2021.

[32] Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models as few
shot unlearners. arXiv preprint arXiv:2310.07579, 2023.

[33] Youyang Qu, Ming Ding, Nan Sun, Kanchana Thilakarathna, Tianqing Zhu, and Dusit Niyato. The frontier
of data erasure: A survey on machine unlearning for large language models. Computer, 58(1):45–57, 2025.

[34] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In Proceedings of the 31st International Conference on Machine
Learning (ICML), pages 1278–1286, 2014.

[35] Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 8179–8186, 2022.

[36] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Advances in
Neural Information Processing Systems, volume 31, 2018.

[37] Hui Sun, Tianqing Zhu, Wenhan Chang, and Wanlei Zhou. Generative adversarial networks unlearning.
IEEE Transactions on Dependable and Secure Computing, 2025.

11

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[39] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and YiKe Guo. Privacy preservation in federated
learning: An insightful survey from the gdpr perspective. Computers & Security, 110:102402, 2021.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[41] Weiqi Wang, Zhiyi Tian, Chenhan Zhang, and Shui Yu. Machine unlearning: A comprehensive survey.
arXiv preprint arXiv:2405.07406, 2024.

[42] Taylor R Wondergem and Mihaela Friedlmeier. Gender and ethnic differences in smiling: A yearbook
photographs analysis from kindergarten through 12th grade. Sex Roles, 67:403–411, 2012.

[43] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng
Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv
preprint arXiv:2309.14717, 2023.

[44] Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue. Machine
unlearning of pre-trained large language models. arXiv preprint arXiv:2402.15159, 2024.

[45] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. Advances in neural information processing systems, 33:5824–5836, 2020.

[46] Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

12

Appendix

6 Pseudocode for unlearning algorithms

This section presents the pseudocode for the unlearning algorithms used in this work.

6.1 Gradient ascent

Algorithms 1 and 2 describe the gradient ascent (A), and alternating gradient ascent-descent (A-D),
respectively.

Algorithm 1 Gradient ascent (A)
1: Input: Loss function L, forget dataset Df , trained model requiring unlearningMθ, learning rate

η, number of training steps K, batch size B.
2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire mini-batch Df of size B from Df .
5: gf ← 1

B

∑
x∈Df

∇θL(Mθ, x)

6: θ ← θ + ηgf

7: end for
8: return θ

Algorithm 2 Alternating gradient ascent and descent (A-D)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: if k is odd then
6: gf ← 1

B

∑
x∈Df

∇θL(Mθ, x)

7: θ ← θ + ηgf

8: else
9: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)
10: θ ← θ − ηgr

11: end if
12: end for
13: return θ

6.2 Gradient surgery

Algorithms 3 and 4 describe gradient surgery with ascent in the forget direction (SA) and descent in
the retain direction (S), respectively; in particular, the former appears in [2].

6.3 UNO and UNO-S

Algorithms 5 and 6 describe unlearning via orthogonalization (UNO), and alternating orthogonaliza-
tion and surgery (UNO-S), respectively.

6.4 Unlearning in the presence of a classifier able to distinguish between Dr and Df

Algorithms 7, 8, 9, and 10 describe Ŝ, UNÔ, UNÔ-Ŝ, and histogram unlearning, respectively. While
in practice it is sufficient for a binary classifier to output a logit or probability, for simplicity of
presentation we assume the classifier outputs 1 for retain samples and 0 otherwise.

13

Algorithm 3 Gradient surgery with ascent in forget direction (SA)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)

6: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

7: gf ← gf − gr·gf

∥gr∥2gr

8: θ ← θ + ηgf

9: end for
10: return θ

Algorithm 4 Gradient surgery with descent in retain direction (S)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x)

6: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

7: gr ← gr − gr·gf

∥gf∥2gf

8: θ ← θ − ηgr

9: end for
10: return θ

Algorithm 5 Unlearning via orthogonalization (UNO)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Lr ← 1

B

∑
x∈Dr

L(Mθ, x)
6: gr ← ∇θLr

7: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

8: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

9: θ ← θ − η∇θL
10: end for
11: return θ

14

Algorithm 6 Alternating orthogonalization and surgery (UNO-S)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Lr ← 1

B

∑
x∈Dr

L(Mθ, x)
6: gr ← ∇θLr

7: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x)

8: if k is odd then
9: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

10: θ ← θ − η∇θL
11: else
12: gr ← gr − gr·gf

∥gf∥2gf

13: θ ← θ − ηgr

14: end if
15: end for
16: return θ

Algorithm 7 Gradient surgery with histogram unlearning (Ŝ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B, number of samples to generate
Ng, classifier model Cϕ, weight for KL divergence loss term βh, a small positive threshold for
stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: gr ← 1

B

∑
x∈Dr

∇θL(Mθ, x) + βh∇θdKL

9: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

10: gr ← gr − gr·gf

∥gf∥2gf

11: θ ← θ − ηgr

12: end for
13: return θ

7 Comparison of two variants of gradient surgery

We now compare two variants of gradient surgery: 1) gradient surgery with descent in retain direction
(S), described in Algorithm 4, used throughout this paper and 2) gradient surgery with ascent in
forget direction (SA), described in Algorithm 3 which appears in [2]. Figure 6 shows that SA is prone
to catastrophic forgetting and requires a carefully tuned, small learning rate to mitigate this effect.
But even with a small learning rate the generated samples might look significantly different from
the original model; for samples generated by the original model, see Figure 1. On the other hand,
Figure 7 shows that S does not suffer from catastrophic forgetting, even for a large learning rate
applied for many training steps, and produces samples that are much closer to the original model.

15

Algorithm 8 UNO with histogram unlearning (UNÔ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B, number of samples to generate Ng , classifier model Cϕ, weight for KL divergence
loss term βh, a small positive threshold for stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: Lr ← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: gr ← ∇θLr

10: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

11: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

12: θ ← θ − η∇θL
13: end for
14: return θ

Algorithm 9 Alternating orthogonalization and surgery with histogram unlearning (UNÔ-Ŝ)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, weight for orthogonalization loss term βo, learning rate η, number of training steps K,
batch size B, number of samples to generate Ng , classifier model Cϕ, weight for KL divergence
loss term βh, a small positive threshold for stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: Lr ← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: gr ← ∇θLr

10: gf ← 1
B

∑
x∈Df

∇θL(Mθ, x) + βh∇θdKL

11: if k is odd then
12: L← Lr + βo

(
gr·gf

∥gr∥∥gf∥

)2

13: θ ← θ − η∇θL
14: else
15: gr ← gr − gr·gf

∥gf∥2gf

16: θ ← θ − ηgr

17: end if
18: end for
19: return θ

16

Gr
ad

ie
nt

 su
rg

er
y

wi
th

 a
sc

en
t i

n
fo

rg
et

 d
ire

ct
io

n
(S

A)
Learning rate = 10 3 Learning rate = 10 5

Figure 6: Generated samples after unlearning digit 1 via gradient surgery with ascent in forget
direction (SA), described in Algorithm 3, for two different learning rates: 10−3 (left), 10−5 (right).
SA was run for K = 53 training steps on the left and K = 530 training steps on the right.

Gr
ad

ie
nt

 su
rg

er
y

wi
th

 d
es

ce
nt

 in
 re

ta
in

 d
ire

ct
io

n
(S

)

Learning rate = 10 3 Learning rate = 10 5

Figure 7: Generated samples after unlearning digit 1 via gradient surgery with descent in retain
direction (S), described in Algorithm 4, for two different learning rates: 10−3 (left), 10−5 (right). S
was run for K = 530 training steps for both learning rates.

17

Algorithm 10 Histogram unlearning (H)
1: Input: Loss function L, retain dataset Dr, forget dataset Df , trained model requiring unlearning
Mθ, learning rate η, number of training steps K, batch size B, number of samples to generate
Ng, classifier model Cϕ, weight for KL divergence loss term βh, a small positive threshold for
stabilizing KL divergence computation α.

2: Output: Updated model parameters θ.
3: for k = 1 to K do
4: Acquire retain and forget mini-batches Dr, Df of size B from Dr,Df respectively.
5: Generate Ng samples {yi}

Ng

i=1 usingMθ.
6: pr ← 1

Ng

∑Ng

i=1 Cϕ(yi)

7: dKL ← pr log
(

pr

1−α

)
+ (1− pr) log

(
1−pr

α

)
8: L← 1

B

∑
x∈Dr

L(Mθ, x) + βhdKL

9: θ ← θ − η∇θL
10: end for
11: return θ

8 More generated samples for CelebA before and after unlearning

Figure 8 shows 18 pairs of images generated before and after unlearning with UNO for CelebA. In
many of these pairs the after image shows a subtly larger smile than the before image, see for example
the fourteenth pair.

9 Experiment setup

In this section we provide additional details of the experimental setup used to produce the reported
results.

9.1 VAE loss functions and training data

We now document the loss functions used to train the original model. For each input image x,
the encoder outputs µ(x) ∈ Rdz and σ(x) ∈ Rdz , which parameterize the approximate posterior
distribution. Here dz is the latent dimension. The corresponding reconstruction of x by the decoder
is denoted by x̄, with x̄i referring to its i-th pixel.

The VAE used as the original model for MNIST was trained using the loss function

LMNIST =
1

|D|
∑
x∈D

[
−

784∑
i=1

(xi log(x̄i) + (1− xi) log(1− x̄i))

+
1

2

dz∑
i=1

(
µ2
i (x) + σ2

i (x)− log σ2
i (x)− 1

)]
.

(7)

The 60, 000 training images were normalized such that pixel values lie in [0, 1], following standard
practice.

The VAE used as the original model for CelebA was trained using the loss function

LCelebA =
1

|D|
∑
x∈D

[
∥x− x̄∥2 + 1

2

dz∑
i=1

(
µ2
i (x) + σ2

i (x)− log σ2
i (x)− 1

)]
. (8)

We worked with 202, 599 cropped and aligned images in CelebA which originally have resolution
178× 178 pixels. We downsampled these images to 64× 64 resolution for training.

9.2 Hyperparameters

Table 3 lists the hyperparameters used in the unlearning experiments presented here. Here η is the
learning rate, K is the number of training steps executed, βo is the weight for the orthogonalization

18

Before-1 After-1 Before-2 After-2 Before-3 After-3

Before-4 After-4 Before-5 After-5 Before-6 After-6

Before-7 After-7 Before-8 After-8 Before-9 After-9

Before-10 After-10 Before-11 After-11 Before-12 After-12

Before-13 After-13 Before-14 After-14 Before-15 After-15

Before-16 After-16 Before-17 After-17 Before-18 After-18

Figure 8: Results for unlearning on CelebA with UNO, illustrated using 18 pairs of generated images.
The images labeled "Before" were generated using the original model. Each image labeled "After"
was generated after unlearning using the same noise sample as the corresponding "Before" image.

19

loss term in (3), βh is the weight for the KL divergence loss term in (4), α is a small positive threshold
for stable computation of KL divergence in (4), B is the batch size, and NFID is the number of
samples used for calculating FID. We use Ng = B for all the algorithms in Appendix 6.4, which
determines the number of samples to be generated using the generative model. Each method was
tested 10 times for each dataset. For MNIST, FID was computed using features extracted from the
classifier model, whereas for CelebA, features were computed using the InceptionV3 model [38]. All
experiments were done on an A100 GPU provided by Google Colab.

Table 3: Experiment hyperparameters

Dataset Algorithm η K Bβo Bβh α B NFID

MNIST
(Class: 1)

Gradient ascent (A) 10−3 530 - - - 128 25,000
Ascent descent (A-D) 10−3 530 - - - 128 25,000
Gradient surgery (S) 10−3 530 - - - 128 25,000
UNO 10−3 530 103 - - 128 25,000
UNO-S 10−3 530 103 - - 128 25,000
H 10−3 530 - 103 10−8 128 25,000
Ŝ 10−3 530 - 103 10−8 128 25,000
UNÔ 10−3 530 103 103 10−8 128 25,000
UNÔ-Ŝ 10−3 530 103 103 10−8 128 25,000

CelebA
(Feature: Male)

Gradient surgery (S) 10−3 659 - - - 128 25,000
UNO 10−3 659 103 - - 128 25,000
UNO-S 10−3 659 103 - - 128 25,000
H 10−3 659 - 103 10−8 128 25,000
Ŝ 10−3 659 - 103 10−8 128 25,000
UNÔ 10−3 659 103 103 10−8 128 25,000
UNÔ-Ŝ 10−3 659 103 103 10−8 128 25,000

9.3 Model sizes

The VAE models for MNIST and CelebA have 632,788 and 8,742,659 parameters with latent
dimension dz = 2 and dz = 512, respectively. The classifier models for MNIST and CelebA have
159,410 and 2,190,913 parameters, respectively. For the exact model implementations, please refer
to the code linked in Section 1. The VAEs were trained for 200 epochs on 60, 000 and 202, 599
images in MNIST and CelebA, respectively. The classifiers were trained for 10 epochs on the same
data.

20

	Introduction
	Related work
	Unlearning via orthogonalization
	Gradient ascent
	Gradient surgery
	UNO and UNO-S
	Unlearning in the presence of a classifier able to distinguish between Dr and Df

	Results
	Performance metrics
	MNIST
	CelebA
	Unlearning with a classifier

	Discussion
	Pseudocode for unlearning algorithms
	Gradient ascent
	Gradient surgery
	UNO and UNO-S
	Unlearning in the presence of a classifier able to distinguish between Dr and Df

	Comparison of two variants of gradient surgery
	More generated samples for CelebA before and after unlearning
	Experiment setup
	VAE loss functions and training data
	Hyperparameters
	Model sizes

