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On finite-size Lyapunov exponents in multiscale systems
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We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining

the error growth rates and predictability of multiscale systems. We consider a dynamical system

involving slow and fast regimes and switches between them. The surprising result is that due to the

presence of regimes, the error growth rate can be a non-monotonic function of initial error

amplitude. In particular, troughs in the large scales of FSLE spectra are shown to be a signature of

slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error

growth rates far exceed those estimated from the maximal Lyapunov exponent. We present

analytical results explaining these signatures and corroborate them with numerical simulations. We

show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes,

and the associated FSLE spectra reveal that large scale predictability properties of the full

deterministic model are well approximated, whereas small scale features are not properly resolved.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704805]

The atmosphere and the climate system are inherently

complex multiscale systems with processes spanning spa-

tial scales from millimetres to thousands of kilometres,

and temporal scales from seconds to millennia. It is a for-

midable challenge to find consistent and effective reduced

dynamical equations for the “slow” and “large” degrees

of freedom with predictive power. An important question

is how to measure the radius of predictability in such a

multiscale system. One such measure is the maximal Lya-

punov exponent kmax. A generic situation is that the fast

degrees are strongly chaotic, causing the Lyapunov expo-

nent of the whole system to be large, indicating poor pre-

dictability. However, the large scale slow behaviour can

still be forecast with reasonable accuracy for times much

longer than Oð1=kmaxÞ; for example, weather can be fore-

cast on time scales above those expected from small-scale

instabilities such as convection.
25

This is usually due to

the small-scale instabilities growing faster but becoming

nonlinearly saturated at a much smaller level than large

scale instabilities.

I. INTRODUCTION

In a series of papers Aurell et al.1 and Boffetta et al.2,3

introduced the finite size Lyapunov exponent (FSLE) to

extend the idea of measuring the divergence of nearby tra-

jectories to resolve predictability measures for processes

developing on various scales. FSLEs have been success-

fully used in the recent years to study mixing and transport

problems in lakes21 and ocean currents,19 and to study

meso-scale and sub-mesoscale filamentary processes in the

surface circulation.12,13,35

The study of error growth rates has also led independ-

ently37,38 to the development of breeding vectors to produce

optimal perturbations for ensemble forecasting. The average

growth rate of these vectors is closely related to the

FSLE.4,32 Besides studying predictability,6,9 optimal finite-

size perturbations have been used in ensemble forecast-

ing37,38 and data assimilation,20 where they should represent

the directions of growing analysis errors, which are again

scale dependent. Hence, the question of how error growth

rates depend on initial error amplitude is integral to the gen-

eration of perturbation ensembles for ensemble forecasting

and data assimilation.

The particular aspect we address here is how to interpret

the FSLE spectrum in a multiscale dynamical system which

involves abrupt switches between regimes. We study a sys-

tem which involves both slow and fast regimes. The meaning

of “slow” depends on the context; synoptic weather systems

such as high and low pressure fields are slow when compared

to gravity waves, the buoyancy oscillations of stratification

surfaces of the atmosphere. However, weather itself is fast

when it comes to climate modelling in coupled ocean-

atmosphere models, where the ocean evolves on a much

slower time scale than the atmosphere.

Slow weather regimes have long been associated with cli-

mate. In the atmosphere, they can be associated with zonal and

blocked flows dominating weather on time scales up to several

weeks.8,24 Atmospheric slow regimes are responsible for low-

frequency variability of planetary scale dynamics,5,27 the

Arctic Oscillation and North-Atlantic Oscillation (NAO), the

dominant pattern of atmospheric variability over the Atlantic.22

In the ocean, slow regimes have been associated with low-

frequency variability of the thermohaline circulation and the El

Niño-Southern Oscillation (ENSO).10 On paleoclimatic scales,

slow regimes distinguish glacial and interglacial periods.11,23

Fast regimes have recently been considered to be highly

relevant for atmospheric and climatic variability and may
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determine predictability of dominant slower processes. For

example, synoptic weather events such as Rossby-wave

breaking and high-latitude blocking episodes with life times

of 5–10 days are important for the NAO and may give rise to

its low-frequency variability on interannual and longer time

scales.17,41 Similarly, the ENSO variability on time scales of

seasons to years can be produced or maintained by faster

subseasonal long-lived transient westerly wind bursts and the

Madden-Julian Oscillation with life times of 30–90

days.14,34,42 On the mesoscale, fast mesovortices with life

times of a few hours can dampen the intensification of hurri-

canes by mixing heat and momentum.30

We investigate a low-dimensional toy model describing

one slow metastable degree of freedom coupled to a fast cha-

otic system. To study the influence of fast regimes, the slow

variable will be coupled to two types of fast dynamics, the

Lorenz-63 system which involves regimes and the Rössler

system which does not. The deterministic system under con-

sideration is amenable to stochastic singular perturbation

theory (for both types of fast dynamics) which allows us to

effectively describe the slow dynamics in a dimension-

reduced stochastic model, which supports the same slow

regimes. We will show that the presence of slow metastable

states causes the FSLE spectrum to have a pronounced

trough at large scales. Fast regimes, on the other hand, may

cause the FSLE spectrum to exhibit large peaks. We develop

a quantitative theory which explains both phenomena.

The paper is organized as follows. In Sec. II, we briefly

introduce the FSLE. The toy model under consideration is

introduced in Sec. III. Numerically obtained FSLE spectra of

the model are presented in Sec. IV. The signatures of slow

metastable states on the FSLE spectra are explained analyti-

cally in Sec. V A using the multimodal probability density

function of the slow variables. The signature of fast regimes

on the FSLE spectra is quantitatively explained by means of

a heuristic argument in Sec. V B. We conclude with a discus-

sion in Sec. VI.

II. FINITE SIZE LYAPUNOV EXPONENTS

FSLEs introduced by Aurell et al.1 and Boffetta et al.2,3

measure the growth rate of a perturbation of finite size d.

The FSLE kðdÞ is defined as

kðdÞ ¼
�

1

TrðdÞ

�
l

lnr ¼ 1

hTrðdÞiens

lnr; (1)

where TrðdÞ is the time taken for a perturbation of size d to

grow by an amplification factor r, which we take to be r ¼
1.1 throughout. The first average h � il is taken over the

invariant measure of the dynamics, which is approximated

by the ensemble average h � iens over many realizations. To

compute the FSLE spectrum, i.e., k as a function of d,

numerically, two trajectories are created starting with an ini-

tial separation d0, and the separation d is measured as the tra-

jectories diverge over time. The perturbations d are assumed

to be already aligned with the most unstable direction, which

is guaranteed by initializing each realization with a suffi-

ciently small initial perturbation size d0. Note that the small-

scale FSLE with d! 0 corresponds to the maximal Lyapu-

nov exponent kmax.

III. THE MODEL

We study multiscale systems of the form

dx

dt
¼ axðb2 � x2Þ þ 1

e
f ðyÞ; (2)

dy

dt
¼ 1

e2
gðyÞ; (3)

in which a slow degree of freedom x 2 R describes an over-

damped degree of freedom in a double-well potential

VðxÞ ¼ a
x4

4
� ab2 x2

2
; (4)

which is driven by a fast chaotic process y 2 R3. The param-

eter b controls the location of the slow metastable states near

x� ¼ 6b and their separation 2b. The height of the potential

barrier DVðxÞ ¼ ab4=4 is controlled by both a and b. Unless

otherwise specified, we set a ¼ b ¼ 1, and e2 ¼ 0:01.

We consider three cases: where the fast subsystem is

given by (a) the chaotic Lorenz-63 system, (b) the chaotic

Rössler system, and (c) a reduced stochastic system which

we derive to describe the statistics of the effective slow

dynamics only. The slow x-dynamics supports slow metasta-

ble states near x� ¼ 6b in all three cases. However, only the

Lorenz-63 system supports fast regimes.

Figure 1 shows a sample trajectory of the slow variable

x for the Lorenz-driven system (see Eqs. (5)–(8)) which

clearly shows how the fast chaotic process causes the slow

variable to switch between regimes centred around x� ¼ 61.

Simulations of the Rössler-driven system and of the reduced

stochastic system exhibit qualitatively similar behaviour.

A. Fast Lorenz-63 subsystem with regimes

We consider the multiscale model (2) and (3) when the

slow dynamics is driven by a fast Lorenz-63 subsystem

dx

dt
¼ x� x3 þ k

e
y2; (5)

dy1

dt
¼ 10

e2
ðy2 � y1Þ; (6)

dy2

dt
¼ 1

e2
ð28y1 � y2 � y1y3Þ; (7)

FIG. 1. Sample trajectory of the metastable slow variable x calculated from

the system (5)–(8).
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dy3

dt
¼ 1

e2

�
y1y2 �

8

3
y3

�
: (8)

This system was introduced by Givon et al.16 and has been

further analyzed by Mitchell and Gottwald.29 We use here k
¼ 4=90 which produces an autocorrelation decay time of the

slow variable scorr � 208 time units. The maximal Lyapunov

exponent is estimated as kmax � 97:4 and scales with e2, the

time scale of the fast dynamics. This exemplifies the discrep-

ancy between large scale predictability as measured by scorr

and the inverse of the maximal Lyapunov exponent.

The fast dynamics contains regimes consisting of the

two respective lobes of the butterfly attractor and abrupt

switches between them. We remark that strictly the metasta-

ble states of the Lorenz-63 system do not consist of the lobes

of the butterfly attractor, but involve parts of the attractor

from both lobes, separated by the stable manifold of the low-

est period symmetric unstable periodic orbit.15 Here, how-

ever, we use the common terminology of regimes, meaning

the lobes of the butterfly attractor.

B. Fast Rössler subsystem with no regimes

Further, we consider the multiscale model (2) and (3)

when the slow dynamics is driven by a fast Rössler

subsystem

dx

dt
¼ x� x3 þ k

e
ðy2 � �y2Þ; (9)

dy1

dt
¼ 1

e2
ð�y2 � y3Þ; (10)

dy2

dt
¼ 1

e2
ðy1 þ 0:432y2Þ; (11)

dy3

dt
¼ 1

e2
ð2þ y3ðy1 � 4ÞÞ : (12)

Unlike the Lorenz-63 system, the fast Rössler system has

only one unstable fixed point and does not support regimes.

The coupling is chosen so that the forcing has mean zero; the

mean of the driving Rössler variable was estimated as �y2 �
�0:939 from a long trajectory. We chose the coupling pa-

rameter k ¼ 0.525, which corresponds to an autocorrelation

decay time of the slow variable scorr � 234 time units, com-

parable with that calculated for the Lorenz-driven system.

The maximal Lyapunov exponent for the fast subsystem is

measured to be kmax ¼ 10:1, scaling again with e2.

C. Reduced homogenized stochastic slow dynamics

The multiscale system (2) and (3) can be reduced using

stochastic singular perturbation theory (homogenization)

(Refs. 28 and 31) in the case that the fast dynamics is mixing

and the average of the slow vectorfield f(y) over the ergodic

measure induced by the fast process vanishes. Ergodicity

and the mixing property have been rigorously proven for the

chaotic Lorenz-63 system,26,39 and numerical simulations

suggest that they exist for the Rössler system as well. The

centering condition of the vanishing average of the fast vec-

torfield f(y) is automatically satisfied for the Lorenz-driven

system (5)–(8) since the average of y2 is zero and is satisfied

by construction for the Rössler-driven system (9)–(12) for

sufficiently accurate numerical estimates of the average �y2.

In stochastic homogenization, the fast chaotic degrees of

freedom are parametrized by a stochastic process, provided

the fast processes decorrelate rapidly enough that the slow

variables experience the sum of uncorrelated fast dynamics

during one slow time unit. According to the central limit

theorem, this corresponds to approximate Gaussian noise.

Applying homogenization, the following reduced stochastic

model can be deduced for the slow x-dynamics

dX

dt
¼ Xð1� X2Þ þ r

dW

dt
; (13)

with one-dimensional Wiener process dW, and where r is

given by the integral of the autocorrelation function of the

fast y2 variable with

r2

2
¼ k2

ð1
0

�
lim

T!1

1

T

ðT

0

y2ðsÞy2ðtþ sÞds

�
dt : (14)

In the case of the Lorenz-driven system (5)–(8), the diffusion

coefficient is estimated as r2 ¼ 0:113 from a long-time tra-

jectory, for which the decay time of the autocorrelation func-

tion is scorr � 222 time units. For details, the reader is

referred to Refs. 16 and 29.

Whereas the invariant ergodic probability density func-

tions can only be numerically estimated for the deterministic

equations (5)–(12), it is readily analytically determined for

the stochastic gradient Langevin equation (13) as the unique

stationary solution q̂ðxÞ of its associated Fokker-Planck

equation

@

@t
qðxÞ ¼ @

@x

dV

dx
q

� �
þ r2

2

@2

@x2
q:

We find

q̂ðxÞ ¼ 1

Z
e�

2

r2VðxÞ
with Z ¼

ð1
�1

e�
2

r2VðxÞdx; (15)

which is depicted in Figure 2.

In Figure 2, we show the empirical probability density

functions of the slow variable x from the Lorenz-driven and

Rössler-driven systems (5)–(8) and (9)–(12) obtained from

long-time numerical simulations, as well as the exact density

function (15) for the stochastic system (13) with r2 ¼ 0:113.

For this value of r2, the stochastic reduced system approxi-

mates the statistics of the full dynamics of the Lorenz-driven

system (5)–(8) very well.29 This is reflected in the close cor-

respondence of the respective empirical density functions.

The probability density functions clearly show a bimodal

structure indicative of the (slow) metastable nature of the x-

dynamics as already encountered in Figure 1. The Rössler-

driven system, however, exhibits a slight asymmetry of the

empirical probability density function with one maximum

larger than the other. This is caused by the only approximate

numerical estimate of �y2. When numerically simulating the

equation for the slow degree of freedom (9) for the slow

023115-3 L. Mitchell and G. A. Gottwald Chaos 22, 023115 (2012)



degree of freedom of the Rössler-driven system we approxi-

mate the average of y2 and may write

dx

dt
¼ x� x3 þ k

e
ð�y2 � ŷ2Þ þ

k

e
ðy2 � �y2Þ;

where ŷ2 is the numerically estimated average of y2 and �y2

the true average of y2. Provided a ¼ �y2 � ŷ2 ¼ OðeÞ the cen-

tering condition (i.e., the vanishing of the average of the 1=e-
part of the slow vectorfield over the ergodic measure induced

by the fast dynamics) is satisfied. Hence, the corresponding

reduced stochastic equation (13) is modified by an additional

small term a=e. This term modifies the potential to VðxÞ ¼
ax4=4� ab2x2=2þ ax causing the slight asymmetry in the

probability density function as seen in Figure 2.

IV. NON-MONOTONICITY OF FSLE SPECTRA FOR
SYSTEMS INVOLVING REGIMES: NUMERICAL
SIMULATIONS

We now numerically determine the FSLE spectra kðdÞ
using only data of the slow x-variable for our three cases;

(5)–(8) with slow and fast regimes, (9)–(12) with only slow

regimes, and (13) with only slow regimes. In all simulations,

we initialize the estimation with an initial perturbation size

of d0 ¼ 10�9 and average the FSLE spectra over 5000

realizations.

Figure 3 shows the FSLE as a function of perturbation

size d for the Lorenz-driven model (5)–(8). For small values

of the perturbation size d, we find the well known plateau

corresponding to the maximal Lyapunov exponent which

was estimated to be kmax � 97:4 (for e2 ¼ 0:01).1–3

Surprisingly, the FSLE spectrum contains several peaks,

notably near d ¼ 0:0278 and d ¼ 0:0790, in stark contrast to

the behaviour reported in Refs. 1–3. Note that the FSLE at

the first peak is much larger than the maximal Lyapunov

exponent kmax suggesting a far greater loss of predictability

at those scales. Initial error amplitudes of those sizes experi-

ence much stronger growth than the eigendirections corre-

sponding to the maximal Lyapunov exponent.

Interestingly, for larger perturbations d, the large-scale

FSLE develops a minimum centred at approximately d ¼
1:1 with kLS � 0:00428 as shown in the inset, suggesting a

large-scale predictability time scale of around 234 time units.

This is comparable to the decay time of autocorrelation of

the slow variable scorr � 208, which is a measure for the

transition times between the slow regimes. Since the large

scale FSLE measures the predictability associated with tran-

sitions of the slow variable from one slow metastable state

near x� ¼ 61 to the other, this suggests that the trough in the

FSLE spectrum is linked to the existence of slow regimes.

For values d > 1:5, the perturbation size is comparable

to the range of the slow variable which is approximately

equal to 2.8, rendering the FSLE meaningless.

Figure 4 shows the FSLE spectrum for the Rössler-

driven system (9)–(12). As in Figure 3, the spectrum exhibits

a plateau at small scales corresponding to the maximal Lya-

punov exponent kmax � 10:1. Most notably for the Rössler-

driven system which does not support regimes, the large

peaks at small perturbation amplitudes d that we observed

for the Lorenz-driven system are absent. Since the small

scale FSLEs describe fluctuations within each of the slow

metastable states, this suggests that peaks in the FSLE spec-

trum are suggestive of fast regimes.

As shown in the inset, for larger perturbations d, the

FSLE monotonically decreases to reach a lower plateau with

FIG. 3. FSLE k as a function of perturbation size d for the Lorenz-driven

system (5–8) with slow and fast regimes. The inset shows a zoom for large

scale disturbances.

FIG. 4. FSLE k as a function of perturbation size d for the model driven by

the Rössler system (9)–(12) with slow regimes but without fast metastable

regimes. The inset shows a zoom for large scale disturbances.

FIG. 2. Empirical density function of the slow variable x calculated from a

long time simulation with T ¼ 106 of the system (2) and (3). Empirical den-

sity functions are shown for the Lorenz-driven system (5)–(8) (continuous

black line), for the Rössler-driven system (9)–(12) (dashed line, online red)

and for the reduced stochastic system (13) with r2 ¼ 0:113 (crosses, online

green).
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the large scale FSLE kLS � 0:00227 at the minimum at

d � 1:25, suggesting a large-scale predictability time scale

of around 440 time units. Here, 1=kLS is not close to

scorr � 234. This is again due to the inevitable inaccurate

estimation of the mean �y2 which leads to an asymmetric

probability density for x as seen in Figure 2. Hence, the

trajectory resides longer in one well, thereby increasing the

large scale predictability time; the autocorrelation time scorr,

however, is measured for lag times much smaller than the

mean residence time.

Figure 5 shows the FSLE spectrum for the stochastic

model (13) with r2 ¼ 0:113, which best approximates29 the

full dynamics of the Lorenz-driven system (5)–(8). For small

d, the FSLEs of the stochastic system do not reproduce the

values for their parent systems, and we observe no small-

scale plateau in the spectrum. This is expected as the maxi-

mal Lyapunov exponent kmax is not defined for the stochastic

system. However, at large scales d (depicted in the inset), we

find a minimum of the FSLE spectrum at d � 1:1 with kLS ¼
0:00485 for r2 ¼ 0:113. This gives a large scale predictabil-

ity time of 206 time units, close to that obtained for the full

parent model (5)–(8). As for the Rössler system, there are no

large peaks in the FSLE spectrum.

From these numerical simulations, we now formulate our

main hypothesis which we corroborate in Sec. V by quantita-

tive analytical theory and further simulations. We propose that

the non-monotonicity observed in the FSLE spectra is due to

the presence of regimes. In particular, large-scale troughs in

the FSLE spectrum are an indication of slow regimes, whereas

small-scale peaks are caused by fast regimes.

V. NON-MONOTONICITY OF FSLE SPECTRA FOR
SYSTEMS INVOLVING REGIMES: THEORY

We now explain the numerical observations of Sec. IV

and relate them to the existence of slow and fast regimes,

respectively. The minima at large scales will be explained by

calculating most likely trajectory separations supported by a

bimodal probability density function. The large peaks at

small scales will be explained by a simple heuristic argument

involving rapid switches of the fast dynamics between lobes

of the Lorenz attractor. We denote the perturbation size cor-

responding to the minimum of the FSLE spectrum associated

with slow regimes by dS. Similarly, we denote by dF the per-

turbation size corresponding to the peaks associated with fast

regimes.

A. FSLE spectra for slow regimes

The observed minimum of the FSLE spectrum kðdÞ at

large scales can be understood by considering the bimodal

probability density function of the slow variables. Before

deriving an analytic expression for the large scale perturba-

tion size dS, we give a heuristic argument why a minimum in

the FSLE spectrum occurs for multimodal probability den-

sity functions. As seen in Figure 2, each of the two maxima

in the probability density function has a characteristic width

of roughly 1.25. Perturbations larger than this size therefore

likely correspond to a pair of trajectories with members

residing in opposite wells of the potential V(x). Perturbations

smaller than this size likely correspond to a pair of trajecto-

ries with members residing in the same potential well.

Hence, there should exist a separation dS with associated

error growth rate kLS such that perturbations smaller than dS

will separate quicker, being pulled towards their mutual

potential minimum, and perturbations slightly larger will

separate quicker as they are pulled towards their respective

closest potential minima.

We quantify this phenomenological argument by esti-

mating the most likely configurations of pairs of trajectories

which are separated by d. We denote the values of the slow

variable x of a pair of trajectories by n and g. Let pðn; gÞ be

the joint probability function for two trajectories which were

initially separated by d0 to assume state values n and g,

respectively. The state values of the pair of trajectories n and

g are then random variables drawn from this joint probability

pðn; gÞ. For sufficiently large separations, the two trajectories

will have decorrelated and we can treat n and g as statisti-

cally independent, and approximate pðn; gÞ ¼ pðnÞpðgÞ. We

have numerically verified this assumption for sufficiently

large d. We perform the expectation value analytically utiliz-

ing the reduced stochastic model (13) and its invariant den-

sity (15) and set pðxÞ ¼ q̂ðxÞ. This is justified by the

theorems which underpin stochastic homogenization28,31 as

well as our numerical observations (cf. Figure 2) which state

that the statistics of the full deterministic system converges

to the statistics of the reduced stochastic system for e! 0.

The expectation value N of a location n conditioned on

all possible pairs which are separated by d is given by

NðdÞ ¼ 1

Z

ð1
0

ð1
0

dndg npðn; gÞdðjn� gj � dÞ

� 1

Z

ð1
0

dn nq̂ðnÞðq̂ðnþ dÞ þ q̂ðn� dÞÞ; (16)

where Z is the normalization constant, and the bold-face d

denotes the Dirac d-function. We only consider positive val-

ues of n, justified by the symmetry of our problem. As

approximations we assumed statistical independence of n
and g and ignored the conditioning of the expectation value

on the initial separation d0.

In the case of a bimodal probability density function,

NðdÞ will decrease initially with increasing separation d
FIG. 5. FSLE k as a function of perturbation size d for the climate model

(13) with r2 ¼ 0:113. The inset shows a zoom for large scale disturbances.
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allowing the pair of trajectories ðn; gÞ to arrange themselves

within one of the two potential wells. For sufficiently large

separations d, however, N will increase linearly with d and

the two trajectories will be in opposite wells. The curve of

NðdÞ obtains its minimum when d � b.

The functional form of the asymptotic linear behaviour

of the expectation value NðdÞ for large b can be determined

by expanding the probability density function q̂ðxÞ around

the maxima at x� ¼ 61 with

q̂ðxÞ � exp � 2ab2ðx� bÞ2

r2

 !
þ exp � 2ab2ðxþ bÞ2

r2

 !
:

Upon inserting this approximation into Eq. (16) a lengthy

but straightforward calculation yields the asymptotic behav-

iour NðdÞ ! d=2 in the limit of large perturbation sizes

d!1.

Following our heuristic argument from above, we may

define the large-scale error perturbation dS corresponding to

maximal predictability as the value for which NðdÞ assumes

its (unique) minimum. However, we find better numerical

agreement if we estimate dS as the value of d for which NðdÞ
is sufficiently close to its asymptotic behaviour, i.e., dS

solves

NðdSÞ � dS=2

NðdSÞ
¼ h; (17)

where we chose h ¼ 0:01. The two definitions become indis-

tinguishable for large values of b.

To test our analytical prediction, we now vary the pa-

rameters a and b of the potential V(x) in Eq. (4), which mea-

sure the height of the potential well and separation of the

potential minima. In Figure 6, we show a comparison

between dS as calculated from estimating the FSLE spectra

using numerical simulations of the dynamics of the Lorenz-

driven system (5)–(8) and our analytical prediction (17),

showing good agreement. Note that the behaviour is almost

linear (however, b not only affects the distance between the

minima at x�61 but also the potential well height). Linear

scaling with b can be achieved if we scale the coupling k
with b according to k! b2

ffiffiffi
a
p

k, such that the probability

density function q̂ is invariant upon scaling x! bx (cf. Eq.

(15) with the definition of r2 in Eq. (14)), as illustrated in

Figure 7. We have tested that dS is insensitive to (i) varying

a for fixed b and also to (ii) varying the coupling k for fixed

b, consistent with our formula (17) (not shown).

Hence, slow regimes and fast transitions between them

cause the FSLE spectrum to exhibit a distinct minimum at

large error perturbation sizes, with error growth rate related

to the average residence time in each potential well (or decay

rate of the autocorrelation time).

B. FSLE spectra for fast regimes

We now present a simple heuristic argument explaining

the observed peaks in the FSLE spectrum kðdÞ for the

Lorenz-driven system (5)–(8). We link these to the presence

of regimes in the fast process and the switching of the fast

dynamics between the two lobes of the butterfly attractor.

Figure 8 depicts the slow x and fast y2 variables of two typi-

cal trajectories which are used to calculate the FSLE. The

slow variable x evolves in a step-like fashion with step size

Dx. Separations between nearby trajectories therefore occur

in “units” of Dx. Separations of d ¼ mDx can only occur

when the y2 components of each trajectory are on opposite

lobes of the Lorenz attractor. We measured the period of one

FIG. 6. Perturbation size dS associated with the large-scale minimum of the

FSLE spectrum as a function of the separation b of the potential minima of

V(x) for fixed values of a ¼ 1 and k ¼ 4=90. The crosses denote values

obtained by averaging 20000 simulations of the Lorenz-driven system

(5)–(8); the dashed line is our analytical prediction (17).

FIG. 7. As in Figure 6, but with k ¼ ð4=90Þb2.

FIG. 8. Two trajectories obtained from integrating the Lorenz-driven system

(5)–(8) from nearby initial conditions with separation 10�3, showing short

time dynamics of the slow x variable, and how increments correlate with

switches between regimes of the y2-component of the Lorenz-63 subsystem,

corresponding to the lobes of the butterfly attractor.
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(fast) revolution around a lobe of the Lorenz attractor to be

Tf � 0:00691. Integrating the slow dynamics (5) over one

fast period Tf within a lobe and assuming that no transitions

between slow metastable states at x� ¼ 61 occur so thatÐ Tf

0
xðtÞð1� x2ðtÞÞdt ¼ 0, we can approximate the step size

Dx by

Dx ¼ k

e
Tf hjy2jit;

where hjy2jit ¼ 1
Tf

Ð Tf

0
jy2jdt. Hence, we estimate

dF ¼ jDxj � k

e
: (18)

We numerically obtain hjy2jit � 10 as the average value of

jy2j in each of the fast regimes, i.e., the lobes of the butterfly

attractor. For our parameters with e2 ¼ 0:01 and k ¼ 4=90,

this yields a step size of Dx � 0:0307 which corresponds rea-

sonably well with the observed location of the first peak in

the FSLE spectrum in Figure 3 at dF ¼ 0:0278. The location

of the second peak at dF ¼ 0:0790 is roughly approximated

by 2Dx ¼ 0:0614 according to the above argument. The cor-

responding FSLEs kðdÞ can be estimated as follows. We

assume that the separation of slow x trajectories over short

times t ¼ OðTf Þ is approximately linear, and the initial sepa-

ration d of trajectories prior to taking a “step” in opposite

directions is small. We define the times tm and trm it takes for

trajectories to separate by mDx and rmDx, respectively.

Assuming trajectories initially are infinitesimally separated

and subsequently move apart at a constant rate of 2Dx=Tf ¼
mDx=tm ¼ rmDx=trm (where 2Dx is the separation of trajec-

tories after one step taken in opposite directions, see Figure

8), the time TrðmDxÞ taken for a perturbation of size mDx to

grow to size rmDx is

TrðmDxÞ ¼ trm � tm ¼
mðr � 1ÞTf

2
;

and so we can approximate the FSLE for the mth separation

mDx using Eq. (1) as

kðmDxÞ ¼ 2lnðrÞ
mðr � 1ÞTf

:

For r ¼ 1.1, we find kðDxÞ ¼ 276 and kð2DxÞ ¼ 138, which,

given the crude approximations, provide reasonable esti-

mates of the numerically observed peaks kð0:0278Þ ¼ 394

and kð0:0790Þ ¼ 104 in Figure 3.

According to our analytical expression for the location

of the peaks (18), dF scales linearly with the coupling param-

eter k. This is confirmed in Figure 9 where we show dF as a

function of k obtained from numerical simulations of the

Lorenz-driven system (5)–(8). We have checked (not shown)

that dF is insensitive to changes in a and b for fixed k which

would only affect the slow regimes.

VI. DISCUSSION

We have studied the dependency of error growth rates

on the amplitude of the initial error for a multiscale toy

model with slow metastable states and fast regimes by calcu-

lating the finite size Lyapunov exponents. We found that the

error growth rates can be a highly non-monotonic function

of the initial error size in the presence of regimes. In particu-

lar, we found that slow regimes produce minima in the FSLE

spectrum at large scales, indicating enhanced predictability.

On the other hand, fast regimes in the dynamics produce

regions of rapid divergence of trajectories of the slow

degrees of freedom, indicating poor predictability at those

scales. This loss in predictability is found to be far greater

than expected from the maximal Lyapunov exponent. In the

context of ensemble generation, either for ensemble forecasts

or for data assimilation, this means that there are initial per-

turbation sizes, which may experience stronger amplification

than infinitesimal perturbations along the most unstable

eigendirections corresponding to the maximal Lyapunov

exponent. Simple analytical arguments were employed to

calculate the respective predictability times and critical per-

turbation sizes. Stochastic parametrizations of the fast proc-

esses do not exhibit peaks in the FSLE spectrum but as

effective models of the slow dynamics share the large-scale

minima of the FSLE spectrum. The sensitivity of the error

growth rate in the presence of regimes suggests caution is

required when generating ensembles for forecasts or when

assimilating data on systems with regimes. It is pertinent to

mention that the signatures in the FSLE spectrum of slow

and fast regimes occur only if perturbations are taken of the

slow variables only; if one were to measure perturbations

over all variables or of only the fast variables, the FSLE

spectrum would be dominated by the strongly chaotic behav-

iour of the fast variables without any large-scale troughs or

large peaks.

Non-monotonous behaviour of the FSLE has been previ-

ously reported.7,36 Discrete maps involving singular deriva-

tives such as the circle map are simple examples where finite

size perturbations can grow faster than infinitesimal pertur-

bations. Here, we discussed the occurrence of narrow well-

defined peaks, caused by the fast dynamics switching

regimes. We note that such behaviour was not seen by

FIG. 9. Perturbation size dF associated with peaks in the FSLE spectrum as

a function of the coupling k obtained from simulations of the Lorenz-driven

system (5)–(8). The crosses denote the locations of the first peak, the circles

denote the location of the second peak (cf. Figure 3); the dashed lines are

our analytical predictions (18).
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Boffetta et al.,2 where a system of nonlinearly coupled fast

and slow Lorenz-63 systems was studied. This is entirely

due to the nature of the coupling used for which the fast dy-

namics does not induce rapid variations in the slow dynam-

ics; we have checked that for linear skew coupling large

peaks in the FSLE spectrum are again observed. Linearly

coupled Lorenz-63 systems were for example used to model

ENSO events.32 However, the example of Boffetta et al.2

shows that the existence of fast regimes is not sufficient for

the occurrence of peaks in the FSLE spectrum.

Multimodal probability density functions are not neces-

sary for the existence of metastable regimes.27,40 Boffetta

et al.2 found a minimum in the FSLE spectrum for a coupled

map system, which has a unimodal probability density func-

tion but dynamics, which consists of laminar phases inter-

rupted by intermittent large amplitude bursts. This is in

accordance with our reasoning of a critical perturbation size

above which the dynamics dramatically increases sensitivity.

Further work is required to determine how well our argu-

ments transfer to unimodal probability density functions.

We remark that our numerical results were performed

by estimating the FSLE spectra using the algorithm proposed

by Aurell et al.1 and Boffetta et al.2 Our analytical results,

however, do not employ the particular method used to calcu-

late the FSLEs, and we expect the observed non-monotonous

behaviour of the FSLE due to slow and fast regimes to hold

when other algorithms4 are used to estimate the FSLEs. We

further remark that for higher dimensional slow subspaces

the choice of norm used to measure separations and to nor-

malize bred vectors was shown to significantly alter their sta-

tistical properties.18,33 Again, the generality of the arguments

used here suggests that the choice of norm will not alter the

occurrence of the non-monotonicity of the growth rates. This

is planned for further research.
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13D’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-Garcı́a, E., and

Garcı́a-Ladona, E., “Comparison between Eulerian diagnostics and finite-

size Lyapunov exponents computed from altimetry in the Algerian basin,”

Deep-Sea Res. 56, 15–31 (2009).
14Frauen, C., and Dommenget, D., “El Niño and La Niña amplitude asym-

metry caused by atmospheric feedbacks,” Geophys. Res. Lett. 37(18),

L18801 (2010).
15Froyland, G., and Padberg, K., “Almost invariant sets and invariant mani-

folds — Connecting probabilistic and geometric descriptions of coherent

structures in flows,” Physica D 238, 1507–1523 (2009).
16Givon, D., Kupferman, R., and Stuart, A., “Extracting macroscopic dy-

namics: Model problems and algorithms,” Nonlinearity 17(6), R55–127

(2004).
17Greatbatch, R. J., “The North Atlantic Oscillation,” Stochastic Environ.

Res. Risk Assess. 14(4), 213–242 (2000).
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