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Abstract. We present a method to control unbalanced fast
dynamics in an ensemble Kalman filter by introducing a
weak constraint on the imbalance in a spatially sparse obser-
vational network. We show that the balance constraint pro-
duces significantly more balanced analyses than ensemble
Kalman filters without balance constraints and than filters
implementing incremental analysis updates (IAU). Further-
more, our filter with the weak constraint on imbalance pro-
duces good rms error statistics which outperform those of
ensemble Kalman filters without balance constraints for the
fast fields.

1 Introduction

In data assimilation one seeks to find the best estimation of
the state of a dynamical system given a forecast model with
possible model error and noisy observations at discrete ob-
servation intervals (Kalnay, 2002). This estimate is coined
the analysis. This procedure, however, does not necessarily
produce dynamically consistent analyses. In particular, the
analysis may contain unbalanced gravity waves, which are
absent in the true atmospheric state and which may spoil
the subsequent forecast initialised with these dynamically
inconsistent states. Ever since the early days of numerical
weather prediction the creation of imbalance has been cen-
tral to the problem of producing reliable forecasts (see for
exampleDaley, 1993, Chapter 6, andLynch, 2006for a his-
torical account). The heuristic reasoning behind the occur-
rence of unbalanced analyses is that there may be several
states of the fast variables which are compatible with the
observations of the slow state variables, most of them cor-
responding to unbalanced states. Furthermore, unbalanced
states can be generated by the discontinuous nature of the
data assimilation procedure, leading to unphysical readjust-
ment processes of analyses by the subsequent nonlinear fore-

cast model (Bloom et al., 1996; Ourmières et al., 2006). Ex-
amples of the creation of imbalance in variational data as-
similation schemes are, for example,Bloom et al.(1996) and
Lorenc (2003b). In the context of ensemble filters, unbal-
anced analyses are further created by the procedure of local-
isation which was introduced byHoutekamer and Mitchell
(1998, 2001), Hamill et al.(2001), Ott et al.(2004) andSzun-
yogh et al.(2005) to mitigate spurious cross-correlations in
the covariance matrices due to finite ensemble sizes. Locali-
sation of any type can potentially cause imbalance in the ini-
tial conditions (Cohn et al., 1998; Lorenc, 2003a; Mitchell
et al., 2002; Houtekamer and Mitchell, 2005; Oke et al.,
2007; Kepert, 2009; Greybush et al., 2011).

There exist several strategies to combat undesired unbal-
anced analyses. These strategies can be divided into those
which employ a re-balancing procedure after the data as-
similation, and those which try to create balanced analyses
within the data assimilation process itself. Post-processing
methods include digital filtering (Lynch and Huang, 1992)
and normal mode initialisation (Machenhauer, 1977; Baer
and Tribbia, 1977). Within variational data assimilation al-
gorithms balance constraints can be implemented to ensure
sufficient balance (Thépaut and Courtier, 1991; Polavarapu
et al., 2000; Gauthier and Thépaut, 2001; Neef et al., 2006;
Watkinson et al., 2007; Cotter, 2013). To militate against
the effects of intermittent discontinuous assimilations, sev-
eral filtering approaches have been introduced to render the
assimilation procedure more continuous.Bloom et al.(1996)
introduced the method of incremental analysis updates (IAU)
for 3D-Var in which the analyses increments are distributed
over a fixed time window. It has since been applied to en-
semble filters, see for examplePolavarapu et al.(2004), and
has found numerous applications in atmospheric and oceanic
contact (Zhu et al., 2003; Weaver et al., 2003; Ourmières
et al., 2006). Bergemann and Reich(2010a) create balanced
analyses by using a continuous formulation of the Kalman
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analysis step (Bergemann et al., 2009; Bergemann and Reich,
2010b). Kepert (2009) modified the covariance localisation
procedure so that it respects balance.

Here we will present a novel approach to generating bal-
anced analyses within an intermittent discontinuous data as-
similation procedure. We will incorporate prior information
on the amount of imbalance to augment given observational
information for the slow variables. This implementation of
a balance constraint within the data assimilation step elimi-
nates unwanted spurious imbalance, leading to physical anal-
yses states and to an improved analysis skill as measured by
the rms error of the fast variables.

In the next section we briefly describe the framework of
variance limiting Kalman filters developed inGottwald et al.
(2011) which will form the basis of our imbalance limiting
filter. In Sect.3 we present a modified slow-fast Lorenz-96
model which incorporates balanced dynamics, introduced in
Bergemann and Reich(2010a). In Sect.4 we present results
showing how controlling unbalance can produce better skill
than current ensemble Kalman filters. We conclude with a
summary in Sect.5.

2 The variance limiting Kalman filter

Gottwald et al.(2011) introduced a variation of the ensem-
ble Kalman filter, coined variance limiting Kalman filter
(VLKF). This filter was designed to control overestimation
of error covariances caused by finite ensemble sizes in sparse
observational grids. The filter imposes weak constraints on
unobserved variables and data voids using climatological in-
formation. The effect of the weak constraint was shown to
drive the analysis of the unobserved variables towards their
climatic mean and furthermore to limit the posterior error co-
variance of the unobserved variables to not exceed their cli-
matic covariance. This yielded a remarkable increase in the
skill, even in the observed variables. The filter has since been
used inMitchell and Gottwald(2012) to control noise at the
grid resolution scale caused by model error.

It is our aim here to employ the VLKF to control undesir-
able imbalance. In general the instantaneous amount of im-
balance is not available through direct observations. We as-
sume prior knowledge of the climatological mean and of the
climatological covariance of imbalance. This statistical in-
formation may be available through historical observational
data or through free running simulations. We will use the
weak constraint in VLKF on imbalance to drive the analysis
towards balance, inhibiting excessive unphysical unbalanced
fast energy.

The filter described inGottwald et al.(2011) andMitchell
and Gottwald(2012) was formulated for large ensemble
sizes, ensuring invertibility of the forecast error covariance
(a situation not satisfied for data assimilation in operational
numerical weather forecast centres). We recast the VLKF

here in a form which allows for small ensemble sizes, and
redo the derivation in a slightly different manner.

Given aD-dimensional dynamical system

żt = F(zt ) , (1)

which is observed at discrete timesti = i 1tobs, data assimi-
lation aims at producing the best estimate of the current state
given a typically chaotic, possibly inaccurate modelż =f (z)

and noisy observations of the true statezt (Kalnay, 2002).
We assume that we are given observations

yo (ti) = H zt (ti) + ro,

where the observation operatorH : RD
→ RDo maps from

the whole space into observation space, andro ∈ RDo is as-
sumed to be i.i.d. observational Gaussian noise with associ-
ated error covariance matrixRo. Additionally we incorpo-
rate climatological information ofDw pseudo-observables,
in particular their meanaclim ∈ RDw and their covariances
Aclim ∈ RDw×Dw . In general, it is not advisable to incorpo-
rate simultaneously direct observations and climatological
information for a variable, as this may spoil the generally
more accurate information of the direct observations. In our
application here the climatological information will be the
mean and covariances of some measure of imbalance, but
pseudo-observables may be any subset of unobserved vari-
ables or their integrated quantities such as their energy. We
assume that we can determine those quantities prior to the
data assimilation procedure either through historical data or
through long-time numerical simulations. We remark that
one may use values other than the climatic covariance to con-
trol the analysis error covariance if one interprets the vari-
ance constraint merely as a numerical tool to stabilise and
regularise the filter. Furthermore, in non-equilibrium situa-
tions, when climatological information is irrelevant, such as
during strong fronto-genesis in a weather forecasting context
for example, we may estimate the mean and the covariance
of the unobserved pseudo-observables via a running average
of the analysis (this requires the analysis to be tracking).

We introduce a pseudo-observation operator
h : RD

→ RDw which maps from the whole space into the
space of the pseudo-observables. The (as yet unknown) error
covariance of those pseudo-observations is denoted byRw.
Gottwald et al.(2011) consideredDo + Dw =D, which will
be relaxed here.

The Kalman filter can be formulated as a minimisation
problem of the following cost function (e.g.Kalnay, 2002;
Simon, 2006) with a given backgroundzf and associated er-
ror forecast covariancePf as

J (z) =
1

2
(z − zf)

T P−1
f (z − zf)

+
1

2
(H z − yo)

T R−1
o (H z − yo)

+
1

2
(hz − aclim)T R−1

w (hz − aclim) . (2)
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The error covariance matrixRw is so far undetermined.
We will invoke below a constraint on the analysis error
covariance, namely that the analysis error covariance pro-
jected onto the subspace spanned by the pseudo-observations
equals the climatological covarianceAclim. In anticipation of
the analytical results below which reveal that such a con-
straint cannot be imposed on the wholeDw-dimensional
unobserved subspace whilst simultaneously ensuring posi-
tive definiteness ofRw, but only on aD̂w ≤ Dw-dimensional
subspace of the unobserved subspace, we introduce here a

(so far undetermined) transformation matrixSw ∈ RDw×D̂w .
The transformation matrix satisfiesST

w Sw = I
D̂w

(but not

necessarilySw ST
w = IDw). We will formulate the filter re-

stricted to this subspace and introduce the transformed
pseudo-observation operator

ĥ = ST
w h,

and the transformed error covariances

R̂−1
w = ST

w R−1
w Sw

Âclim = ST
w Aclim Sw,

as well as the transformed climatological mean of the
pseudo-observationŝaclim = ST

w aclim. We now combine di-
rect observations and pseudo-observations, and write the cost
function in the more compact form

J (z) =
1

2
(z − zf)

T P−1
f (z − zf)

+
1

2

(
Ĥ z − ŷ

)T

R̂−1
(
Ĥ z − ŷ

)
, (3)

where we introduced combined observationsŷ, the observa-
tion operatorĤ and the error covariance matrix̂R with

ŷ =

(
yo
âclim

)
∈ RDo+D̂w ,

Ĥ =

(
H
ĥ

)
∈ R(Do+D̂w)×D,

R̂−1
=

(
R−1

o 0
0 R̂−1

w

)
∈ R(Do+D̂w)×(Do+D̂w).

The analysis is given as the minimum of the cost function
J (z) and is readily calculated as

za = zf − K̂
[
Ĥ zf − ŷ

]
, (4)

where the Kalman gain matrix is given by

K̂ = PaĤT R̂−1, (5)

with the error covariance matrix of the analysis given by

Pa =

(
P−1

f + ĤT R̂−1 Ĥ
)−1

. (6)

Using the matrix identity (P−1
+ HT R−1H)−1

= P −

PHT (R + HPHT )−1HP (see for exampleSimon, 2006) the
analysis error covariance is recast in a form which does not
involve the inverse of the forecast error covariancePf as

Pa =

[
I − K̂ Ĥ

]
Pf, (7)

and the Kalman gain matrix can be rewritten in the computa-
tionally more convenient form

K̂ = Pf ĤT
(
ĤPf ĤT

+ R̂
)−1

, (8)

which involves only taking the inverse of((Do + D̂w) ×

(Do + D̂w)) matrices rather than of (D × D) matrices.
We remark that one can explicitly separate the updates

according to the deviations from the observations and the
pseudo-observations in the analysis and have

za = zf − Ko
[
H zf − yo

]
− K̂w

[
ĥzf − âclim

]
, (9)

with

Ko = PaHT R−1
o and K̂w = PaĥT R̂−1

w .

This shows that weighted by the error covariance of the
weak constraint̂Rw the analysis of the pseudo-observables
is driven towards their climatic mean. However, due to
the generically global nature of the Kalman gain matrices
the inclusion of climatological information of the pseudo-
observables also affects the observed degrees of freedom.

So far the error covariancêRw associated with the weak
constraint is undetermined. We will now determineR̂w
and thereby control the variance of the unresolved pseudo-
observableshz by requiring that the analysis error covari-
ance, projected onto the pseudo-observables, equals the cli-
matological covariance, i.e.

hPahT
= Aclim. (10)

We rewrite the analysis error covariance (Eq.6) as

Pa =

(
P−1

+ ĥT R̂−1
w ĥ

)−1
, (11)

where we introduced the analysis error covarianceP for a
standard Kalman filter without any weak constraint which
only combines the forecast with direct observations

P =

(
P−1

f + HT R−1
o H

)−1
= [I − KoH] Pf . (12)

Upon using the Sherman–Morrison–Woodbury formula
(P−1

+ ĥT R̂−1
w ĥ)−1 ĥT R̂−1

w = PĥT (R̂w + ĥPĥT )−1 (see
for exampleSimon, 2006), the error covariance matrix for the
pseudo-observableŝRw is found from the constraint (Eq.10)
to be

R̂−1
w = Â−1

clim −

(
ĥPĥT

)−1
. (13)
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Expanding Eq. (13) we obtain(
ST

w Rw Sw

)−1
=

(
ST

w Aclim Sw

)−1
−

(
ST

w hPhT Sw

)−1
. (14)

This makes apparent the role of the transformation matrix

Sw. Sw ∈ RDw×D̂w can be chosen such thatR̂w = ST
w Rw Sw,

being an error covariance, is positive definite: the transfor-
mation matrixSw projects onto the subspace of the space of
pseudo-observables which in a standard Kalman filter would
experience an analysis error covariancehPhT exceeding the
climatological covarianceAclim. All otherDw − D̂w pseudo-
observations are discarded in order to ensure a positive defi-

nite and invertible error covariance matrixR̂w ∈ RD̂w×D̂w . In
Appendix A we provide an algorithm to computeSw.

We formulate the filter in the framework of ensemble
Kalman filters (EnKF) (Evensen, 2006; Hamill, 2006) where
an ensemble withk memberszk

Z = [z1, z2, . . . , zk] ∈ RD×k

is propagated by the model dynamics according to the model

Ż = F (Z), F(Z) =
[
f (z1) , f (z2) , . . . , f (zk)

]
∈ RD×k.

The forecast ensemble is split into its meanzf and ensemble
deviation matrixZ′

f . The ensemble deviation matrixZ′

f can
be used to provide a Monte Carlo estimate for the ensemble
forecast covariance matrix via

Pf(t) =
1

k − 1
Z′(t)

[
Z′(t)

]T
∈ RD×D.

Note thatPf(t) is rank-deficient fork <D, which is the typ-
ical situation in numerical weather prediction whereN is of
the order of 109 andk of the order of 100.

At the end of each analysis cycle an ensembleZa is gener-
ated which must be consistent with the analysis error covari-
ancePa, and satisfies

Pa =
1

k − 1
Z′

a

[
Z′

a

]T
.

In previous workGottwald et al.(2011) andMitchell and
Gottwald(2012) used the ensemble transform Kalman filter
(ETKF) (Bishop et al., 2001; Tippett et al., 2003; Wang et al.,
2004), which seeks a transformationT ∈ Rk×k such that the
analysis deviation ensembleZ′

a is given as a deterministic
perturbation of the forecast ensembleZf via Z′

a = Z′

f T. In
order to incorporate localisation needed for small ensemble
sizes easily, we will implement for our VLKF here an ap-
proximate square root filter (DEnKF) proposed bySakov and
Oke(2008) where the analysis deviations are determined ac-
cording to

Z′
a =

(
I −

1

2
KH

)
Z′

f . (15)

A new forecast is obtained by propagatingZa with the non-
linear forecast model to the next observation time, where a
new analysis cycle will be started.

We will use here diagonal target matricesAclim where the
diagonal entries are set to the mean value of the diagonal en-
tries of the full climatic covariance. We found that otherwise
the variance constraint is not “switched on” sufficiently of-
ten to drive the dynamics to the meanaclim (due to a lack of
simultaneous diagonalisability ofAclim andhPhT ; cf. Ap-
pendix A). This suggests that the variance constraint is a nu-
merical tool to regularise the filter, with the advantage how-
ever that the regularisation is performed in a dynamically
consistent way, performedwithin the data assimilation pro-
cedure using only dynamical quantities such as measured
imbalance.

3 The modified Lorenz-96 model

The Lorenz-96 model (Lorenz, 1996; Lorenz and Emanuel,
1998)

ẋj = xj−1
(
xj+1 − xj−2

)
− xj + F j = 1, . . . , d (16)

with periodicxj = xj+d is a standard test bed for data assim-
ilation as it is computationally manageable but still incor-
porates crucial ingredients of real mid-latitude atmospheric
flows such as nonlinear energy conservation, advection, forc-
ing and linear damping. Recently,Bergemann and Reich
(2010a) introduced a modification of the standard Lorenz-96
model by coupling it to a purely dispersive fast wave equa-
tion mimicking the influence of fast gravity waves on slow
Rossby waves in a quasi-geostrophic regime. The modified
Lorenz system reads as

ẋj = (1 − η)xj−1
(
xj+1 − xj−2

)
− xj + F

+ η
(
xj−1hj+1 − xj−2hj−1

)
(17)

ε2 ḧj = −hj + α2 (
hj−1 − 2hj + hj+1

)
+ xj . (18)

The fast wave part (Eq.18) is purely dispersive; if the dis-
sipation and the forcing in the slowx equation (Eq.17) is
ignored the system conserves the total energy

H =
η

2

d∑
j=1

(
η − 1

η
x2
j + ε2 ḣ2

j + h2
j

+α2(
hj+1 − hj−1

)2
− 2xj hj ) (19)

with 0≤ η ≤ 1. The modified Lorenz-96 system (Eqs.17–18)
contains an approximate slow manifold given by

xj = hj − α2 (
hj−1 − 2hj + hj+1

)
, (20)

which is obtained by formally settingε = 0 in Eq. (18).
Higher order balance relations could be derived by employ-
ing asymptotic theory.
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with periodicxj = xj+d is a standard test bed for data assim-350

ilation as it is computationally manageable but still incor-
porates crucial ingredients of real midlatitude atmospheric
flows such as nonlinear energy conservation, advection, forc-
ing and linear damping. Recently, Bergemann and Reich
(2010b) introduced a modification of the standard Lorenz-96355

model by coupling it to a purely dispersive fast wave equa-
tion mimicking the influence of fast gravity waves on slow
Rossby waves in a quasi-geostrophic regime. The modified
Lorenz system reads as

ẋj = (1− η)xj−1(xj+1 − xj−2)− xj + F360

+ η (xj−1hj+1 − xj−2hj−1) (17)

ε2ḧj = −hj + α2 (hj−1 − 2hj + hj+1)+ xj . (18)

The fast wave-part (18) is purely dispersive; if the dissipation
and the forcing in the slowx-equation (17) is ignored the365

system conserves the total energy

H =
η

2

d
∑

j=1

(
η− 1

η
x2

j + ǫ2ḣ
2

j + h2
j

+ α2 (hj+1 − hj−1)
2 − 2xjhj ) (19)

with 0 ≤ η ≤ 1. The modified Lorenz-96 system (17)–(18)370

contains an approximate slow manifold given by

xj = hj −α2 (hj−1 − 2hj + hj+1) , (20)

which is obtained by formally settingε = 0 in (18). Higher
order balance relations could be derived employing asymp-375

totic theory.

We set the number of degrees of freedom tod = 40 andF =
8 for the forcing. We consider here weak coupling withη =
0.1, implying sufficiently nonlinear behaviour of the slowx-
variables. The “Rossby number” is set toε = 0.0025 and the380

“Burgers number” is set toα2 = 0.25. In Figure 1 we show
typical initially balanced fields. Note that the balance relation
(20) implies that the balanced field{hj} = (h1,h2, · · · ,hd)
is smoother than{xj} = (x1,x1, · · · ,xd) (h is obtained from
x via the application of an inverse Helmholtz-operator). Note385

that this is different to the situation in realistic atmospheric
models where the fast variables are small scale and rapidly
oscillate around the slow manifold.
We introduce the imbalance operatorB which acts onz with
zj = (xj ,hj , ḣj) as390

(Bz)j = xj − hj + α2 (hj−1 − 2hj + hj+1) , (21)

which according to (20) is zero to leading order if initiallyso.
Figure 2 shows the temporal evolution of the site-averaged
imbalance395

B̄(t) =

√

√

√

√

1

d

d
∑

j=1

(Bz)
2
j (22)
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Fig. 1.Typical balanced fieldsx (blue) andh (red) for the modified
slow-fast Lorenz-96 model (17)–(18).

for initially balanced fields with a small value ofǫ = 0.0025.
The figure clearly illustrates that balance is approximately
preserved by the dynamics, provided the timescale separa-400

tion is sufficiently large, i.e.ǫ sufficiently small. This justi-
fies the terminology of (20) defining aslow manifold, as the
initially generated imbalance does not interact with the slow
variables on long time scales. The situation is very different
when the dynamics is interrupted by data assimilation cycles405

where the data assimilation procedure introduces imbalance.
In Cohnet al. (1998); Lorenc (2003b); Mitchellet al. (2002);
Houtekamer and Mitchell (2005); Okeet al. (2007); Kepert
(2009); Greybushet al. (2011) the imbalance was associated
with the procedure of covariance localisation. In Figure 3 we410

show that ensemble filters can generate unbalanced analy-
ses in sparse observational grids due to the intermittent dis-
continuous analyses updates, even without localisation. We
present results for an ETKF with a large ensemble of1000
members where only the slow{xj} variables are observed,415

and compare it to the case when all variables{xj}, {hj} and
{ḣj} are observed. Whereas in the fully observed case the
imbalancēB exhibits the actual physical imbalance (cf. Fig-
ure 2), increased imbalance is clearly seen in the sparser ob-
servational grid. We remark that this is not a finite size effect420

and cannot be mitigated by larger ensembles (we tested en-
semble sizes of3000), consistent with results for3D-VAR
by Bloomet al. (1996). We remark that for smaller observa-
tional noise withRo = 0.21 the imbalance exhibits the same
mean values as in Figure 3 withRo = 0.84. In the next sec-425

tion we explore how this spurious imbalance can be con-
trolled by using the VLKF framework established in Sec-
tion 2.

Fig. 1. Typical balanced fields{xj } (blue) and{hj } (red) for the
modified slow-fast Lorenz-96 model (Eqs.17–18).
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Fig. 2.Temporal evolution of the imbalanceB for initially balanced
fields of the modified slow-fast Lorenz-96 model (Eqs.17–18).

We set the number of degrees of freedom tod = 40
and F = 8 for the forcing. We consider here weak cou-
pling with η = 0.1, implying sufficiently nonlinear behaviour
of the slow x variables. The “Rossby number” is set to
ε = 0.0025 and the “Burgers number” is set toα2 = 0.25.
In Fig. 1 we show typical initially balanced fields. Note
that the balance relation (Eq.20) implies that the bal-
anced field {hj } = (h1, h2, . . . , hd) is smoother than
{xj } = (x1, x1, . . . , xd) (h is obtained fromx via the applica-
tion of an inverse Helmholtz operator). Note that this is dif-
ferent to the situation in realistic atmospheric models where
the fast variables are small scale and rapidly oscillate around
the slow manifold.

We introduce the imbalance operatorB which acts onz
with zj = (xj , hj , ḣj ) as

(Bz)j = xj − hj + α2 (
hj−1 − 2hj + hj+1

)
, (21)

which according to Eq. (20) is zero to leading order if ini-
tially so. Figure2 shows the temporal evolution of the site-
averaged imbalance
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Fig. 3. ImbalanceB of the analysis as a function of analysis cycles
for ETKF with 1000 ensemble members and an observation inter-
val of 1tobs= 2 h and observational noise error varianceRo = 0.84,
without covariance inflation and localisation. Results are shown for
the case when all variables{xj }, {hj } and{ḣj } of the modified slow-
fast Lorenz-96 model (Eqs.17–18) are observed (blue) and for the
case of a spatially sparse observations when only{xj } are observed
(red).

B(t) =

√√√√ 1

d

d∑
j=1

(Bz)2
j (22)

for initially balanced fields with a small value ofε = 0.0025.
The figure clearly illustrates that balance is approximately
preserved by the dynamics, provided the timescale separa-
tion is sufficiently large, i.e.ε sufficiently small. This justi-
fies the terminology of Eq. (20) defining aslow manifold, as
the initially generated imbalance does not interact with the
slow variables on long timescales. The situation is very dif-
ferent when the dynamics is interrupted by data assimilation
cycles where the data assimilation procedure introduces im-
balance. InCohn et al.(1998), Lorenc(2003a), Mitchell et al.
(2002), Houtekamer and Mitchell(2005), Oke et al.(2007),
Kepert(2009) andGreybush et al.(2011) the imbalance was
associated with the procedure of covariance localisation. In
Fig.3 we show that ensemble filters can generate unbalanced
analyses in sparse observational grids due to the intermit-
tent discontinuous analyses updates, even without localisa-
tion. We present results for an ETKF with a large ensemble
of 1000 members where only the slow{xj } variables are ob-
served, and compare it to the case when all variables{xj },
{hj } and {ḣj } are observed. Whereas in the fully observed
case the imbalanceB exhibits the actual physical imbalance
(cf. Fig.2), increased imbalance is clearly seen in the sparser
observational grid. We remark that this is not a finite size ef-
fect and cannot be mitigated by larger ensembles (we tested
ensemble sizes of 3000), consistent with results for 3D-VAR
by Bloom et al.(1996). We remark that for smaller observa-
tional noise withRo = 0.21 the imbalance exhibits the same
mean values as in Fig.3 with Ro = 0.84. In the next section
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we explore how this spurious imbalance can be controlled by
using the VLKF framework established in Sect.2.

4 Numerical results

We now present results from numerical data assimilation cy-
cles of Eqs. (17)–(18). We consider a sparse observational
grid in which only every second slow{x2j } variable is ob-
served; the variables{hj } and {ḣj } are not observed. We
useD = 3d = 3× 40, and therefore in the notation of Sect.2
we haveDo = 20. We observe the system in equidistant ob-
servation intervals1tobs ranging from 1 to 6.5 h, adopting
the timescales suggested by the standard Lorenz-96 sys-
tem (Eq.16), i.e. t = 1/120 roughly corresponds to 1 hour
(see for exampleLorenz and Emanuel, 1998). Observations
are contaminated by Gaussian noise, with error variance
Ro = (0.25σx,clim)2 I20 = 0.84I20 whereσ 2

x,clim = 13.50 is the
climatic variance of{xj }. We perform 4000 analysis cycles
after a spin-up period of 1000 analysis cycles. All simula-
tions are initialised with balanced data using Eq. (20). To
generate the observations and to propagate forward the fore-
cast model (Eqs.17–18) we employ an implicit midpoint rule
with a time step of dt = 0.0025 (see, for example,Leimkuhler
and Reich, 2005).

Besides the variance limiting Kalman filter VLKF-B
where we impose a climatic constraint on the imbalanceBz,
we also employ a variance limiting Kalman filter VLKF-ḣ

where we impose a climatic constraint on the unobserved
fast variables{ḣj }. Both VLKF-B and VLKF-ḣ have, in the
notation of Sect.2, Dw = 40. With z = (x, h, ḣ) ∈ R120, for
VLKF-B the pseudo-observation operatorh : R120

→ R40

is

h = (B040) ,

with B ∈ R40×80 defined in Eq. (21), and for VLKF-ḣ the
pseudo-observation operator is

h = (040040I40) .

The climatic mean and variances of{ḣj} and those
of the imbalance{(Bz)j} were estimated through long-
time simulations of the full modified Lorenz-96 system
(Eqs. 17–18) with balanced initial data asBz = 0 and
σ 2

Bz,clim = 8.4× 10−4, and ḣ =−0.01 andσ
ḣ,clim

= 224.35,

respectively. We setaclim = 0 and Aclim =σ 2
Bz,clim I40 for

VLKF-B, and aclim =−0.01 and Aclim =σ 2
ḣ,clim

I40 for

VLKF- ḣ, respectively. We note that both the climatic covari-
ance ofBz and ofḣ are concentrated near the diagonal.

For comparison with our implementations of VLKF-B and
VLKF- ḣ we will employ a suite of ensemble filters. In partic-
ular, we will use the EnKF with perturbed observations as in
Burgers et al.(1998) and the approximate square root filter
DEnKF as inSakov and Oke(2008). Furthermore, we im-
plement an incremental analysis update (IAU) as inBloom
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Fig. 4.Top panel: imbalanceB of the analysis as a function of anal-
ysis cycles for1tobs= 5.5 h in a log plot. In order of increasing val-
ues ofB are VLKF-B (magenta open circles), IAU (black crosses)
VLKF- ḣ (cyan squares), DEnKF (blue diamonds) and EnKF (red
crosses). Bottom panel: temporally averaged imbalance〈B〉 of the
analysis as a function of the observation interval1tobs.

et al.(1996) andPolavarapu et al.(2004), where the analysis
increments are calculated by a DEnKF.

All filter implementations use 10 ensemble members,
which is smaller than the attractor dimension of the system
(Eqs.17–18). We employ covariance inflation whereby the
prior forecast error covariance is increased by an inflation
factorδ (Anderson and Anderson, 1999). Since the{hj } vari-
ables are not damped in the modified Lorenz system (Eq.18),
inflation of the unobserved{hj } variables would in gen-
eral lead to an increasing growth in the associated forecast
covariance. Inflation is therefore applied at each time step
only to the{xj } components of the ensembles for DEnKF,
EnKF and IAU, but to all components of the ensemble for
VLKF-B and VLKF-ḣ which explicitly constrain. This was
found to be advantageous for all respective filters. Results
are obtained for a wide range of inflation factors and only
the optimal result for each particular formulation of the fil-
ter is reported here. We have optimised over 1000 equally
spaced values ofδ ∈ (1, 1.16). The small ensemble size cho-
sen here requires localisation. We employ the localisation
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filter which constraints the statistics of the fast variables
but not the imbalance, coined VLKF-ḣ, and standard
implementations of EnKF, DEnKF and IAU. It was found
that our balance controlling filter VLKF-B is able to
constrain the amount of imbalance to lie within the phys-590

ically observed limits. Besides improved balance of the
analyses this implied also very good error statistics for the
unobserved height field. We tested our method against the
widely-used IAU implementation and found that it gener-
ates less unphysical imbalance and has very similar rms595

error statistics for the observed and the unobserved variables.

The variance constraint we employ requires the determina-
tion of the overestimating subspace - the eigenspace in which
Pf experiences covariances above the climatological - which600

was achieved in this work by singular vector decomposi-
tion. The extra computational cost implied has to be weighed
against the cost of an additional application of the forecast
model involved in IAU or of fast Fourier transforms when
using digital filters, as well as whether the superior perfor-605

mance of VLKF-B in generating less unphysical imbalance
is worth it.

Appendix A

We present here an algorithm of how to construct the trans-610

formation matrixSw. This matrix projects into the subspace
of those pseudo-observable subspace which in a standard
Kalman filter would produce an analysis whose analysis er-
ror covariance matrix exceeds the prescribed (climatological)
error covarianceAclim. We need to findSw such that (14)615

produces a positive error covariance matrixRw. For conve-

Fig. 5. Rms error of the analysis as a function of the observation
interval1tobs (in hours) for the slow variables{xj }.

method along the line ofHoutekamer and Mitchell(1998,
2001) and Hamill et al. (2001) whereby the forecast error
covariancePf is Schur-multiplied with a localisation matrix
Cloc. We use the compactly supported localisation function
introduced byGaspari and Cohn(1999) where correlations
with distances larger than 2ρloc are set to 0. We set the local-
isation radius toρloc = 8 for all filters.

In Fig. 4 we present results of the amount of imbalance
as measured by the imbalanceB(t) and by the temporally
averaged imbalance

〈B〉 =
1

N

N∑
n=1

B (n1tobs) ,

accrued during the data assimilation procedure for our suite
of filters. EnKF and DEnKF generate a significant amount of
unphysical imbalance, with values much larger than those of
the actual balanced toy model with〈B〉 ≈ 0.018 (cf. Fig.2).
The increased imbalance in EnKF may be due to sampling
errors introduced through the perturbed observations. Given
the particular nature of imbalance present in the toy model
(Eqs. 17–18), this may not be an issue in realistic atmo-
spheric models. The IAU implementation strongly reduces
imbalance, albeit to levels significantly larger than those ex-
pected from the actual dynamics. Our VLKF-B filter is able
to constrain imbalance very close to the the actual physical
imbalance. Note that although the pseudo-observations used
in VLKF-B were for the imbalance of each variableBz driv-
ing the dynamics towardsBz = 0, the analysis reproduces dy-
namically realistic values of the integrated measure of imbal-
ance〈B〉. VLKF-ḣ also achieves a pronounced reduction in
imbalance, but to larger values than the IAU implementation,
in particular for larger observation intervals1tobs. Surpris-
ingly, for filters which only constrain the climatic variance
of the height variable{hj }, and do not impose any explicit
constraints on the imbalance, i.e.h = (040I40040), one also
observes a significant reduction in imbalance (not shown).

8 G. A. Gottwald: Controlling balance in an ensemble Kalman filter

0 5000 10000 15000

−2

−1.5

−1

−0.5

0

0.5

t

lo
g
B̄

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

∆tobs

〈B̄
〉

 

 

EnKF
DEnKF
VLKF-B

VLKF-ḣ
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filter which constraints the statistics of the fast variables
but not the imbalance, coined VLKF-ḣ, and standard
implementations of EnKF, DEnKF and IAU. It was found
that our balance controlling filter VLKF-B is able to
constrain the amount of imbalance to lie within the phys-590

ically observed limits. Besides improved balance of the
analyses this implied also very good error statistics for the
unobserved height field. We tested our method against the
widely-used IAU implementation and found that it gener-
ates less unphysical imbalance and has very similar rms595

error statistics for the observed and the unobserved variables.

The variance constraint we employ requires the determina-
tion of the overestimating subspace - the eigenspace in which
Pf experiences covariances above the climatological - which600

was achieved in this work by singular vector decomposi-
tion. The extra computational cost implied has to be weighed
against the cost of an additional application of the forecast
model involved in IAU or of fast Fourier transforms when
using digital filters, as well as whether the superior perfor-605

mance of VLKF-B in generating less unphysical imbalance
is worth it.

Appendix A

We present here an algorithm of how to construct the trans-610

formation matrixSw. This matrix projects into the subspace
of those pseudo-observable subspace which in a standard
Kalman filter would produce an analysis whose analysis er-
ror covariance matrix exceeds the prescribed (climatological)
error covarianceAclim. We need to findSw such that (14)615

produces a positive error covariance matrixRw. For conve-

Fig. 6. Rms error of the analysis as a function of the observation
interval1tobs (in hours) for the unobserved height variables{hj }.

We now investigate rms error statistics. We consider the
site-averaged rms error of variablesz

E =

√√√√〈
1

N DG

N∑
n=1

|za(n1tobs) − zt (n1tobs)|
2
G〉 (23)

between the truthzt and the ensemble meanza, whereN is
the number of analysis cycles andDG denotes the number of
variables involved. We introduce the norm‖a‖

2
G = aT Ga to

investigate the error over all{xj } variablesEx usingG = δij

for 1≤ i ≤ 40 and the error of the fast{hj } variablesEh us-
ing G = δij for 41≤ i ≤ 80. Figure5 showsEx for our suite
of filters. DEnKF, IAU and our VLKF-B and VLKF-ḣ ex-
hibit very similar rms errors, with values much smaller than
the observational noise withro =

√
0.84 = 0.91. EnKF pro-

duces consistently worse rms errors, which again may be due
to sampling errors stemming from the randomly perturbed
observations.

Figure6 shows that the correct balance statistics of VLKF-
B manifests itself in superior rms errors for the unobserved
fast height field{hj} when compared to filters which do not
incorporate a balance constraint. IAU and VLKF-B exhibit
comparable rms error statistics for the height field. Further-
more, it is seen that constraining the covariance of{ḣj }, as
done in VLKF-ḣ, also generates comparably good rms errors
for the height field. The variations of the error in the height
field Eh with the observation interval1tobsmirror exactly the
imbalance shown in Fig.4.

We found that EnKF, DEnKF and IAU exhibit instances
of catastrophic filter divergence whereby the forecast model
develops numerical instabilities (Gottwald and Majda, 2013).
Instances of this type of filter divergence were not observed
in the variance constraining filters VLKF-B and VLKF-ḣ.
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5 Conclusions

We have presented here an implementation of an ensemble
filter which explicitly limits the amount of imbalancewithin
the data assimilation procedure. We were able to produce bal-
anced analyses by incorporating statistical information such
as mean and variance of imbalance, available through long-
time integration or historical data, as pseudo-observations.
This procedure not only successfully constraints imbalance
to its climatic values, but also produces very good filter
performance in terms of rms errors of the fast unobserved
variables.

We presented a comparison between a filter which explic-
itly constraints the amount of imbalance, coined VLKF-B,
a filter which constraints the statistics of the fast variables
but not the imbalance, coined VLKF-ḣ, and standard imple-
mentations of EnKF, DEnKF and IAU. It was found that our
balance controlling filter VLKF-B is able to constrain the
amount of imbalance to lie within the physically observed
limits. Besides improved balance of the analyses this also
implied very good error statistics for the unobserved height
field. We tested our method against the widely used IAU im-
plementation and found that it generates less unphysical im-
balance and has very similar rms error statistics for the ob-
served and the unobserved variables.

The variance constraint we employ requires the determi-
nation of the overestimating subspace – the eigenspace in
which Pf experiences covariances above the climatological
– which was achieved in this work by singular vector de-
composition. The extra computational cost implied has to
be weighed against the cost of an additional application of
the forecast model involved in IAU or of fast Fourier trans-
forms when using digital filters, as well as whether the supe-
rior performance of VLKF-B in generating less unphysical
imbalance is worth it.

Appendix A

Construction of the transformation matrix Sw

We present here an algorithm of how to construct the trans-
formation matrixSw. This matrix projects into the subspace
of those pseudo-observable subspaces which in a standard
Kalman filter would produce an analysis whose analysis er-
ror covariance matrix exceeds the prescribed (climatological)
error covarianceAclim. We need to findSw such that Eq. (14)
produces a positive error covariance matrixRw. For conve-
nience we recall Eq. (14):(
ST

w Rw Sw

)−1
=

(
ST

w Aclim Sw

)−1
−

(
ST

w hPhT Sw

)−1
. (A1)

Introducing P̂h = ST
w hPhT Sw, Âclim = ST

w Aclim Sw and
R̂w = ST

w Rw Sw, we may rewrite this as

R̂−1
w = Â−1

clim − P̂−1
h .

Matrices Sw satisfying Eq. (A1) can be determined pro-
vided Aclim and hPhT are simultaneously diagonalisable.
We remark that Eq. (A1) can be readily converted into

R̂w = P̂h

[
P̂h − Âclim

]−1
Âclim.

Simultaneous diagonalisation ofAclim andhPhT can be
checked either by looking at the null space of the commu-
tator C = Aclim hPhT

− hPhT Aclim, or by comparing the
eigenspaces of the respective matrices directly. We note that
if we prescribe a diagonal target covarianceAclim =λ I , si-
multaneous diagonalisation is automatically asserted. Let the
transformation matrix onto the subspace in whichAclim and
hPhT are simultaneously diagonalisable beMT

0 ∈ RDw×Dw0

with Dw0 ≤ Dw.
ConsiderAclim 0 = MT

0 Aclim M0 and P0 = MT
0 hPhT M0,

and simultaneously diagonalise by writing (wlog),

Aclim 0 = SA Aclim 0ST
A = S̃A S̃T

A,

with S̃A = SA A
1
2
clim 0. Introducing

P̃0 = S̃−1
A P0 S̃−T

A ,

we transform with an orthogonal transformationSP

P̃0 = SP
ˆ̃P0ST

P .

IntroducingQ = S̃A SP we may write

Aclim 0 = QQT ,

P0 = Q ˆ̃P0QT .

Using the diagonal matricesI and ˆ̃P0, associated withAclim
and hPhT , respectively, one can now readily check for
overestimation ofRw. Transforming into the subspace in
which Aclim and hPhT are both diagonal with the same
eigenspaces, we obtain

ˆ̃R−1
w = QT MT

0 R−1
w M0Q = I −

ˆ̃P−1
0 ,

and ˆ̃Rw can be calculated directly by inverting the diagonal
ˆ̃R−1

w .
We have now determined a transformationQT MT

0 which
simultaneously diagonalisesAclim and hPhT . Transform-

ing renders ˆ̃Rw ∈ RDw0×Dw0 diagonal, but not necessarily

positive definite as required. However,ˆ̃Rw being diago-
nal allows us to readily determine a transformation matrix

Sred∈ RD̂w×Dw0 which projects onto theD̂w-dimensional

overestimating subspace in whichˆ̃Rw is positive definite,
with D̂w ≤ Dw0.

This concludes our algorithm for how to compute
a positive definite invertible covariance matrix̂Rw and
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also provides an expression for the transformation matrix

Sw ∈ RD̂w×Dw as

Sw = SredQT MT
0 .

We note that one may define formally an effective pseudo-

observation operator̂h ∈ RD̂w×Dw

ĥ = SredQT MT
0 h.
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