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Abstract. We present a method to control unbalanced fastcast modelBloom et al, 1996 Ourmiéres et a2006. Ex-
dynamics in an ensemble Kalman filter by introducing a amples of the creation of imbalance in variational data as-
weak constraint on the imbalance in a spatially sparse obsessimilation schemes are, for exampipoom et al.(1996 and
vational network. We show that the balance constraint pro-Lorenc (2003h. In the context of ensemble filters, unbal-
duces significantly more balanced analyses than ensembl@enced analyses are further created by the procedure of local-
Kalman filters without balance constraints and than filtersisation which was introduced bijoutekamer and Mitchell
implementing incremental analysis updates (IAU). Further-(1998 2001), Hamill et al.(200J), Ott et al.(2004 andSzun-
more, our filter with the weak constraint on imbalance pro- yogh et al.(2005 to mitigate spurious cross-correlations in
duces good rms error statistics which outperform those ofthe covariance matrices due to finite ensemble sizes. Locali-
ensemble Kalman filters without balance constraints for thesation of any type can potentially cause imbalance in the ini-
fast fields. tial conditions Cohn et al. 1998 Loreng 2003a Mitchell

et al, 2002 Houtekamer and Mitchell2005 Oke et al,
2007 Kepert 2009 Greybush et al2011).

i There exist several strategies to combat undesired unbal-
1 Introduction anced analyses. These strategies can be divided into those
L i . hich employ a re-balancing procedure after the data as-
In data assimilation one seeks to flnd the best estlmatlon.o imilation, and those which try to create balanced analyses
the state of a dynamical system given a forecast model W'th/vithin the data assimilation process itself. Post-processing

possib_le ”_‘Ode' e;rror Iand r;(())i(S)y o_lkzi_ervatipns at.discr.eted()bfnethods include digital filteringLynch and Huang1992)
servation intervalsKalnay, 9. This estimate is coine and normal mode initialisationMachenhauerl1977 Baer

the analysis This procedure, however, does not necessarilyand Tribbia 1977). Within variational data assimilation al-

produqe dynamically consistent analys_es. In particul_ar, th("gorithms balance constraints can be implemented to ensure
analysis may contain unbalanced gravity waves, which ar ufficient balanceThépaut and Courtie 991 Polavarapu
absent in the true atmospheric state and which may spoil,, 200Q Gauthier and Thépau2001 Neef et al, 200§

the subsequent forecast initialised with these dynamicalI;y\/atk’inson et al. 2007 Cotter 2013. To militate ragainst
inconsistent states. Ever since the early days of numericgy s gftects of intermittent discontinuous assimilations, sev-

\t/vela:he:[L predltt:)tlmn thfe crzatlc_)n of 'lm?)?lapce hast been (;enéral filtering approaches have been introduced to render the
ral to the problem of producing reliable forecasts (see Of 3ssimilation procedure more continuoBsoom et al.(1996

exr_;\mpIeDaIey, 1993 Chapt_er_6, andiyn_ch, ZOOE_Sfor a his- introduced the method of incremental analysis updates (IAU)
torical account). The heuristic reasoning behind the OCCUMor 3D-Var in which the analyses increments are distributed
rence of unbalanced analyses is that there may be severét/er a fixed time window. It has since been applied to en-

states of the fast variables which are compatible with theSemble filters, see for exampRolavarapu et a(2004), and

observations of the slow state variables, most of them cory,

. s found numerous applications in atmospheric and oceanic
responding to unbalanced states. Furthermore, unbalanceégntact Zhu et al, 2003 Weaver et al.2003 Ourmiéres

Ztites can Ibet generate(;j by The d(_jlsci)ntmu%us_nalture d(?f t?& al, 2006. Bergemann and Reiqt2010g create balanced
ata assimiiation procedure, leading fo unpnysical readjus analyses by using a continuous formulation of the Kalman
ment processes of analyses by the subsequent nonlinear fore-
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418 G. A. Gottwald: Controlling balance in an ensemble Kalman filter

analysis stepRergemann et gl2009 Bergemann and Reich  here in a form which allows for small ensemble sizes, and
2010h. Kepert(2009 modified the covariance localisation redo the derivation in a slightly different manner.
procedure so that it respects balance. Given aD-dimensional dynamical system
Here we will present a novel approach to generating bal-.
anced analyses within an intermittent discontinuous data ast’ = Fzo), 1
similation procedure. We will incorporate prior information which is observed at discrete timgs=i Afops, data assimi-
on the amount of imbalance to augment given observationalation aims at producing the best estimate of the current state
information for the slow variables. This implementation of given a typically chaotic, possibly inaccurate moglel f (z)
a balance constraint within the data assimilation step elimi-and noisy observations of the true state(Kalnay, 2002.
nates unwanted spurious imbalance, leading to physical analWe assume that we are given observations
yses states and to an improved analysis skill as measured by . H .
the rms error of the fast variables. o(fi) =Hz: (ti) + ro,
In the next section we briefly describe the framework of where the observation operatdr: R? — RP> maps from
variance limiting Kalman filters developed @ottwald et al.  the whole space into observation space, end R is as-
(2011 which will form the basis of our imbalance limiting sumed to be i.i.d. observational Gaussian noise with associ-
filter. In Sect.3 we present a modified slow-fast Lorenz-96 ated error covariance matriR,. Additionally we incorpo-
model which incorporates balanced dynamics, introduced irrate climatological information oDy, pseudo-observables,
Bergemann and Reiq20103. In Sect.4 we present results in particular their meanmcjim € R and their covariances
showing how controlling unbalance can produce better skillAcim € RPw>*Pw_ In general, it is not advisable to incorpo-
than current ensemble Kalman filters. We conclude with arate simultaneously direct observations and climatological
summary in Secb. information for a variable, as this may spoil the generally
more accurate information of the direct observations. In our
application here the climatological information will be the
mean and covariances of some measure of imbalance, but
2 The variance limiting Kalman filter pseudo-observables may be any subset of unobserved vari-
ables or their integrated quantities such as their energy. We
Gottwald et al.(201]) introduced a variation of the ensem- assume that we can determine those quantities prior to the
ble Kalman filter, coined variance limiting Kalman filter data assimilation procedure either through historical data or
(VLKF). This filter was designed to control overestimation through long-time numerical simulations. We remark that
of error covariances caused by finite ensemble sizes in sparggne may use values other than the climatic covariance to con-
observational grids. The filter imposes weak constraints ortrol the analysis error covariance if one interprets the vari-
unobserved variables and data voids using climatological inance constraint merely as a numerical tool to stabilise and
formation. The effect of the weak constraint was shown toregularise the filter. Furthermore, in non-equilibrium situa-
drive the analysis of the unobserved variables towards theitions, when climatological information is irrelevant, such as
climatic mean and furthermore to limit the posterior error co- during strong fronto-genesis in a weather forecasting context
variance of the unobserved variables to not exceed their clifor example, we may estimate the mean and the covariance
matic covariance. This yielded a remarkable increase in thef the unobserved pseudo-observables via a running average
skill, even in the observed variables. The filter has since beeof the analysis (this requires the analysis to be tracking).
used inMitchell and Gottwald2012 to control noise at the We introduce a  pseudo-observation  operator
grid resolution scale caused by model error. h : RP — RPw which maps from the whole space into the
It is our aim here to employ the VLKF to control undesir- space of the pseudo-observables. The (as yet unknown) error
able imbalance. In general the instantaneous amount of imeovariance of those pseudo-observations is denotepy
balance is not available through direct observations. We asGottwald et al.(2011) consideredD, + Dy = D, which will
sume prior knowledge of the climatological mean and of thebe relaxed here.
climatological covariance of imbalance. This statistical in- The Kalman filter can be formulated as a minimisation
formation may be available through historical observationalproblem of the following cost function (e.¢calnay, 2002
data or through free running simulations. We will use the Simon 2006 with a given backgrounds and associated er-
weak constraint in VLKF on imbalance to drive the analysis ror forecast covariander as

towards balance, inhibiting excessive unphysical unbalanced 1
fast energy. J(z) = > z— 20" Ptz —zp)
The filter described iottwald et al(2011) andMitchell 1
and Gottwald(2012 was formulated for large ensemble +t3 (Hz — yo)" Rg*(Hz — yo)
sizes, ensuring invertibility of the forecast error covariance 1
(a situation not satisfied for data assimilation in operational + > (hz — acim)” R\,_vl(hz — aclim) - 2)

numerical weather forecast centres). We recast the VLKF
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G. A. Gottwald: Controlling balance in an ensemble Kalman filter 419

The error covariance matriRy, is so far undetermined. Using the matrix identity (P~ + HT R-1H)"1 =P —

We will invoke below a constraint on the analysis error PHT (R+HPHT)"1HP (see for exampl&imon 2006 the
covariance, namely that the analysis error covariance proanalysis error covariance is recast in a form which does not
jected onto the subspace spanned by the pseudo-observatioimsolve the inverse of the forecast error covariaReas

equals the climatological covariandgjim. In anticipation of o

the analytical results below which reveal that such a con-Pa = [| -K H] Pr, (7)
straint cannot be imposed on the whalg,-dimensional _ _ _ _

unobserved subspace whilst simultaneously ensuring pOSf;}nd the Kalman gam.matnx can be rewritten in the computa-
tive definiteness oRy, but only on aDy, < Dy,-dimensional  tionally more convenient form

subspace of the unobserved subspace, we introduce here a B |

(so far undetermined) transformation matgy € RPw*Dw_ K =PiH (H PrH™ + R) ’ (®)

The transformation matrix satisfies, Sy =| 5, (but not
necessarilyS, SL =1p,). We will formulate the filter re-
stricted to this subspace and introduce the transforme
pseudo-observation operator

which involves only taking the inverse a¢f D, + Dw) x
éDo + ﬁw)) matrices rather than ofY x D) matrices.

We remark that one can explicitly separate the updates
according to the deviations from the observations and the

h=SsCh, pseudo-observations in the analysis and have

and the transformed error covariances za =zt — Ko [Hzf — yo] — Kw [ﬁ zf — flclim], 9)
R,! = SLR, Sy with

Acim = S% Aciim Sw. Ko = PaH"R;Y and Ky, = P.h" Ry

as well as the transformed climatological mean of theThjs shows that weighted by the error covariance of the

pseudo-observationgciim = Sy, acim- We now combine di-  weak constrainRy the analysis of the pseudo-observables
rect observations and pseudo-observations, and write the Coi driven towards their climatic mean. However, due to

function in the more compact form the generically global nature of the Kalman gain matrices
1 the inclusion of climatological information of the pseudo-
J@)=Z@z—-zn" Py Yz -z observables also affects the observed degrees of freedom.
12 T So far the error covariand®,, associated with the weak
+5 (I:|z - y) R! (I:|z — j:), (3)  constraint is undetermined. We will now determifiy

and thereby control the variance of the unresolved pseudo-
where we introduced combined observatignshe observa-  observableiz by requiring that the analysis error covari-

tion operato and the error covariance matikwith ance, projected onto the pseudo-observables, equals the cli-
matological covariance, i.e.
~_ (Yo Do+D,
r= <ﬁcnm) € RT, hPah” = Agiim. (10)
0= (':') e RDo+DwW)xD We rewrite the analysis error covariance (Bjjas
-1
—1 X X —_ (p-1 L pTH-1 A)
|5271 = (RO ,\0 ) c R(DO+DW)X(DO+DW)' Pa (P +h RW h ’ (11)

0 Ryt : . .
w where we introduced the analysis error covariaRcr a

The ana|ysis is given as the minimum of the cost function standard Kalman filter without any weak constraint which

J(z) and is readily calculated as only combines the forecast with direct observations

N B o1
za=zr - K|[Az - 3], (4) P=(Prt+H"RG'H) = —KoH] Pr. (12)
where the Kalman gain matrix is given by Upon using the Sherman-Morrison—Woodbury formula
R o (Pt + hT RN R = PhT(Ry + hPhT)™1 (see
K =P,H TR, (5) for exampleSimon 2006), the error covariance matrix for the

) . ) o pseudo-observablég, is found from the constraint (E40)
with the error covariance matrix of the analysis givenby g pe

Puc (Pr+ A7) © R = Agh — (RPAT) . @3
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420 G. A. Gottwald: Controlling balance in an ensemble Kalman filter

Expanding Eq.13) we obtain A new forecast is obtained by propagatifig with the non-
linear forecast model to the next observation time, where a
-1 -1 -1 . .
(Sf/ Ry SW) — (S\,TVAclim 3N> _ (S\th phT SW) . (14)  new analysis cycle will be started.
We will use here diagonal target matriokgim where the
This makes apparent the role of the transformation matrixdiagonal entries are set to the mean value of the diagonal en-
Sw. Sw e RPwxDw can be chosen such tHag, = ST Rw Sw, tries of_the full cIimati_c cpvariance: We found tha'F qtherwise
being an error covariance, is positive definite: the transfor-the variance constraint is not “switched on” sufficiently of-
mation matrixS, projects onto the subspace of the space oft€n to drive the dynamics to the meagim (due to a lack of
pseudo-observables which in a standard Kalman filter W0u|d5|mulitane0us'dlagonallsablllty ®clim .and hPh'; Cf; Ap-
experience an analysis error covariahgh” exceeding the pen_dlx A). This sugge_sts that 'Fhe variance constraint is a nu-
climatological covariancégim. All other Dy, — Dy, pseudo- merical tool to regula_rlse_the_fllter, with the_advantage _how-
observations are discarded in order to ensure a positive deffver that the regularisation is performed in a dynamically
nite and invertible error covariance matfy, < RDw<Du | conS|stent.way, performaqlthln the dgta assimilation pro-
Appendix A we provide an algorithm to compu&g. cedure using only dynamical quantities such as measured

We formulate the filter in the framework of ensemble imbalance.
Kalman filters (EnKF) Evensen2006 Hamill, 2006 where

an ensemble with members; 3 The modified Lorenz-96 model

Z =[z1. 22, .... 1] e R The Lorenz-96 modellorenz 1996 Lorenz and Emanugl

is propagated by the model dynamics according to the modejf998
2= F@), F2) = [f @, fG. s fla] e RO, T =Nl my2) Ty F = d (16)
with periodicx; = x4+ is a standard test bed for data assim-
ilation as it is computationally manageable but still incor-
orates crucial ingredients of real mid-latitude atmospheric
ows such as nonlinear energy conservation, advection, forc-
ing and linear damping. Recentligergemann and Reich
(20104 introduced a modification of the standard Lorenz-96
model by coupling it to a purely dispersive fast wave equa-
tion mimicking the influence of fast gravity waves on slow

Note thatP(r) is rank-deficient fok < D, which is the typ-  Rossby waves in a quasi-geostrophic regime. The modified
ical situation in numerical weather prediction whe¥es of | grenz system reads as

the order of 18 andk of the order of 100.
At the end of each analysis cycle an ensenabjés gener- Xj=A—-nxj_1(xjs1—xj—2) —xj + F

The forecast ensemble is split into its méamnd ensemble
deviation matrixZ;. The ensemble deviation matré can

be used to provide a Monte Carlo estimate for the ensembl
forecast covariance matrix via

1
Pr(t) = mz/(r) [Z/®0)]" e RP*D.

ated which mus_t b.e consistent with the analysis error covari- + 7 (xj_lth _ xj—Zhj—l) (17)
anceP,, and satisfies o )
e%hj=—hj+a®(hj_1 — 2hj + hji1) + x;. (18)
Paz —_7 [z.]"
a— —1al%al - The fast wave part (EdL8) is purely dispersive; if the dis-

sipation and the forcing in the slow equation (Eql17) is

In previous workGottwald et al(2011) andMitchell and ignored the system conserves the total energy

Gottwald (2012 used the ensemble transform Kalman filter

(ETKF) (Bishop et al,2003; Tippett et al, 2003 Wang et al, 7 d n—1 )

2004, which seeks a transformatidhe R“** such that the  H =3 X x2+ ?h% + h3

analysis deviation ensembk, is given as a deterministic =1 "

perturbat_|on of the forecgst Qnsemme via Z;=Z;T. In Jr0[2(,11,“ _ h(,'_1)2 — 2xjh;) (19)
order to incorporate localisation needed for small ensemble

sizes easily, we will implement for our VLKF here an ap- with 0 <5 < 1. The modified Lorenz-96 system (E43-18)
proximate square root filter (DEnKF) proposed3gkovand  contains an approximate slow manifold given by

Oke (2008 where the analysis deviations are determined ac-

cording to xj=hj—a®(hj-1—2hj +hji1), (20)
2 — 1KH 7/ 15 which is obtained by formally setting=0 in Eqg. (8).
a=— \' "5 f: (15) Higher order balance relations could be derived by employ-

ing asymptotic theory.
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0 10 20 30 40

Fig. 1. Typical balanced field¢x;} (blue) and{h;} (red) for the
modified slow-fast Lorenz-96 model (Eds7—18).
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Fig. 2. Temporal evolution of the imbaland&for initially balanced
fields of the modified slow-fast Lorenz-96 model (Ej$-18).

We set the number of degrees of freedom de 40
and F =8 for the forcing. We consider here weak cou-
pling with n = 0.1, implying sufficiently nonlinear behaviour
of the slowx variables. The “Rossby number” is set to
£=0.0025 and the “Burgers number” is set ¢8=0.25.

In Fig. 1 we show typical initially balanced fields. Note
that the balance relation (EQ0) implies that the bal-
anced field {#;}=(h1, h2, ..., hqg) is smoother than
{x;}=(x1, x1, ..., xq) (h is obtained fronx via the applica-

tion of an inverse Helmholtz operator). Note that this is dif-

0.1
0.08r I ‘ ]
kil aE l ] (b i A |48 | (X A "‘-'
J )| M AT A | l { KT I (L Pl LT
IR I I il
0.06 " ? i ‘ |
«Q
0.047 ——only {z;} observed
—o—all variables observed
0.02

Fig. 3. ImbalanceB of the analysis as a function of analysis cycles
for ETKF with 1000 ensemble members and an observation inter-
val of A7gps=2 h and observational noise error variats=0.84,
without covariance inflation and localisation. Results are shown for
the case when all variablgs; }, {4 ;} and{fzj} of the modified slow-
fast Lorenz-96 model (Eq4.7-18) are observed (blue) and for the
case of a spatially sparse observations when pnly are observed
(red).

(22)

for initially balanced fields with a small value ef=0.0025.

The figure clearly illustrates that balance is approximately
preserved by the dynamics, provided the timescale separa-
tion is sufficiently large, i.ee sufficiently small. This justi-

fies the terminology of Eq2Q) defining aslow manifold as

the initially generated imbalance does not interact with the
slow variables on long timescales. The situation is very dif-
ferent when the dynamics is interrupted by data assimilation
cycles where the data assimilation procedure introduces im-
balance. IrCohn et al(1998, Lorenc(20033, Mitchell et al.
(2002, Houtekamer and Mitchel2005, Oke et al.(2007),
Kepert(2009 andGreybush et ali2011) the imbalance was
associated with the procedure of covariance localisation. In
Fig. 3we show that ensemble filters can generate unbalanced
analyses in sparse observational grids due to the intermit-
tent discontinuous analyses updates, even without localisa-
tion. We present results for an ETKF with a large ensemble

ferent to the situation in realistic atmospheric models wheref 1000 members where only the sldw;} variables are ob-

the fast variables are small scale and rapidly oscillate aroun

the slow manifold.
We introduce the imbalance opera®mwhich acts onz
with z; = (x;, hj, hj) as

(Bz); =x; —hj +a®(hj_1 — 2hj + hj41), (21)

which according to Eq.20) is zero to leading order if ini-
tially so. Figure2 shows the temporal evolution of the site-
averaged imbalance

www.nonlin-processes-geophys.net/21/417/2014/

§erved, and compare it to the case when all variaples

{hj} and{hj} are observed. Whereas in the fully observed
case the imbalancg exhibits the actual physical imbalance
(cf. Fig. 2), increased imbalance is clearly seen in the sparser
observational grid. We remark that this is not a finite size ef-
fect and cannot be mitigated by larger ensembles (we tested
ensemble sizes of 3000), consistent with results for 3D-VAR
by Bloom et al.(1996. We remark that for smaller observa-
tional noise withR,=0.21 the imbalance exhibits the same
mean values as in Fi@ with R, =0.84. In the next section

Nonlin. Processes Geophys., 2142672014



422 G. A. Gottwald: Controlling balance in an ensemble Kalman filter

we explore how this spurious imbalance can be controlled by 0.5
using the VLKF framework established in Sezt.

O,
4 Numerical results —0.55 pettooe

We now present results from numerical data assimilation cy-
cles of Egs. 17)—(18). We consider a sparse observational
grid in which only every second slof,;} variable is ob-
served, the variableg:;} and {hj} are not observed. We
useD = 3d =3 x 40, and therefore in the notation of Sezt.
we haveD,=20. We observe the system in equidistant ob-

logBB

-1t

servation intervalsirops ranging from 1 to 6.5h, adopting 0 5000 10000 15000
the timescales suggested by the standard Lorenz-96 sys- ‘ t

tem (Eq.16), i.e.r = 1/120 roughly corresponds to 1 hour 1.4} [S—EnKF

(see for exampléorenz and Emanuel998. Observations :BEII?IE‘FB

are contaminated by Gaussian noise, with error variance 12r VLKF-h

Ro = (0.2 clim)?120=0.84l 20 whereoxz’Clim =13.50 is the 1} [==IAU

climatic variance of{x;}. We perform 4000 analysis cycles

after a spin-up period of 1000 analysis cycles. All simula- q 08

tions are initialised with balanced data using E2Q)( To sl

generate the observations and to propagate forward the fore-

cast model (Eqsl7-18) we employ an implicit midpoint rule 041

with a time step of d=0.0025 (see, for examplegeimkuhler 0.2¢ g

and Reich2005. [ —— S —
Besides the variance limiting Kalman filter VLKB- 0 2 3 4 5 6

where we impose a climatic constraint on the imbalaBge Atops

we also employ a variance limiting Kalman filter VLKi-

where we impose a climatic constraint on the unobserved:ig' 4.Top panel: imbalancB of the analysis as a function of anal-
ysis cycles forAt,ps=5.5h in alog plot. In order of increasing val-

fast Yariableth}. Both VLKF__B and VLKF.'h havei,z(i)n the ues of 3 are VLKF-B (magenta open circles), IAU (black crosses)
notation of Sect2, Dy =40. Withz =(x, h, h) € R*, for v KF-j (cyan squares), DEnKF (blue diamonds) and EnKF (red

VLKF-B the pseudo-observation operator R'2° — R0 ¢rosses). Bottom panel: temporally averaged imbaldfigeof the
is analysis as a function of the observation intera},s

h = (B0a4o),

with B € R40*80 defined in Eq. 21), and for VLKF+ the et al.(1996 andPolavarapu et a(2004, where the analysis

pseudo-observation operator is increments are calculated by a DEnKF.

h = (020040l 40) AII f_ilter implementations use 1Q ensgmble members,
' which is smaller than the attractor dimension of the system

The climatic mean and variances df;} and those (EQs.17-18). We employ covariance inflation whereby the
of the imbalance{(Bz);} were estimated through long- prior forecast error covariance is increased by an inflation
time simulations of the full modified Lorenz-96 system factors (Anderson and Andersof999. Since theh;} vari-

(Egs. 17-18) with balanced initial data a8z=0 and ablesare notdamped inthe modified Lorenz systemX8).
=8.4%x 104, and ih=-0.01 andgﬁ i =224.35, inflation of the unobservedr;} variables would in gen-

eral lead to an increasing growth in the associated forecast
& covariance. Inflation is therefore applied at each time step
VLKF-B, and acim=—0.01 and Acim =0 . 140 for — qpjy 1o the{x;} components of the ensembles for DEnKF,
VLKF-, respectively. We note that both the climatic covari- EnKF and IAU, but to all components of the ensemble for
ance ofBz and ofh are concentrated near the diagonal. VLKF-B and VLKF- which explicitly constrain. This was
For comparison with our implementations of VLKFand ~ found to be advantageous for all respective filters. Results
VLKF-/ we will employ a suite of ensemble filters. In partic- are obtained for a wide range of inflation factors and only
ular, we will use the EnKF with perturbed observations as inthe optimal result for each particular formulation of the fil-
Burgers et al(1998 and the approximate square root filter ter is reported here. We have optimised over 1000 equally
DENnKF as inSakov and Ok€2008. Furthermore, we im-  spaced values dfe (1, 1.16). The small ensemble size cho-
plement an incremental analysis update (IAU) a8ioom sen here requires localisation. We employ the localisation

2
O'Bz,clim
respectively. We seticiim =0 and Aciim =03, giml40 for

Nonlin. Processes Geophys., 21, 41426 2014 www.nonlin-processes-geophys.net/21/417/2014/
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0.4r

——EnKF

——EnKF
——DEnKF ——DEnKF
0.35} —O—VLKF—B 0.8k ——VLKF-B
VLKF-h ’ VLKF-h
——IAU —_
0.3f IAU
8
W 0.25¢
0.2}
0.15;
1 . . !
0 2 3 A 4 5 6 0 2‘ é 1‘1 5‘ .
tobs
Atobs

Fig. 5. Rms error of the analysis as a function of the observation

interval Arops (in hours) for the slow variables ). Fig. 6. Rms error of the analysis as a function of the observation

interval Afops (in hours) for the unobserved height variabjés}.

method along the line ofloutekamer and Mitchel{1998
2001 and Hamill et al. (2001) whereby the forecast error
covarianceP; is Schur-multiplied with a localisation matrix
Cioc- We use the compactly supported localisation function
introduced byGaspari and Cohi1999 where correlations 1

A E= |{(——
with distances larger tharpg: are set to 0. We set the local- N Dg
isation radius toc = 8 for all filters.

In Flg 4 we present results of the amount of imbalance between the trutl; and the ensemble meag, whereN is
as measured by the imbalanBgr) and by the temporally  the number of analysis cycles afg; denotes the number of

We now investigate rms error statistics. We consider the
site-averaged rms error of variabkes

N
Y Za(n Atob — 2 (n Atop|Z)  (23)
n=1

averaged imbalance variables involved. We introduce the norfal|% =a’ Gato
N investigate the error over alk;} variablest, usingG =4;;
1 for 1 <i <40 and the error of the fagh ;} variables;, us-
B) = =Y BnAtopy, A== , J h =
(B) N ngl (n Afobs) ing G=4¢;; for 41<i < 80. Figure5 showsé&, for our suite

of filters. DEnKF, IAU and our VLKFB and VLKF+ ex-
accrued during the data assimilation procedure for our suitéibit very similar rms errors, with values much smaller than
of filters. EnKF and DEnKF generate a significant amount ofthe observational noise with, =+/0.84=0.91. EnKF pro-
unphysical imbalance, with values much larger than those otiuces consistently worse rms errors, which again may be due
the actual balanced toy model witB) ~ 0.018 (cf. Fig.2). to sampling errors stemming from the randomly perturbed
The increased imbalance in EnKF may be due to samplingpbservations.
errors introduced through the perturbed observations. Given Figure6 shows that the correct balance statistics of VLKF-
the particular nature of imbalance present in the toy modelB manifests itself in superior rms errors for the unobserved
(Egs. 17-18), this may not be an issue in realistic atmo- fast height field{;} when compared to filters which do not
spheric models. The IAU implementation strongly reducesincorporate a balance constraint. IAU and VLH#Fexhibit
imbalance, albeit to levels significantly larger than those ex-comparable rms error statistics for the height field. Further-
pected from the actual dynamics. Our VLKFfilter is able  more, it is seen that constraining the covariancefzgﬂ, as
to constrain imbalance very close to the the actual physicatione in VLKF+, also generates comparably good rms errors
imbalance. Note that although the pseudo-observations usefdr the height field. The variations of the error in the height
in VLKF- B were for the imbalance of each varialide driv- field &, with the observation intervalzops mirror exactly the
ing the dynamics toward3z =0, the analysis reproduces dy- imbalance shown in Figt.
namically realistic values of the integrated measure of imbal- We found that EnKF, DEnKF and IAU exhibit instances
ance(B). VLKF-/ also achieves a pronounced reduction in of catastrophic filter divergence whereby the forecast model
imbalance, but to larger values than the IAU implementation,develops numerical instabilitie§pttwald and Majda2013.
in particular for larger observation intervalsrops Surpris-  Instances of this type of filter divergence were not observed
ingly, for filters which only constrain the climatic variance in the variance constraining filters VLKB-and VLKF+:.
of the height variablés ;}, and do not impose any explicit
constraints on the imbalance, ile= (040l 40040), one also
observes a significant reduction in imbalance (not shown).
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5 Conclusions Matrices S,y satisfying Eq. Al) can be determined pro-
vided A¢im and hPh” are simultaneously diagonalisable.

We have presented here an implementation of an ensembl@/e remark that Eq.A1) can be readily converted into
filter which explicitly limits the amount of imbalanagithin

the data assimilation procedure. We were able to produce balﬁW =Py, [lsh _ Aclim]
anced analyses by incorporating statistical information such

as mean and variance of imbalance, available through long- Simultaneous diagonalisation Bkjim andhPh? can be
time integration or historical data, as pseudo-observationschecked either by looking at the null space of the commu-
This procedure not only successfully constraints imbalanc ator C=AgimhPh? — hPh” Agim, or by comparing the

to its climatic values, but also produces very good filter

f . ¢ £ the f b Cieigenspaces of the respective matrices directly. We note that
\F/)aerri;)l;:ggnce In terms of rms errors of the fast unobserveqy prescribe a diagonal target covariankgim =1, si-

multaneous diagonalisation is automatically asserted. Let the

_ We prese_:nted a comparison_between a filte_r which eXp”C'transformation matrix onto the subspace in whichm and
itly constraints the amount of imbalance, coined VLIBE- hPh’ are simultaneously diagonalisableﬁzl% € RDwx Dug

a filter which constraints the statistics of the fast variablesWith D <D
. . - . Wo = ~Yw-

but not.the imbalance, coined VLKE-and standard imple- ConsiderAimo=MZ AgimMo and Po=MZT hPh Mo,
mentations of Er)KF, 'DEnKF and !AU. It was found t.hat our 4 simultaneously diagonalise by writing (wlog),
balance controlling filter VLKF5 is able to constrain the
amount of imbalance to lie within the physically observed Agjim o = Sa AcimoSh = Sa Sk,
limits. Besides improved balance of the analyses this also
implied very good error statistics for the unobserved heightwith Sa :SAA%- _
field. We tested our method against the widely used IAU im- clim 0
plementation and found that it generates less unphysical im|50 _ g;l PoS 7,
balance and has very similar rms error statistics for the ob-
served and the unobserved variables. we transform with an orthogonal transformatigs

The variance constraint we employ requires the determi- .
nation of the overestimating subspace — the eigenspace iRy = Sp|505,§.
which Pr experiences covariances above the climatological _
— which was achieved in this work by singular vector de- IntroducingQ =Sa Sp we may write
composition. The extra computational cost implied has to T
be weighed against the cost of an additional application oftcimo = QQ",
the forecast model involved in IAU or of fast Fourier trans- Po = QE,OQT.
forms when using digital filters, as well as whether the supe-
rior performance of VLKFB in generating less unphysical
imbalance is worth it.

1.
Aclim.

Introducing

Using the diagonal matricdsand Py, associated With\ cjim

and hPh, respectively, one can now readily check for

overestimation ofRy. Transforming into the subspace in

Appendix A which Acim and hPh” are both diagonal with the same
eigenspaces, we obtain

Construction of the transformation matrix Sy n A

Ry = Q"MIR,MoQ =1 — P ™,

We present here an algorithm of how to construct the trans-

formation matrixSy. This matrix projects into the subspace andR,, can be calculated directly by inverting the diagonal

of those pseudo-observable subspaces which in a standagl ;

Kalman fllter would. produce an anaIyS|s. Whosg analy5|§ er- V(Ne have now determined a transformati@h M7 which

ror covariance matrix exceeds the prescribed (climatological) . ) ) T 0

error covariancé\gjim. We need to find, such that Eq.14) S|multaneou:sly diagonalise&jim and hPh’. Transform-

produces a positive error covariance mafig. For conve-  ing rendersRy, € R?wo*Pw diagonal, but not necessarily

nience we recall Eq16): positive definite as required. HoweveR,, being diago-
-1 1 nal allows us to readily determine a transformation matrix

T -1 T T T -
R = Aci — hPh . Al A A
(S‘” WS”) <SW °"mSN) <SW SN) A1) Srede RPw*Pwo which projects onto theD,,-dimensional

Introducing Pn=SL,hPh’ Sy, Acim=S,AcimSy and  overestimating subspace in whid, is positive definite,
Rw =SL Ry Sw, we may rewrite this as with Dy < Dy,

This concludes our algorithm for how to compute
a positive definite invertible covariance matrlARW and

A A

Ryt = Agl — Pt

clim
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also provides an expression for the transformation matrixGauthier, P. and Thépaut, J. N.: Impact of the digital filter as a weak

Sye RDwxDw as constraint in the pre operational 4DVAR assimilation system of
Météo-France, Mon. Weather Rev., 117, 1225-1254, 2001.
Sw = SedQ’ Mg. Gottwald, G. A. and Majda, A. J.: A mechanism for catas-

trophic filter divergence in data assimilation for sparse ob-

We note that one may define formally an effective pseudo-  seryation networks, Nonlin. Processes Geophys., 20, 705-712,

observation operatdr e RPw*Pw doi:10.5194/npg-20-705-2013013.
o TorT Gottwald, G. A., Mitchell, L., and Reich, S.: Controlling overes-
h = SedQ" Mg h. timation of error covariance in ensemble Kalman filters with

sparse observations: A variance limiting Kalman filter, Mon.
Weather Rev., 139, 2650-2667, 2011.
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