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Spiral wave drift induced by stimulating wave trains
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We investigate the drift of a spiral wave core in

a homogeneous excitable medium under the

influence of a periodic stimulation by wave trains close to the core. Two important results were
found. First, as opposed to existing theories of spiral wave drift, we observe drift induced by wave
trains with periods larger than the period of the freely rotating spiral wave. Second, when
investigating the drift of meandering spirals we found that the property of meandering of spirals is
not robust against periodic stimulations. Simple phenomenological arguments are provided to

explain these observations. @001 American Institu

Rotating vortices in cardiac muscle induce numerous car-
diac disturbances. The most severe, fibrillation, results in
chaotic contractions[see the Focus Issue “Fibrillation in
Normal Ventricular Myocardium”in  Chaos(1998]. Ven-
tricular fibrillation induces clinical death in ~1 min. Fi-
brillation can be arrested by a strong electric discharge
called defibrillation, which kills all propagating waves in
myocardium, albeit with undesirable side effects. An al-
ternative approach consists in forcing rotating vortices to
drift and to annihilate at the boundaries of the excitable
tissue. This can be done clinically with trains of electric
pulses. In this work, we investigate this process with the
help of a simplified mathematical model. Previous works
had found that the rotating wave cannot drift, unless
some restricting conditions are imposed on(i) the fre-
guency of the stimulating fronts and on(ii) the excitabil-
ity of the medium, imposing important clinical limita-
tions. We show here that these two conditions can be
(partially ) relaxed. We give numerical evidence, and
develop a phenomenological model to support our
conclusions.

I. INTRODUCTION

Many chemical and biological systems exhibit excitabil-
ity. In two-dimensional systems excitable media typically
give rise to spiral waves.® The study of spiral waves is
particularly important from a medical point of view as they

are believed to be responsible for pathological arrhythmias

te of Physic§DOI: 10.1063/1.1395624

firmly, the heart writhes and quivers. The circulation is no
longer maintained and death can result if the heart is not
defibrillated. Immense research goes into studying defibrilla-
tion, which is the medical treatment to stop lethal fibrilla-
tions of the heart. The most widely used method is to apply
a high-voltage transthoracic electric shagksually about 5

kV, 20 A for a duration of 2—5 msto force the heart back to

its resting state so that the pacemaker, the sinoatrial node,
may start again in a controlled fashion. Although successful,
this method is very damaging to the heart tissue, so there is a
need to look for different, less harmful methods. One prom-
ising approach is an implantable device of a new type which
detects arrhythmias similarly to a standard implantable
defibrillator, but instead of sending a strong electric shock, it
shoots fronts towards a spiral wave to move its center of
rotation. The wave train may successively annihilate the spi-
ral wave arms, and penetrate to the core where the pulses can
now directly interact with the spiral wave tip.

Spiral wave drift, induced by periodic wave trains, has
been observed in excitable metand has been theoretically
described~® The two existing theories for spiral wave drift
induced by periodic wave trains focus on two extreme areas
in the parameter space in terms of the density of the spiral.
The densitys of a spiral can be defined as the ratio of the
width of the spiral wave arm and the wavelength of the spiral
wave. In other words, the density is a measure of the ratio of
the space already occupied by the spiral to the space that
would still be available for excitations. No theoretical analy-
sis has been done for the intermediate range.

We briefly recall here the essential ideas put forward in

of the heart. A dangerous class of arrhythmias are the reenhese papers.

trant arrhythmias, in which the same wave of excitation re-

In the extremely sparse case it is assumed that after ev-

peatedly reinvades the same piece of tissue; these reentrafi/ collision of a stimulating pulse with the spiral wave tip,
arrhythmias are high frequency, as the period of the reentranhe hereby created broken end will immediately start curling
wave is less than the normal period of the heartbeat, andnd the tip will move on a circle whose radius is the one of

underly atrial flutter and monomorphic ventricular tachycar-

a freely rotating spiral wave. The resulting drift will be a

dia. If reentrant waves break down, due to their intrinsiccycloid consisting of the originally freely rotating spiral. The
instability, or the effects of anisotropy and the geometry ofexplicit formulas for the drift velocities in thex- and
the heart, spatio-temporal irregularity in the pattern of acti-y-components(c; and cq ) of the total drift velocity

X y

vation produces a dangerous stimulation, in which differen

ferent times. Global coordination of the contraction of the
heart is lost, and, instead of pumping rhythmically and
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parts of the same chamber of the heart are activated at dif-

Cq) read
B R(coq wT;)—1)
ST,

Rsin(wT,)
Cq = —T.
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€y

X y

© 2001 American Institute of Physics

Downloaded 26 May 2009 to 129.78.72.28. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



488 Chaos, Vol. 11, No. 3, 2001 Gottwald, Pumir, and Krinsky

wherew is the frequency of the spiral wave and the collision Drift along a straight line was previously observed and
time T is implicitly given by studied in an inhomogeneous mediifhor under a periodic
. modulation of the properties of the mediusee for example

Cr(Te= Ty =Rsin(wTo), @ Refs. 9—-11 In many cases drift along a straight line is not
where T is the rotation period of a freely rotating spiral generic, but instead only occurs for one value of a control
wave andT; is the stimulation period by which wave trains parameter which leads to a resonance of the forcing fre-
traveling with velocity c; are emitted towards the spiral. quency and the spiral wave peridd. This is very different
Note that a spiral may actually drift towards the periodicfor stimulation with wave trains which we will discuss here
wave train, as can be seen from Ef). where the drift along a straight line is the generic case.

In the extremely dense case it is assumed that the excit- In Sec. Il we introduce the model under investigation
ability is so large that one may neglect curvature effectsand the numerical methods used. In Sec. Il we present our
Here one has to take into account recovery periods due to thresult that nonzero drift velocities can actually be obtained
inhibitor during which the broken end moves upwards withfor larger stimulation periods. In Sec. IV we provide a new
the front velocityc; before it can curl again to meet the next general approach to combine the two classical theories. In
planar pulse. This leads to Sec. V we investigate the seemingly paradoxical result of

nonzero drift velocities, and a phenomenological formula de-
3) scribing drift will be given. In Sec. VI we will study the drift
of meandering spirals under the influence of a stimulation
close to the core. The results and their clinical implications
are discussed in Sec. VII.

T¢
c=c¢| 1— T
S

Note that, contrary to Eq3) for dense spirals, which de-
pends only onTg, Eq. (1) requires the knowledge of one
more parameter, i.e., the radius of the cBr&he velocity of
the spiral wave tig, is given then as Z2R/T,). Il. MODEL AND NUMERICAL METHODS

Both theories state that drift is not possible for wave  We briefly present here the model studied, and the nu-
trains with a stimulation period; larger than the period of merical methods used in this work.
the spiral waveT.

This result is based on the following general collision
argument. Contrary to many other waves, waves in an excit- We investigate a two-component two-dimensional excit-
able medium annihilate each other when colliding. If theable medium with an activatar and a nondiffusive inhibitor
period T of a spiral is smaller than the period of the wave v of the following form:
train T;, the core will never be influenced by the stimulation _
when the location of the stimulation is far from the core. The ~ Ut=AUT Ul =W (u=(v=b)/a),
spiral wave arms shield the core. For periods smaller Than vi=€e(U—v), (4)
the spiral wave arms and the wave train will annihilate each

other until the wave train will have penetrated to the core'mmduced by Barkley” Here A represents the two-

where it will induce drift. dimensional Laplacian, ana andb and e measure the ex-

The maximal stimulation periofl, was considered to be citability and refractoriness. As a general rule, increasing of

a universal law and, from a clinical point of view, imposesa and/or decreas!ng of will move the parameter range to-'

limitations of this approach for an implantable device, sincewfards denser splrals._ we an_alyze a_homogeneﬁ(]_)ijss medium

it requires damaging high frequencies. Wltho%’gefects to which a drifting spiral may p and
In this work we demonstrate that, contrary to classical

unpin:
belief, smaller stimulation frequencies may be used to induce

A. Theoretical model

We study the emission of planar wave trains onto a spiral
wave as depicted in Fig. 1. Here we look at stimulations

drift in an excitable medium. The reason for the differing | o th d the drift velocit funci
observation between the classical result and our result aé:_ose 0 the core and measure the drift velocily as a function

pears to be twofold. First, we leave the extreme regions ir?f the stimulation period’s .
the density parameter range and instead investigate moder- .
ately sparse spirals. Second, we look at stimulations close to’ Numerical method
the core whereas, in previous theories, the stimulation source For the integration scheme we used the method de-
is assumed to be located far from the core. For stimulatiorscribed by Barkley? Most of the numerical simulations were
close to the core it was well known that a single stimulatingperformed in a box of length =30, grid-sizedx=0.2, and
pulse may displace the spiral wave core. But constant nortime steppingdt=0.1.
zero drift velocities forT;/Ts>1 have never been investi- The initial condition was constructed by combining a
gated and observed before. The apparent contradiction witstationary traveling front, and a steadily rotating spiral wave,
the collision argument can be explained by the fact that thas seen in Fig. 1. One difficulty in preparing the initial con-
spiral increasesits effective period by interacting with the dition is to avoid multiple broken ends, caused by the inter-
wave train, so the new periof} satisfiesT;/T;<1. action of the wave trains with the inhibitor field, This
Interestingly, we also find that meandering of spirals isleads to very long transients and to a waste of computer
not robust against periodic stimulations and that meanderingesources. This problem is very severe when the spiral is
spirals exhibit drift in the same way as nonmeanderingdense; for this reason, we restricted ourselves to moderately
spirals. sparse spirals. Also, we artificially set initially the inhibitor
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FIG. 1. Dynamics of a spiral wavg induced by a wave trailV, ,. The dense B .
activatoru is shown. The time increases from left to rigt#) A planar front é 0.00 - * C . :
W, is sent towards a spiral wave ar®n (b) Shortly after the collision(c) ) * R yx :
Broken frontW; is created(d) Broken endW, evolves into a new spiral o * a X><//
wave arm.(e) The next puls&V, of the stimulating wave train is launched. * R A, e .
The wave pattern is similar t@), but the spiral wave appears shifted. 8 //A Aa,, aaty
T 0021 A L
& x 7 et
& A :
field of the spiral wave to zero where the stimulating front is /// sparse, R=3 E
about to run into the rotating wave. We have checked that 004+ 0e o o
this somewhaad hocway of preparing the solution does not ) o . / '
affect the value of the drift velocity, by comparing the results (b) Period T =T,/ T,
obtained for different preparations of the initial conditions.
. . e 0.04
In the absence of external stimulation, the artificially trun-
cated initial condition evolves into a freely rotating spiral 5,
with the same spiral wave core. o
Due to the limited size of the computational domain, the 2 0.02 +
core of the spiral wave is very quickly pushed away from the 3
numerical box, before a steady regime can be observed. This.%
difficulty can be avoided by adding a drift term: Cq, Ux > 0.00 L
Pt . 3
~Cq Uy, ~CqUxCqly to the left-hand sides of Eq#4). H :
This enables us to investigate the long-time behavior of the ® sparse, R=3 ~~__ X SO
spiral wave drift. The drift velocitiesdXy were determined 002 , , :
during the numerical integration, by taking the ratio between 04 0.6 0.8 1.0
the observed displacement and the time it takes between twc ) Period T = Tf/ T,

consecutive minima of thg-coordinate of the trajectory of

the tip. FIG. 2. Drift velocities.(a) total drift velocity ¢y, (b) x-component,, (c)
In the problem we are considering, the frequency of they-componentcdy versusT'=T;/T,. The two continuous lines show the

stimulation must be fixed in the laboratory frame. Because #heoretical limits for sparse spirals, Ed.) (here arbitrarily choseR=3),

; ; ; nd dense spirals, Eq3). The crosses, stars, and triangles are numerical
moving frame is used for numerical purposes, one has tQimulations A, B, and C. The density of the spiral increases from Ato C. To

properly take the Doppler shift into account. This is done inthe right of the vertical line af’ = 1 both theoretical limits predict that there
practice by adjusting the stimulation period in the movingis no drift at all. Our numerical results show a nonzero drift in this region.
reference frameT; ,,m, SO as to maintain the wavelength of Parameters arfe=0.005,0=0.02,6=0.02,L =30, a_nda:0.29 for case A,.
the stimulating pulse constant. Note that the stimulatiorﬁzo'g’_2 for case B, and=0.4 for case C. Case A is almost a sparse spiral
. . ehaving according tdl), case B is a moderately sparse spiral, and the
wave comes from the lower side of the numerical ltsee parameters of case C support a meandering spiral. The coincidence of the
Fig. 1). y-components of the drift velocity ifc) for cases B and C is accidental.
We checked that the result was very robust with respect
to the precise choice of the parameters.
We used Neumann no flux boundary conditions. It is) RESULTS
well known that in this case the wave may exhibit drift due
to its interaction with its mirror imagésee, for example, Ref. Figures 2a)—2(c) shows the dependence of the drift ve-
18 for resonant drijt It has been checked by comparing thelocity on the nondimensionalized stimulation peridd
numerical results for different initial positions of the spiral =T;/Ts. Itis clearly seen that nonzero drift velocities exist
core that the drift is not due to this boundary effect. for T'=1, contrary to the existing theories. We give ex-
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FIG. 4. Sketch of a broken fro&/; at T=0. It evolves into a spiralV,
at T=T,. W, is the next wave train which collides with the spiral
atT=T,.

Rr

FIG. 3. Spiral wave tip movement during stationary dftfiick line). Su- ) » ) )
perimposed is the core of a freely rotating spittain line). Parameters are  nhonzero drift velocities fol ' =T;/T;=1 since the results in

the same as in case B in Fig. 2. Fig. 2 are depicted versus the spiral wave period of the freely
rotating spiralTs.

Studying the dependence of the drift velocity on the ini-
tial conditions in terms of position of the spiral wave tip on
the core of the freely rotating spiral, we found the plausible
result that the actual values of the drift velocities do not

epend on the initial conditions, but that the maximal
21 exhibiting nonzero drift velocities does depend on the
initial conditions. This is not surprising because the initial

osition of the spiral wave tip relative to the position of the

ave train determines how well the spiral wave is shielded.
The longer it takes for the first collision the madré tends to
the classical resulff’=1 with the important difference,

amples for sparse nonmeandering spif@ase A, moder-
ately sparse nonmeandering spiraase B, and moderately
sparse meandering spirdisase G.

Our numerical results face us with a paradox: on the on
hand, general collision arguments tell us that nonzero drif
velocities cannot be observed fdr/Ts=1; on the other
hand, we clearly observe nonzero drift velocities Tor' T
=1. The core of our argument to resolve the paradox is th
the trajectory of the spiral wave tip after the collision results
in an effectively larger spiral wave peridd . To understand
this we will look in _the foIIowing paragraph into the_ a_lctual though, that the drift velocity is nonzero.
dynam|c§ of the spiral wave trajecFory after the collision. We note that the numerical results for SmiEjl/T, be-

As Fig. 3 shows, there are mainly four phases for mod-

tel iral initial collisi h 1i come unreliable since the period of the wave trajnis not
cralely sparse spirais, an iniial colision p “a(sbas?. n big compared to the minimal period for the existence of
Fig. 3), a noncurling phase due to a strong “dense” interac-

. . X .~ 'wave trainsT* and the excitability is not homogeneous alon
tion of the broken front with the refractory tail of the spiral Y : J

he f i he f ill iggl h
(phase 2 in Fig. B then a transitory curling phagphase 3 in ;[nteerarcc:)tri]gnbm instead the fronts will be wiggly after the

Fig. 3 and a forth phase where the spiral wave tip eventually In Sec. V we will employ a more quantitative under-
has relaxed onto the core of a freely rotating spiilase 4 standing of the drift velocities, but first we briefly review the

in Fig. 3. lassical th
During the noncurling phase 2 the newly created brokenC assicat theory.

end apd the_ ne_xt wave train are almost .moving Withoutlv_ CLASSICAL THEORY REVISED
changing their distance due to the refractoriness and, hence,
the tip velocity isc;. The idea that spiral waves may drift as a result of an
Despite the transitory nature of phase 3 where the spirdnteraction with a wave train has been first proposed in two
has not yet relaxed on the stationary core, the numerics shoggminal paper$?> The two limiting cases of very dense
that its velocity has already reached the stationary velocitgpiral$ and very sparse spirdlgvere studied in detail.
Cs. This is the two-dimensional analog of the observation in  In the following we will present a simple but general
one dimension that arbitrary initial conditions very quickly view on the mechanism of drift which includes the extremely
assume the stationary velocity although their shape has néparse caseas well as the extremely dense c4suppose a
taken the stationary shape. This is due to the fact that thepiral and a planar front meet &t=0 (see Fig. 4to form a
velocity is determined by diffusion and hence only the fore-broken end/; [as in Fig. 1d)]. The wave train far from the
most part of the front does matter. It is this transitory phase 3ip will continue its movement with the velocity;, whereas
which has been neglected so far and which allows for nonthe tip will have its own individual path with typically a
zero drift velocities forT’>1 (in Ref. 5 only phase 4 has Velocity smaller thar;. At a later point in timeT . the wave
been considered, and in Ref. 4 only the noncurling phase front Wy will have traveled\;=c;T. and the spiral wave tip
has been considered under the assumption of equal growingill have traveled )\S=fg°vydt, where v, is the
and front velocities During phase 3 the tip moves on a y-component of the tip velocity during its drift. The two
quasi-circle with a radius larger than the radius of the freelywavesW,; andW, have the constant distande\ =cT;. If
rotating spiral, as can be seen in Fig. 3. This effectivelywe takeT. as the time of collision after which the spiral tip
introduces a larger spiral wave peridd>Ts to keep the of W; andW, meet to form another broken end, we obtain
velocity cg constant. This explains the seemingly paradoxicaAN =\;—\g (see Fig. 4 and, therefore,
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Te
Cfo:CfTC— fo Uy dt, (5)

and for the drift velocities
Jovydt \s T,

ch—T—C, —cf( ) (6)
Generally it is hard to determing , and to obtain analytical
evaluations of these formulas. But for extremely sparse anc
extremely dense spirals one can make assumptions about tt
form of v, , and the collision tim& ;. and obtain the previous
results(1), (2), or (3), respectively.

It is readily seen that Eq95) and (6) imply the ex-
tremely sparse cadd) and(2) if one assumes that the path
of the tip will be the one of a freely rotating spiral, i.e.,
assuming = — ¢ sin(wT), vy=C¢ cosT) and requiring for ()
the velocity of the spiral waves=c;.

In the extremely sparse case the underlying assumption:
are that the refractoriness of both spiral and wave train car
be neglected. In particular, there is no interaction of the front
and the spiral wave arm with the refractory tails of each
other, implying that the period of the wave trdinas well as
the spiral wave period g are big compared to the minimal
period of a wave traifl ;. Also interaction of the pulse
with the spiral wave core is neglected and, furthermore, the
core radiusk of the spiral wave is assumed to be sufficiently
large so that curvature effects can be neglected, or, in othe
words, the velocity of the spiral at the cotg=27R/Ty is
equal to the velocity of a planar wawg.

The general approactb) and (6) allows us as well to
recover Eq(3) for extremely dense spiral waves. For dense (p)
spirals we assumél.;=T; and neglect the drift in the
x-direction. This essentially means that the drift caused by'C: 5. (@ lllustration of the phenomenological modét Close-up of the

. . . . . ip motion on the circle CBS is a spiral wave arm moving along the core
the refractoriness of dense splrals 1S domlnatlng over thﬁ/ith radiusR. W is a stimulating wave trainS, is the spiral wave at the
curling and that the excitability is so high that the velocity of start of its travel time along the cor, is the same spiral wave arm at the
the spiral isc; . time of collision.

Equations(5) and (6) are general equations and imply
the simple cases of extremely sparse and dense spirals. But

as soon as the dynamics involves a more complicated stru%-ain ie.o=T"— 9. The displacement of the circles is de
y 1T —lc . -

ture, itis hard to f|_nd an analytmgl expression grandv,, termined by\. The total displacement during the time be-
based on some simple assumptions. Therefore, we employt\?veen two collisions is given bjFig. 5a)]
different phenomenological approach in the next section to 9 9

explain the nonzero drift velocities we observe for moder-

ately sparse spirals. D«=R(cogwe)—cogw®))+A siN(we), @)
Dy=R(sin(we) —sin(w¥))—\ cod we). (8
V. PHENOMENOLOGICAL MODEL The time between two collisiori. consists of the time of

éhe movement along the circle BC and along the straight line
AB. Since the tip displacement along AB is due to the stimu-
Igting front (phase 2 which propagate in thg-direction we
may write for the total collision time

We introduce here a phenomenological ansatz for th
drift velocities for moderately sparse spirals. In Figa)5ve
sketch the basic idea. We replace the actual trajectory of th
tip (continuous ling with an equivalent motioidashed ling
with the same initial and final coordinates A and C. The
redgced motion. consists of a linear movemen.t A_B and a TczT;—lcos(wcp). 9)
motion on the circle BC. Herey determines the initial po- Cs
sition of the tip on the core and the final position. The
dimensional “angle”¢ determines the position of the spiral Therefore, the drift velocities are given loy =D/T¢ and
wave at the time of collision relative to the incident wave cdy=Dy/TC, which reads as
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FIG. 6. Comparison of numerical resu(finty and the phenomenological
model (10) (lines). In (a)—(c) cases A—C from Fig. 1 are shown, respec-
tively. Parameters for the phenomenological model mre0.0 and ¢
=40.0 for case AA=7.4 and9=83.0 for case B, and=3.7 and 9
=57.0 for case C.

B R(cogwe)—cogw®))+\ sifwe)

Co” Ti— (Nepcod we) |
R(si . (10
3 (sinflwe)—sin(wd))—\ cogwe)
T T T (Mepcodwe)

The extremely sparse lim{il) is obtained for\ =9 =0.

Gottwald, Pumir, and Krinsky

different drift behavior due to the interaction of the stimulat-
ing wave fronts themselves. There we do not expect the
model (10) to be valid. Moreover, from a clinical point of
view the focus is on larg@’.

In the remainder we motivate the reduction of the tip
movement and the resulting formulé® and (10).

The reduced trajectory on the circle BC is motivated by
the observation that during phase 3, as mentioned earlier, the
tip moves with the velocitg. Therefore, the free parameter
6 allows us to map the real motion during phases 3 and 4
onto the circle. We denote the travel time of the spiral tip on
this circle from B to C byT; . As can be seen from Fig(%,

T is implicitly given by

c(Ti=TH=Rsin(w(T;—9))—Rsin(w?). (11
Note that the extremely sparse liniR) is recovered ford
=0 [see Eq(1)].

The displacement of the circle, i.e., the motion along the
straight line AB, is modeled by the second free parameter
The movement along the straight line AB corresponds to the
noncurling phase 2. During this noncurling phase the tip ve-
locity in the y-direction isc;, as mentioned earlier. The dis-
placement AB depends on the initial phase 1 and the non-
curling phase 2. We will lump these phases together into a
main drift. We assume that the movement of the tip after the
collision will, as a lowest-order approximation, follow the
initial line of the inhibitor since, as a general rule, a wave tip
will move into a region where it can do so. We assume that
the direction of the mean drift is given by the direction of the
inhibitor at the time of collision. Considering moderately
dense spirals, this direction is tangential to the core. From
Fig. 5a) it follows that thex-displacement during the mean
drift is \ sin(we) and they-displacement is- \ cos).

VI. DRIFT OF MEANDERING SPIRALS

Meandering naturally occurs if the density of a spiral
wave is increased. The core then does not move along one
circle with a well-defined radius, but instead moves along
petals whose centers are lined up on a large circle with radius
R, . With the petals one can associate a smaller radyjsas
shown in Fig. 7a). When increasing the density, first inwards
petals are observed and, with further increase of excitability,
outward petals. The onset of meandering has been studied in
Refs. 19 and 20.

Our main result is that a meandering spiral drifts like a
nonmeandering spiral, when periodically stimulated. Nu-
merical calculations demonstrated that meandering spirals
are exposed to the same drift mechanisms as nonmeandering
spirals. A meandering spiral, as shown in Fida)7 drifts
under influence of periodic stimulation rectilineaf¥ig.
7(b)]. Movement of a freely meandering spiral along a
straight line is well known and has been observed. But there,

Figure 6 shows a comparison of the numerically ob-the larger radiug, is only infinite for one special value of

tained drift velocities and our formuld0). For largeT’ the

the control parameter. In fact, this value of the control pa-

phenomenological model fits the numerical data very wellrameter separates the phases of inward and outward growing

As already mentioned in Sec. lll, we observe for snidlla

petals. The drift we observe here is different from this sce-
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2l ' ' ' ' ] turb this inherent periodicity of the spiral wave and impose
their own periodicity. This suppresses and transforms the
meandering and a steady drift will be established. Bafkley
11 . has identified the Euclidean symmetry group as being essen-
tial for the onset of meandering. The invariance under the
action of the Euclidean group, rotation, reflection, and trans-
lation leads to a reduction of the original system to a set of
12} _ five ordinary differential equations. In this system, the onset
of meandering is described by a Hopf bifurcation. The peri-
odic stimulation by wave trains does break the symmetry and

20 B

st 1 destroys the meandering.

oL l

i - . . - ., VIl DISCUSSION

@) We have investigated drift of spiral waves induced by a

ail T . ' ' . T . ' ] periodic wave train which is launched close to the core. The
surprising result of nonzero drift velocities for stimulating

sl i periods larger than the period of the freely rotating spiral has
been observed. We note that for stimulations far from the

ool i core the spiral wave arms shield the core and will prevent a
drift of the core, but once a drift has been induced by a

sl _ stimulation close to the core, this drift will be stationary. This
seems to contradict the conclusions of former wbtkie

16} - found that a transitory phase caused by an interaction of the
wave train with the refractory tail of the spiral wave is re-

1t . sponsible for this new phenomenon. Essentially this transi-
tory phase introduces a larger spiral wave period and hence

2 . allows for stimulating periods larger than the original spiral

h . . e, wave periodTs. A phenomenological model was established
(b) which quantitatively describes the drift velocities for moder-

ately sparse spirals. Initially meandering spirals were also
FIG. 7. Trajectories of the tip of a meandering spifal.Freely meandering  stimulated and we observed a steady drift along a straight
fp!ra' with two clear defined radifb) Same under the influence of a stimu- jiyq a5 i the nonmeandering cases. The stimulation by wave
ating periodic wave train coming from the lower boundary. Parameters are . . . L
those of case C in Fig. 2. trains does dominate the inherent periodic nature of mean-

dering spirals. We could again describe the drift with our

phenomenological formula.
nario and is robust in the sense that it does not depend on the The new result of nonzero drift for stimulation periods
particular values of the control parameters, but is instead &rger thanTg was mainly due to two separate factorg}, (
generic situation. we leave the parameter region of extreme densities ajd (

For meandering spirals, again we are faced with nonzerave stimulate close to the core. In the remainder we comment
drift velocities for stimulation periods larger thah, [see on these two issues and put them into a perspective from a
Figs. 2a)-2(c), case (. If T is taken to be the time between clinical point of view.
two consecutive points of equal phases of the freely mean- Considering stimulations close to the core is relevant
dering spiral, i.e..T is associated with the smaller radius from a cardiological point of view. Here typical wave veloci-
Rs, andR is taken to be the smaller of the two radii  ties are of the order 10 cm/s and typical time scale is of the
=Rg, formulas(9) and(10) are in good agreement with the order of 0.2 s, which implies a typical wavelength of 2 cm,
numerical simulatior{Fig. 6). which is not too small if compared with the heart size. In this
Free meandering itself is a strongly nonstationary pro-case obvious general collision arguments, as employed in the

cess where the spiral wave tip moves periodically into itsaforementioned classical theories, do not apply. Neverthe-
own refractory tail. On the smaller circle the excitability is less, we saw that for the case of extremely sparse spirals
high and the spiral curls. It will meet its own refractory tail there is no drift forT;>T also in the case where the source
and moves into an area with low excitability where it con- of stimulation is close to the cofease A in Figs. @a)—2(c)].
tinues to move on a large circle wifR_ until an inhibitor-  After one initial collision and the resulting displacement of
free hole opens and the wave tip can freely curl again with itshe core, the spiral wave arm develops and starts shielding
growing velocity. Hence, meandering is basically due to thehe core. For moderately sparse spirals, though, we do ob-
fact that the spiral wave periodically changes the excitabilityserve nonzero steady drift velocities fby>Ts. This brings
of the medium it moves through by its own inhibitor. Peri- us to the problem of the density of spirals.
odic stimulations such as the emission of wave trains drasti- The densityé of a spiral can be defined as the ratio of
cally change the excitability of the active medium and dis-the width of the spiral wave arm and the wavelength of the
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tating spirals, and 0 if no broken end at all is present. Topo-
logical charges add up, so two counter-rotating spirals with
N=1 andN=—1, respectively, result iN=0, which ex-
presses the fact that they are very likely to annihilate each
other (only for the case of equal rotation frequencies they
may coexist. If only one spiral wave is present with an
initial chargeN= +1 as depicted in Fig. 8, the sum of topo-
logical charges may be either 8,1, or 2 depending on the
four possibilities for the location of the boundaries. Nf
=0, complete annihilation is observed. M= +1, we are

\ able to induce spiral wave drift with stimulating wave trains
R as discussed in this article and force the spiral wave with
\§\ . \

N\ N=+1 out of the boundary. IN=+2, the stimulation has
*&\\\)\\\\i\\\\\\\x\w actually created an additional spiral wave with the same

.

b

_

_

sense of rotation, so fibrillation is enhanced.

The probabilityP, for one boundary being located on a
FIG. 8. Spiral wave and a stimulating frotitlack filled. The shaded area spiral wave arm or its refractory zone Br = )\/(L + )\)
depicts the space occupied by the spiral and its refractory tail. At the inter-__

section of the planar front and the spiral wave the topological charge of the - 0. Pr=1-4'is then the probability for an intersection of

resulting broken end is denoted. The dashed box shows a possible bounddfy€ boundary with fresh medium. .
of the medium. The success rate; is naturally defined as the sum of the

probability for complete annihilatiofN=0 and of the prob-

ability for possible induced drif= + 1. Simple counting of

sp|'ral wave. In other words, the'densny IS a measure of th‘f'opological charges for all four possibilities for the location
ratio of the space already occupied by the spiral to the SPaC the boundaries leads to

that would still be available for excitations. The density is
particularly important for defibrillation. It determines the ex- ~ Ps=(1—8)?+4. (A1)

citable gap, i.e., the probability of intersections of the stimu-, harticular, this implies thaP.>0.75 for all 6 and that for
Igtmg front W|_th the sp|.ral wave at the moment of stimula- spiral waves withs=0.5 the success rate is the worst.
tion. Hence it determines the number of newly created
broken fronts which eventually may evolve into new spiral
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