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ABSTRACT

The problem of an ensemble Kalman filter when only partial observations are available is considered. In
particular, the situation is investigated where the observational space consists of variables that are directly
observable with known observational error, and of variables of which only their climatic variance and mean
are given. To limit the variance of the latter poorly resolved variables a variance-limiting Kalman filter
(VLKF) is derived in a variational setting. TheVLKF for a simple linear toymodel is analyzed and its range of
optimal performance is determined. The VLKF is explored in an ensemble transform setting for the Lorenz-
96 system, and it is shown that incorporating the information of the variance of some unobservable variables
can improve the skill and also increase the stability of the data assimilation procedure.

1. Introduction

In data assimilation one seeks to find the best estima-
tion of the state of a dynamical system given a forecast
model with a possible model error and noisy observa-
tions at discrete observation intervals (Kalnay 2002).
This process is complicated on the one hand by the of-
ten chaotic nature of the underlying nonlinear dynamics
leading to an increase of the variance of the forecast, and
on the other hand by the fact that one often has only
partial information of the observables. In this paper we
address the latter issue. We consider situations whereby
noisy observations are available for some variables but
not for other unresolved variables. However, for the latter
we assume that some prior knowledge about their statis-
tical climatic behavior such as their variance and their
mean is available.
A particularly attractive framework for data assimila-

tion are ensembleKalman filters (e.g., seeEvensen 2006 ).
These straightforwardly implemented filters distinguish
themselves from other Kalman filters in that the spatially

and temporally varying background error covariance is
estimated from an ensemble of nonlinear forecasts. De-
spite the ease of implementation and the flow-dependent
estimation of the error covariance, ensemble Kalman
filters are subject to several errors and specific difficulties
[see Ehrendorfer (2007) for a recent review]. Besides the
problems of estimating model error, which is inherent
to all filters, and inconsistencies between the filter assump-
tions and reality such as non-Gaussianity which render
all Kalman filters suboptimal, ensemble-based Kalman fil-
ters have the specific problem of sampling errors due to an
insufficient size of the ensemble. These errors usually un-
derestimate the error covariances, which may ultimately
lead to filter divergence when the filter trusts its own fore-
cast and ignores the information given by the observations.
Several techniques have been developed to counter-

act the associated small spread of the ensemble. To deal
with errors in ensemble filters due to sampling errors we
mention two of the main algorithms: covariance in-
flation and localization. To avoid filter divergence due to
an underestimation of error covariances the concept of
covariance inflation was introduced whereby the prior
forecast error covariance is increased by an inflation
factor (Anderson and Anderson 1999). This is usually
done in a global fashion and involves careful and ex-
pensive tuning of the inflation factor; however, recently
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methods have been devised to adaptively estimate the
inflation factor from the innovation statistics (Anderson
2007, 2009; Li et al. 2009). Too small ensemble sizes also
lead to spurious correlations associated with remote
observations. To address this issue, the concept of local-
ization has been introduced (Houtekamer and Mitchell
1998, 2001; Hamill et al. 2001; Ott et al. 2004; Szunyogh
et al. 2005) whereby only spatially close observations are
used for the innovations.
To take into account the uncertainty in the model

representation we mention here isotropic model error
parameterization (Mitchell and Houtekamer 2000;
Houtekamer et al. 2005), stochastic parameterizations
(Buizza et al. 1999), and kinetic energy backscatter (Shutts
2005). A recent comparison between those methods is
given in Houtekamer et al. (2009), Charron et al. (2010),
and Hamill and Whitaker (2005). The problem of non-
Gaussianity is for example discussed in Pires et al. (2010)
and Bocquet et al. (2010).
Whereas the underestimation of error covariances

has received much attention, relatively little is done for
a possible overestimation of error covariances. Over-
estimation of covariance is a finite-ensemble size effect
that typically occurs in sparse observation networks
(e.g., see Liu et al. 2008; Whitaker et al. 2009). Un-
controlled growth of error covariances, which is not
tempered by available observations, may progressively
spoil the overall analysis. This effect is even exacerbated
when inflation is used; in regions where no observations
influence the analysis, inflation can lead to unrealisti-
cally large ensemble variances progressively degrading
the overall analysis (e.g., see Whitaker et al. 2004). This
is particularly problematic when inappropriate uniform
inflation is used. Moreover, it is well known that co-
variance localization can be a significant source of im-
blance in the analyzed fields (e.g., see Houtekamer and
Mitchell 2005; Kepert 2009; Houtekamer et al. 2009).
Localization artificially generates unwanted gravity wave
activity, which in poorly resolved spatial regionsmay lead
to an unrealistic overestimation of error covariances.
Being able to control this should help filter perfor-
mances considerably.
When assimilating current weather data in numerical

schemes for the troposphere, the main problem is un-
derestimation of error covariances rather than over-
estimation. This is due to the availability of radiosonde
data, which assures wide observational coverage. How-
ever, in the preradiosonde era there were severe data
voids, particularly in the Southern Hemisphere and in
vertical resolution sincemost observations were done on
the surface level in the Northern Hemisphere. There is
an increased interest in so-called climate reanalysis (e.g.,
see Bengtsson et al. 2007; Whitaker et al. 2004), which

has the challenge to deal with large unobserved regions.
Historical atmospheric observations are reanalyzed by
a fixed forecast scheme to provide a global homoge-
neous dataset covering troposphere and stratosphere for
very long periods. A remarkable effort is the inter-
national Twentieth Century Reanalysis Project (20CR;
Compo et al. 2011), which produced a global estimate of
the atmosphere for the entire twentieth century (1871 to
the present) using only synoptic surface pressure reports
and monthly sea surface temperature and sea ice dis-
tributions. Such a dataset could help to analyze climate
variations in the twentieth century or the multidecadal
variations in the behavior of the El Niño–Southern
Oscillation. An obstacle for reanalysis is the over-
estimation of error covariances if one chooses to employ
ensemble filters (Whitaker et al. 2004) where multipli-
cative covariance inflation is employed.
Overestimation of error covariances also occurs in

modern numerical weather forecast schemes for which
the upper lid of the vertical domain is constantly pushed
toward higher and higher levels to incorporate the me-
sosphere, with the aim to better resolve processes in the
polar stratosphere (e.g., see Polavarapu et al. 2005;
Sankey et al. 2007; Eckermann et al. 2009). The energy
spectrum in the mesosphere is, contrary to the tropo-
sphere, dominated by gravity waves. The high variability
associated with these waves causes very large error co-
variances in the mesosphere which can be 2 orders of
magnitude larger than at lower levels (Polavarapu et al.
2005), rendering the filter very sensitive to small un-
certainties in the forecast covariances. Being able to
control the variances of mesospheric gravity waves is
therefore a big challenge.
The question we address in this work is how can the

statistical information available for some data, which are
otherwise not observable, be effectively incorporated in
data assimilation to control the potentially high error
covariances associated with the data void. We will de-
velop a framework to modify the familiar Kalman filter
(e.g., see Evensen 2006; Simon 2006) for partial obser-
vations with only limited information on the mean and
variance, with the effect that the error covariance of the
unresolved variables cannot exceed their climatic vari-
ance and their mean is controlled by driving it toward
the climatological value.
The paper is organized as follows. In section 2 we will

introduce the dynamical setting and briefly describe the
ensemble transform Kalman filter (ETKF), a special
form of an ensemble square root filter. In section 3 we
will derive the variance-limiting Kalman filter (VLKF)
in a variational setting. In section 4 we illustrate the
VLKF with a simple linear toy model for which the fil-
ter can be analyzed analytically. We will extract the
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parameter regimes where we expect VLKF to yield
optimal performance. In section 5 we apply the VLKF to
the 40-dimensional Lorenz-96 system (Lorenz 1996) and
present numerical results illustrating the advantage of
such a variance-limiting filter. We conclude the paper
with a discussion in section 6.

2. Setting

Assume an N-dimensional1 dynamical system whose
dynamics is given by

_z5 f(z), (1)

with the state variable z 2 RN . We assume that the state
space is decomposable according to z 5 (x, y) with
x 2 Rn and y 2 Rm and n 1 m 5 N. Here x shall denote
those variables for which direct observations are avail-
able, and y shall denote those variables for which only
some integrated or statistical information is available.
We will coin the former observables and the latter
pseudo-observables. We do not incorporate model error
here and assume that (1) describes the truth. We apply
the notation of Ide et al. (1997) unless stated explicitly
otherwise.
Let us introduce an observation operator H:RN/Rn,

whichmaps from the whole space into observation space
spanned by the designated variables x. We assume that
observations of the designated variables x are given at
equally spaced discrete observation times ti with the
observation interval Dtobs. Since it is assumed that there
is no model error, the observations yo 2 Rn at discrete
times ti 5 iDtobs are given by

yo(ti)5Hz(ti) 1 ro,

with independent and identically distributed observa-
tional Gaussian noise ro 2 Rn. The observational noise is
assumed to be independent of the system state, and to
have zero mean and constant covariance Ro 2 Rn3n.
We further introduce an operator h:RN/Rm, which

maps from the whole space into the space of the pseudo-
observables spanned by y. We assume that the pseudo-
observables have variance Aclim 2 Rm3m and constant
mean aclim 2 Rm. This is the only information available
for the pseudo-observables, and may be estimated, for
example, from climatic measurements. The error co-
variance of those pseudo-observations is denoted by
Rw 2 Rm3m.

The model forecast state zf at each observation in-
terval is obtained by integrating the state variable with
the full nonlinear dynamics in (1) for the time interval
Dtobs. The background (or forecast) involves an error
with covariance Pf 2 RN3N .
Data assimilation aims to find the best estimation of

the current state given the forecast zf with variance Pf

and observations yo of the designated variables with
error covarianceRo. Pseudo-observations can be included
following the standard Bayesian approach once their
mean aclim and error covariance Rw are known. How-
ever, the error covariance Rw of a pseudo-observation is
in general not equal to Aclim. In section 3, we will show
how to derive the error covarianceRw in order to ensure
that the forecast does not exceed the prescribed variance
Aclim. We do so in the framework of Kalman filters and
shall now briefly summarize the basic ideas to construct
such a filter for the case of an ensemble square root filter
(Tippett et al. 2003), that is, the ensemble transform
filter (Wang et al. 2004).

Ensemble Kalman filter

In an ensemble Kalman filter (EnKF; Evensen 2006)
an ensemble with k members zk

Z5 [z1, z2, . . . , zk] 2 RN3k

is propagated by the full nonlinear dynamics (1), which
is written as

_Z5 f(Z), f(Z)5 [ f(z1), f(z2), . . . , f(zk)] 2 RN3k. (2)

The ensemble is split into its mean:

z5
1

k
!
k

i51
zi 5Zw with w5

1

k
e 2 Rk,

where e5 [1, . . . , 1]T 2 Rk, and its ensemble deviation
matrix

Z95Z2 zeT 5ZT,

with the constant projection matrix:

T5 I 2 weT 2 Rk3k.

The ensemble deviation matrix Z9 can be used to ap-
proximate the ensemble forecast covariance matrix via

Pf (t)5
1

k 2 1
Z9(t)[Z9(t)]T 2 RN3N .

Given the forecast ensemble Zf 5Z(ti 2 !) and the as-
sociated forecast error covariance matrix (or the prior)

1 The exposition is restricted to RN , but we note that the formula-
tion can be generalized for Hilbert spaces.
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Pf (ti 2 !), the actual Kalman analysis (Kalnay 2002;
Evensen 2006; Simon 2006) updates a forecast into
a so-called analysis (or the posterior). Variables at times
t 5 ti 2 ! are evaluated before taking the observations
(and/or pseudo observations) into account in the analysis
step, and variables at times t 5 ti 1 ! are evaluated after
the analysis step when the observations (and/or pseudo
observations) have been taken into account. In the first
step of the analysis the forecast mean,

zf 5Zfw,

is updated to the analysis mean:

za5 zf 2 Ko[Hzf 2 yo] 2 Kw[hzf 2 aclim], (3)

where the Kalman gain matrices are defined as

Ko 5PaH
TR21

o

Kw5Pah
TR21

w . (4)

The analysis covariance Pa is given by the addition rule
for variances, typical in linear Kalman filtering (Kalnay
2002):

Pa5 (P21
f 1 HT R21

o H1 hT R21
w h)21. (5)

To calculate an ensemble Za, which is consistent with the
error covariance after the observation Pa, and that there-
fore needs to satisfy

Pa5
1

k 2 1
ZaT[Za]

T,

we use the method of ensemble square root filters
(Simon 2006). In particular we use the method proposed
in (Tippett et al. 2003; Wang et al. 2004), the so-called
ETKF, which seeks a transformation S 2 Rk3k such that

Z9a5Z9fS. (6)

Alternatively one could have chosen the ensemble ad-
justment filter (Anderson 2001) in which the ensemble
deviation matrix Z9f is premultiplied with an appropri-
ately determined matrix A 2 RN3N . However, since we
are mainly interested in the case k! N we shall use the
ETKF. Note that the matrix is not uniquely determined
for k , N. The transformation matrix can be obtained
either by using continuous Kalman filters (Bergemann
et al. 2009) or directly (Wang et al. 2004) by

S5C(Ik1 G)2(1/2)CT.

Here CGCT is the singular value decomposition of

U5
1

k 2 1
TTZT

f (H
TR21

o H 1 hTR21
w h)ZfT.

The matrix C 2 Rk3(k21) is obtained by erasing the last
zero column from C 2 Rk3k, and G 2 R(k21)3(k21) is the
upper-left (k2 1)3 (k2 1) block of the diagonal matrix
G 2 Rk3k. The deletion of the 0 eigenvalue and the as-
sociated columns inC assure that Z9a 5Z9aS and therefore
that the analysis mean is given by za. Note that S is
symmetric and ST5TS, which assures that Z9a 5Z9aS
implying that the mean is preserved under the trans-
formation. This is not necessarily true for general en-
semble transform methods of the form (6).
A new forecast Z(ti11 2 !) is then obtained by propa-

gating Za with the full nonlinear dynamics in (2) to the
next time of observation. The numerical results presented
later in sections 4 and 5 are obtained with this method.
In the next section we will determine how the error

covariance Rw used in the Kalman filter is linked to the
variance Aclim of the pseudovariables.

3. Derivation of the variance-limiting Kalman filter

One may naively believe that the error covariance of
the pseudo-observable Rw is determined by the target
variance of the pseudo-observables Aclim simply by set-
tingRw 5Aclim. In the followingwewill see that this is not
true, and that the expression for Rw, which ensures that
the variance of the pseudo-observables in the analysis is
limited fromabove byAclim involves all error covariances.
We formulate the Kalman filter as a minimization

problem of a cost function (e.g., Kalnay 2002). The cost
function for one analysis step as described in section 2
with a given background zf and associated error co-
variance Pf is typically written as

J(z)5
1

2
(z2 zf)

TP21
f (z2 zf)1

1

2
(yo2Hz)TR21

o (yo2Hz)

1
1

2
(aclim2 hz)TR21

w (aclim 2 hz), (7)

where z is the state variable at one observation time
ti 5 iDtobs. Note that the part involving the pseudo-
observables corresponds to the notion of weak con-
straints in variational data assimilation (Sasaki 1970;
Zupanski 1997; Neef et al. 2006).
The analysis step of the data assimilation procedure

consists of finding the critical point of this cost function.
The thereby obtained analysis z5 za and the associated
variance Pa are then subsequently propagated to the
next observation time ti11 to yield zf and Pf at the next
time step, at which a new analysis step can be performed.
The equation for the critical point with $zJ(z) 5 0 is
readily evaluated to be
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(P21
f 1 HT R21

o H 1 hT R21
w h)za

5P21
f zf1 HTR21

o yo1 hTR21
w aclim, (8)

and yields (3) for the analysis mean za, and (5) for the
analysis covariance Pa with Kalman gain matrices given
by (4).
To control the variance of the unresolved pseudo-

observables aclim 5 hz we set

hPah
T 5Aclim. (9)

Introducing

P215P21
f 1 HT R21

o H, (10)

and upon applying the Sherman–Morrison–Woodbury
formula (e.g., see Golub and Van Loan 1996) to
(P21 1 hTR21

w h)21, (9) yields the desired equation forRw:

R21
w 5A21

clim 2 (hPhT)21, (11)

which is yet again a reciprocal addition formula for var-
iances. Note that the naive expectation that Rw 5Aclim is
true only for Pf/‘, but is not generally true. For suffi-
ciently small background error covariance Pf , the error
covariance Rw as defined in (11) is not positive semi-
definite. In this case the information given by the pseudo-
observables has to be discarded. In the language of
variational data assimilation the criterion of positive
definiteness of R21

w determines whether the weak con-
straint is switched on or off. To determine those eigendir-
ections for which the statistical information available can
be incorporated, we diagonalizeR21

w 5VDVT and defineD
with Dii 5Dii for Dii $ 0 and Dii 5 0 for Dii , 0. The
modified R21

w 5VDVT then uses information of the
pseudo-observables only in those directions that potentially
allow for improvement of the analysis. Noting that P de-
notes the analysis covariance of an ETKF (with Rw 5 0),
we see that (11) states that the variance constraint switches
on for those eigendirections whose corresponding singular
eigenvalues of hPhT are larger than those ofAclim. Hence,
the proposed VLKF as defined here incorporates the cli-
matic information of the unresolved variables in order to
restrict the posterior error covariance of those pseudo-
observables to lie below their climatic variance and to
drive the mean toward their climatological mean.

4. Analytical linear toy model

In this section we study the VLKF for the following
coupled linear skew product system for two oscillators
x 2 R2, y 2 R2:

dx5Axdt 2 Gxx dt 1 sx dWt1 Lydt

dy5Bydt 2 Gyy dt 1 sy dBt,

where A, B and L are all skew symmetric; sx,y and Gx,y

are symmetric; and Wt and Bt are independent two-
dimensional Brownian processes.2 We assume here for
simplicity that

Gx5gxI, Gy5gyI, sx5sxI, sy5syI, Ro5RobsI,

with the identity matrix I, and

A5vxJ, B5vyJ, L5 lJ,

with the skew-symmetric matrix:

J5

!
0 21

1 0

"
.

Note that our particular choice for the matrices implies
Rw 5RwI.
The system models two noisy coupled oscillators: x

and y. We assume that we have access to observations of
the variable x at discrete observation times ti 5 iDtobs,
but have only statistical information about the variable
y. We assume knowledge of the climatic mean mclim and
the climatic covariance s2

clim of the unobserved variable
y. The noise is of Ornstein–Uhlenbeck type (Gardiner
2004), and may represent either model error or param-
eterize highly chaotic nonlinear dynamics. Without loss
of generality, the coupling is chosen such that the y dy-
namics drives the x dynamics but not vice versa. The
form of the coupling is not essential for our argument,
and itmay be oscillatory or dampingwithL5 lI.Wewrite
this system in the more compact form for z5 (x, y) 2 R4:

dz5Mz dt 2 Gz dt 1 s dWt 1 Cz dt, (12)

with

M5

!
A 0

0 B

"
G5

 
Gx 0

0 Gy

!

s5

 
sx 0

0 sy

!
C5

!
0 L

0 0

"
.

The solution of (12) can be obtained using Ito’s formula
and, introducing the propagator L(t)5 exp[(M2G1C)t],
which commutes with s for our choice of the matrices, is
given by

2 Wewill use bold font for matrices and vectors, and regular font
for scalars. It should be clear from the context whether bold fonts
refer to a matrix or a vector.
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z(t)5L(t)z01 s

ðt

0
L(t 2 s) dWs,

with mean

m(t)5L(t)z0,

and covariance

S(t)5s(2G2 C)21fI 2 exp[2(2G 2 C)t]gsT, (13)

where

C5

!
0 L

2L 0

"
.

The climatic mean mclim 2 R4 and covariance matrix
Sclim 2 R434 are then obtained in the limit t / ‘ as

mclim5 lim
t/‘

m(t) 5 0,

and

Sclim 5 lim
t/‘

S(t)5s(2G2C)21sT.

In order for the stochastic process (12) to have a sta-
tionary density and for S(t) to be a positive definite
covariance matrix for all t, the coupling has to be suffi-
ciently small with l2 , 4gxgy. Note that the skew
product nature of the system (12) is not special in the
sense that a nonskew product structure where x couples
back to y would simply lead to a renormalization of C.
However, it is pertinent to mention that although in the
actual dynamics of the model (12) there is no back
coupling from x to y, the Kalman filter generically in-
troduces back coupling of all variables through the in-
version of the covariance matrices [cf. (5)].
We will now investigate the variance-limiting Kalman

filter for this toymodel. In particular we will first analyze
under what conditions Rw is positive definite and the
variance constraint will be switched on, and second we
will analyze when the VLKF yields a skill improvement
when compared to the standard ETKF.
We start with the positive definiteness of Rw. When

calculating the covariance of the forecast in an ensemble
filter we need to interpret the solution of the linear toy
model (12) as

zj(ti11)5
d
L(Dtobs)zj(ti)

1s

ðDt
obs

0
L(Dtobs 2 s) dWs, j j5 1, 2, . . . , k,

where zj(ti11) is the forecast of ensemble member j at
time ti11 5 ti 1 Dtobs 5 (i 1 1)Dtobs before the analysis
propagated from its initial condition zj(ti)5 za(ti)1 jj
with jj ;N [0,Pa(ti)] at the previous analysis. The
equality here is in distribution only (i.e., members of the
ensemble are not equal in a pathwise sense as their
driving Brownian will be different, but they will have the
same mean and variance). The covariance of the fore-
cast can then be obtained by averaging with respect to
the ensemble and with respect to realizations of the
Brownian motion, and is readily computed as

Pf (ti11)5L(Dtobs)Pa(ti)L
T(Dtobs) 1 S(Dtobs), (14)

where LT(t)5 exp[(2M2G1CT)t] denotes the trans-
pose of L(t). The forecast covariance of an ensemble
with spread Pa is typically larger than the forecast co-
variance S of one trajectory with a nonrandom initial
condition z0. The difference is most pronounced for small
observation intervals when the covariance of the ensem-
ble Pf will be close to the initial analysis covariance Pa,
whereas a single trajectory will not have acquired much
variance S. In the long-time limit, both, Pf and S, will
approach the climatic covariance Sclim [cf. (13)].
In the following we restrict ourselves to the limit of

small observation intervals Dtobs ! 1. In this limit, we
can approximate Pa(ti) ’ Pf (ti11) and explicitly solve
the forecast covariance matrix Pf using (14). This as-
sumption requires that the analysis is stationary in the
sense that the filter has lost its memory of its initial
background covariance provided by the user to start up
the analysis. We have verified the validity of this as-
sumption for small observation intervals and for a range
of initial background variances. This assumption renders
(14) a matrix equation for Pf . To derive analytical ex-
pressions we further Taylor-expand the propagator
L(Dtobs) and the covariance S(Dtobs) for small observa-
tion intervals Dtobs. This is consistent with our statio-
narity assumption Pa(ti) ’ Pf (ti11). The very lengthy
analytical expression for Pf (ti11) can be obtained with
the aid of Mathematica (Wolfram Research, Inc. 2008),
but is omitted from this paper.
In filtering one often uses variance inflation (Anderson

and Anderson 1999) to compensate for the loss of en-
semble variance due to finite-size effects, sampling errors,
and the effects of nonlinearities. We do so here by in-
troducing an inflation factor d. 1 multiplying the forecast
variance Pf . Having determined the forecast covariance
matrixPf we are now able to write down an expression for
the error covariance of the pseudo-observables Rw. As
before we limit the variance and the mean of our pseudo-
observable y to be Aclim 5s2

clim and aclim 5 mclim. Then,
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upon using the definitions (10) and (11), we find that the
error covariance for the pseudo-observablesRw is positive
definite provided the observation interval Dtobs is suffi-
ciently large.3 Particularly, in the limit of Ro/‘, we find
that if

Dtobs(d).
dl2 1 4gxgy(1 2 d)

2gx(1 1 g2y)
, (15)

the variance constraint will be switched on. Note that for
d. 1 the criticalDtobs abovewhichRw is positive definite
can be negative, implying that the variance constraint
will be switched on for all (positive) values of Dtobs. If no
inflation is applied (i.e., d 5 1), this simplifies to

Dtobs .
l2

2gx(1 1 g2y)
. 0: (16)

Because 4gxgy 2 l2 . 0 the critical observation interval
Dtobs is smaller for nontrivial inflation with d . 1 than if
no variance inflation is incorporated. This is intuitive,
because the variance inflation will increase instances
with jhPah

Tj . js2
climj. We have numerically verified

that inflation is beneficial for the variance constraint to
be switched on. It is pertinent to mention that for suffi-
ciently large coupling strength l or sufficiently small
values of gx, (16) may not be consistent with the as-
sumption of small observation intervals Dtobs ! 1.
We have checked analytically that the derivative of

R21
w is positive at the critical observation interval Dtobs,

indicating that the frequency of occurrence when the
variance constraint is switched on increases monotonically
with the observation interval Dtobs, in the limit of small
Dtobs. This has been verified numerically with the appli-
cation of VLKF for (12) and is illustrated in Fig. 1.
At this stage it is important to mention effects due to

finite-size ensembles. For large observation intervals
Dtobs/‘ and large observational noiseRo/‘, we have
Pf /Sclim and our analytical formulas would indicate
that the variance constraint should not be switched on
[cf. (10) and (11)]. However, in numerical simulations of
the Kalman filter we observe that for large observation
intervals the variance constraint is switched on for al-
most all analysis times. This is a finite-ensemble-size
effect and is due to the mean of the forecast variance
ensemble adopting values larger than the climatic value
ofsclim implying positive definite values ofRw. The closer
the ensemble mean approaches the climatic variance, the

more likely fluctuations will push the forecast covariance
above the climatic value. However, we observe that the
actual eigenvalues of Rw decrease for Dtobs / ‘ and for
the size of the ensemble k / ‘.
The analytical results obtained above are for the ideal

case with k / ‘. As mentioned in the introduction, in
sparse observation networks finite ensemble sizes cause
the overestimation of error covariances (Liu et al. 2008;
Whitaker et al. 2009), implying that Rw is positive defi-
nite and the variance-limiting constraint will be switched
on. This finite-size effect is illustrated in Fig. 2, where the
maximal singular value of hPah

T, averaged over 50 re-
alizations, is shown for ETKF as a function of ensemble
size k for different observational noise variances. Here
we used no inflation (i.e., d5 1) in order to focus on the
effect of finite ensemble sizes. It is clearly seen that the
projected covariance decreases for large enough en-
semble sizes. The variance will asymptote from above to
hSclimh

T in the limit k / ‘. For sufficiently small ob-
servational noise, the filter corrects too large forecast
error covariances by incorporating the observations into
the analysis leading to a decrease in the analysis error
covariance.
However, the fact that the variance constraint is

switched on does not necessarily imply that the variance-
limiting filter will perform better than the standard
ETKF. In particular, for very large observation intervals
Dtobs when the ensemble will have acquired the climatic
mean and covariances, VLKF andETKFwill have equal

FIG. 1. Proportion of incidences when the variance constraint is
switched on and Rw is positive definite as a function of the obser-
vation interval Dtobs for the stochastic linear toy model in (12). We
used gx 5 1, gy 5 1, sx 5 1, sy 5 1, and l 5 0.2. We used k 5 20
ensemble members, 100 realizations and Ro 5HSclimH

T, and no
inflation with d5 1. The analytically calculated critical observation
interval according to (16) is Dtobs 5 1022.

3 We actually compute R21
w , however, since Rw is diagonal for

our choice of the matrices, positive definiteness of R21
w implies

positive definiteness of Rw.
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skill. We now turn to the question under what conditions
VLKF is expected to yield improved skill compared to
standard ETKF. To this end we introduce as skill in-
dicator the (squared) RMS error:

E5Et,Wkza(ti)2 ztruth(ti)k
2
G (17)

between the truth ztruth and the ensemble mean analysis
za (the square root is left out here for convenience of
exposition). Here Et denotes the temporal average over
analyzes cycles, and EW denotes averaging over dif-
ferent realizations of the Brownian paths W. We in-
troduced the norm kabkG 5 aTGb to investigate the
overall skill using G5 I, the skill of the observed vari-
ables using G5HTH and the skill of the pseudo-
observables using G5hTh. Using the Kalman filter (3)
for the analysis mean with Kw 5 0, we obtain for the
ETKF:

EETKF 5Et,Wk(I2KoH)[zf (ti)2 ztruth(ti)]1Koro(ti)k
2

G
.

Solving the linear toymodel (12) for eachmember of the
ensemble and then performing an ensemble average, we
obtain

zf (ti)5L(Dtobs)za(ti21). (18)

Substituting a particular realization of the truth ztruth(t),
and performing the average over the realizations, we
finally arrive at

EETKF5Etk(I2KoH)L(Dtobs)jt
i21
k2
G

1 Etk(I2KoH)ht
i
k2
G
1 EtkKorok

2
G, (19)

with the mutually independent normally distributed ran-
dom variables:

jti
5 za(ti) 2 ztruth(ti);N [0,Pa(ti)]

ht
i
5s

ðt
i

ti21

L(Dtobs 2 s) dWs ;N [0,S(Dtobs)]

ro;N (0,Ro). (20)

We have numerically verified the validity of our as-
sumptions of the statistics of jti

and hti
. Note that for jti

to have mean zero and variance Pa(ti) filter divergence
has to be excluded. Similarly we obtain for the VLKF

«VLKF5Etk(I2KoH)L(Dtobs)jt
i21
k2
G
1 Etk(I2KoH)ht

i
k2
G

1 EtkKorok
2
G1 EtkKwhzt

i
k2G

12Etf[(I2KoH)L(Dtobs)jt
i21
]TG[Kwhzt

i
]g,

(21)

with the normally distributed random variable:

zt
i
5 zf (ti);N

$
0,
1

k
Pf (ti)

%
, (22)

where we used that aclim 5 0. Note that using our statio-
narity assumption to calculate Pf we have zti

;
d
(1/k)jti2 1

.
Again we have numerically verified the statistics for zti

.
The expression for theRMSerror of theVLKF (21) can be
considerably simplified. Since for large ensemble sizes
k / ‘ the random variable zti

becomes a deterministic
variable with mean zero, we may neglect all terms con-
taining zti

. We summarize to

EVLKF5Etk(I2KoH)L(Dtobs)jt
i21
k2
G

1 Etk(I2KoH)ht
i
k2
G
1 EtkKorok

2
G. (23)

For convenience we have omitted superscripts for Ko

and jti21
in (19) and (23) to denote whether they have

been evaluated for ETKF and VLKF. But note that,
although the expressions in (19) and (23) are formally
the same, one generally has EETKF 6¼ EVLKF, because the
analysis covariance matrices Pa are calculated differ-
ently for bothmethods leading to different gainmatrices
Ko and different statistics of jt in (19) and (23).
We can now estimate the skill improvement defined as

S5 EETKF/EVLKF

FIG. 2. Averagemaximal singular value of hPah
T as a function of

ensemble size k for the stochastic linear toy model in (12) using
standard ETKF without inflation, with Ro 5 0:25 (dashed curve)
andRo 5 2 (solid curve). Parameters aresx5 sy5 gx5 gy5 1, l5
0.2, Dtobs 5 1, for which the climatic variance is hShT ’ 0.505. We
used 50 realizations for the averaging.

AUGUST 2011 GOTTWALD ET AL . 2657



with values of S. 1 indicating skill improvement of
VLKF over ETKF. We shall chooseG5hTh from now
on, and concentrate on the skill improvement for the
pseudo-observables. Recalling that EETKF ’ EVLKF for
large observation intervals Dtobs, we expect skill im-
provement for small Dtobs. We perform again a Taylor
expansion in small Dtobs of the skill improvement
S. The resulting analytical expressions are very lengthy
and cumbersome, and are therefore omitted for con-
venience.
We found that there is indeed skill improvement S. 1

in the limit of either gy/‘ or gx/ 0. This suggests that
the skill is controlled by the ratio of the time scales of
the observed and the unobserved variables. If the time
scale of the pseudo-observables is much larger than the
one of the observed variables, VLKF will exhibit supe-
rior performance over ETKF. This can be intuitively
understood since 1/(2gy) is the time scale on which equi-
librium (i.e. the climatic state) is reached for the pseudo-
observables y. If the pseudo-observables have relaxed
toward equilibrium within the observation interval Dtobs,
and their variance has acquired the climatic covariance
hPah

T 5 s2
clim, we expect the variance limiting to be

beneficial.
Furthermore, we found analytically that the skill im-

provement increases with increasing observational noise
Robs (at least in the small observation interval approxi-
mation). In particular we found that ›S/›Robs . 0 at
Robs 5 0. The increase of skill with increasing observa-
tional noise can be understood phenomenologically in
the following way. For Robs 5 0 the filter trusts the ob-
servations, which as a time series carry the climatic co-
variance. This implies that there is a realization of the
Wiener process such that the analysis can be reproduced
by amodel with the true values of gx,y andsx,y. Similarly,
this is the case in the other extremeRobs/ ‘, where the
filter trusts the model. For 0 ! Robs ! ‘ the analysis
reproducing system would have a larger covariance sx

than the true value. This slowed-down relaxation to-
wards equilibrium of the observed variables can be in-
terpreted as an effective decrease of the damping
coefficient gx. This effectively increases the time-scale
separation between the observed and the unobserved
variables, which was conjectured above to be beneficial
for skill improvement.
As expected, the skill improves with increasing in-

flation factor d . 1. The improvement is exactly linear
for Dtobs / ‘. This is due to the variance inflation
leading to an increase of instances with hPah

T .s2
clim,

for which the variance constraint will be switched on.
In Fig. 3 we present a comparison of the analytical

results (19) and (23) with results from a numerical im-
plementation of ETKF and VLKF for varying damping

coefficient gy. Since gy controls the time scale of the y
process, we cannot use the same Dtobs for a wide range
of gy in order not to violate the small observation in-
terval approximations used in our analytical expres-
sions. We choose Dtobs as a function of gy such that the
singular values of the first-order approximation of the
forecast variance is a good approximation for this Dtobs.
For Fig. 3 we have Dtobs 2 (0.005, 0.01) to preserve the
validity of the Taylor expansion. Besides the increase
of the skill with gy, Fig. 3 shows that the value of S
increases significantly for larger values of the inflation
factor d . 1.
We will see in the next section that the results we

obtained for the simple linear toy model (12) hold as
well for a more complicated higher-dimensional model,
where the dynamic Brownian driving noise is replaced
by nonlinear chaotic dynamics.

FIG. 3. Dependency of the skill improvement S of VLKF over
ETKF on the damping coefficient gy of the pseudo-observable.We
show a comparison of direct numerical simulations (open circles)
with analytical results using (21) (continuous curve) and the ap-
proximation of large ensemble size in (23) (dashed curve). Pa-
rameters are gx5 1, l5 2,sx5sy5 1, andRobs5 0.25.We used an
ensemble size of k5 20 and averaged over 1000 realizations. (a) No
inflation with d 5 1. (b) Inflation with d 5 1.022.
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5. Numerical results for the Lorenz-96 system

We illustrate our method with the Lorenz-96 system
(Lorenz 1996) and show its usefulness for sparse ob-
servations in improving the analysis skill and stabilizing
the filter. In Lorenz (1996), Lorenz proposed the fol-
lowing model for the atmosphere:

_zi 5 zi21(zi112zi22)2zi 1F i5 1, . . . ,D (24)

with z5 (z1, . . . , zD) and periodic zi1D5 zi. This system
is a toy model for midlatitude atmospheric dynamics,
incorporating linear damping, forcing and nonlinear
transport. The dynamical properties of the Lorenz-96
system have been investigated (e.g., Lorenz andEmanuel
1998; Orrell and Smith 2003; Gottwald and Melbourne
2005), and in the context of data assimilation it was
also investigated (e.g., Ott et al. 2004; Fisher et al. 2005;
Harlim andMajda 2010). We useD5 40 modes and set
the forcing to F5 8. These parameters correspond to a
strongly chaotic regime (Lorenz 1996). For these pa-
rameters one unit of time corresponds to 5 days in the
earth’s atmosphere as calculated by calibrating the
e-folding time of the asymptotic growth rate of themost
unstable mode with a time scale of 2.1 days (Lorenz
1996). Assuming the length of a midlatitude belt to be
about 30 000 km, the spatial scale corresponding to a
discretization of the circumference of the earth along
the midlatitudes in D 5 40 grid points corresponds to
a spacing between adjacent grid points zi of approxi-
mately 750 km, roughly equalling the Rossby radius of
deformation at midlatitudes. We estimated from sim-
ulations the advection velocity to be approximately
10.4 m s21, which compares well with typical wind ve-
locities in the midlatitudes.
In the following we will investigate the effect of using

VLKF on improving the analysis skill when compared to
a standard ensemble transform Kalman filter, and on
stabilizing the filter and avoiding blow-up as discussed in
(Ott et al. 2004; Kepert 2004; Harlim and Majda 2010).
We perform twin experiments using a k 5 41-member
ETKF and VLKF with the same truth time series, the
same set of observations, and the same initial ensemble.
We have chosen an ensemble with k . D in order to
eliminate the effect that a finite-size ensemble can only
fit as many observations as the number of its ensemble
members (Lorenc 2003). Here we want to focus on the
effect of limiting the variance.
The system is integrated using the implicit midpoint

rule (e.g., see Leimkuhler and Reich 2005) to a time T5
30 with a time step dt 5 1/240. The total time of in-
tegration corresponds to an equivalent of 150 days, and
the integration time step dt corresponds to half an hour.

We measured the approximate climatic mean and var-
iance, mclim and s2

clim, respectively, via a long time in-
tegration over a time interval of T 5 2000, which
corresponds roughly to 27.5 yr. Because of the sym-
metry of the system (24), the mean and the standard
deviation are the same for all variables zi and are
measured to be sclim 5 3.63 and mclim 5 2.34.
The initial ensemble at t5 0 is drawn froman ensemble

with variance s2
clim; the filter was then subsequently spun

up for sufficiently many analysis cycles to ensure statis-
tical stationarity. We assume Gaussian observational
noise of the order of 25% of the climatological standard
deviation sclim, and set the observational error covari-
ance matrix Ro 5 (0:25sclim)

2I. We find that for larger
observational noise levels the variance-limiting correc-
tion (11) is used more frequently. This is in accordance
with our finding in the previous section for the toy model.
We study first the performance of the filter and its

dependence on the time between observations Dtobs
and the proportion of the system observed 1/Nobs. Here
Nobs 5 2 means only every second variable is observed,
Nobs 5 4 only every fourth, and so on.
We have used a constant variance inflation factor d5

1.05 for both filters. We note that the optimal inflation
factor at which the RMS error E is minimal, is differ-
ent for VLKF and ETKF. For Dtobs 5 5/120 (5 h) and
Nobs 5 4 we find that d 5 1.06 produces minimal RMS
errors for VLKF and d 5 1.04 produces minimal RMS
errors for ETKF. For d, 1.04, filter divergence occurs in
ETKF, so we chose d 5 1.05 as a compromise between
controlling filter divergence and minimizing the RMS
errors of the analysis.
Figure 4 shows a sample analysis using ETKF with

Nobs 5 5, Dtobs 5 0.15, and Ro 5 (0:25sclim)
2I for an

arbitrary unobserved component (top panel) and an
arbitrary observed component (bottom panel) of the
Lorenz-96 model. While the figure shows that the anal-
ysis (continuous gray line) tracks the truth (dashed line)
reasonably well for the observed component, the anal-
ysis is quite poor for the unobserved component. Sub-
stantial improvements are seen for the VLKF when
we incorporate information about the variance of the
unobserved pseudo-observables, as can be seen in
Fig. 5. We set the mean and the variance of the pseudo-
observables to be the climatic mean and variance, aclim5
mclime and Aclim5s2

climI to filter the same truth with the
same observations as used to produce Fig. 4. For these
parameters (and in this realization) the quality of the
analysis in both the observed and unobserved compo-
nents is improved.
As for the linear toy model (12), finite ensemble sizes

exacerbate the overestimation of error covariances. In
Fig. 6 the maximal singular value of hPah

T, averaged
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over 150 realizations, is shown for ETKF as a function of
ensemble size k. Again we use no inflation (i.e., d5 1) in
order to focus on the effect of finite ensemble sizes. The
projected covariance clearly decreases for large enough
ensemble sizes. However, here the limit of the maximal
singular value of hPah

T for k / ‘ underestimates the
climatic variance s2

clim 5 13:18.
To quantify the improvement of the VLKF filter we

measure the site-averaged RMS error:

E5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
'

1

LDo

!
L

l51

((za(lDtobs)2 ztruth(lDtobs)
((2
)

vuut
, (25)

between the truth ztruth and the ensemble mean za with
L 5 bT/Dtobsc, where the average is taken over 500 dif-
ferent realizations, andDo#D denotes the length of the
vectors za. In Table 1 we display E for the ETKF and
VLKF, respectively, as a function of Nobs and Dtobs. The
increased RMS error for larger observation intervals
Dtobs can be linked to the increased variance of the
chaotic nonlinear dynamics generated during longer
integration times between analyses. Figure 7 shows the
average proportional improvement of the VLKF over
ETKF, obtained from the values of Table 1. Figure 7
shows that the skill improvement is greatest when the
system is observed frequently. For large observation

FIG. 4. Sample ETKF analysis (continuous gray line) for the (top) unobserved z1 and (bot-
tom) observed z5 component. The dashed line is the truth and the crosses are observations.
Parameters used were Nobs 5 5, Dtobs 5 0.15 (18 h), and Ro 5 (0:25sclim)

2I.

FIG. 5. Sample VLKF analysis (continuous gray line) for the (top) unobserved z1 and
(bottom) observed z5 component. The dashed line is the truth and the crosses are observations.
Parameters are as in Fig. 4.
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intervalsDtobs ETKF andVLKF yield very similar RMS.
We checked that for large observation intervals Dtobs
both filters still produce tracking analyses. Note that the
observation intervals Dtobs considered here are all much
smaller than the e-folding time of 2.1 days. The most
significant improvement occurs when one-quarter of the
system is observed, that is for Nobs 5 4, and for small
observation intervals Dtobs. The dependency of the skill
of VLKF on the observation interval is consistent with
our analytical findings in section 4.
We have checked that the increase in skill as depicted

in Fig. 7 is not sensitive to incomplete knowledge of
the statistical properties of the pseudo-observables by
perturbing Aclim and aclim and then monitoring the

change in RMS error. We performed simulations where
we drew Aclim and aclim independently from uniform
distributions (0:9Aclim, 1:1Aclim) and (0.9aclim, 1.1aclim).
We found that for parameters Nobs 5 2, 4, 6; h 5 0.05,
0.25, 0.5 [with h measuring the amount of the climatic
variance used through Ro 5 (hsclim)

2I]; and Dtobs 5
0.025, 0.05, 0.25 (corresponding to 3, 6, and 30 h) over
a number of simulations, there was on average no more
than 7%difference of the analysis mean and the singular
values of the covariance matrices between the control
run where Aclim 5s2

climI and aclim 5 mclime is used, and
when Aclim and aclim are simultaneously perturbed.
An interesting question is how the relative skill

improvement is distributed over the observed and

FIG. 6. Averagemaximal singular value of hPah
T as a function of

ensemble size k for the Lorenz-96 model in (24), using standard
ETKF without inflation and all other parameters are as in Fig. 4.
We used 150 realizations for the averaging.

TABLE 1. RMS errors for (top) ETKF and (bottom) VLKF for different values ofNobs and observational interval Dtobs, averaged over 500
simulations, and with Ro 5 (0:25sclim)

2I as observational noise.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 4.40 3.64 3.42 3.32 3.29 3.30 3.30 3.28 3.26 3.26
5 4.08 2.88 2.70 2.83 3.02 3.07 3.17 3.21 3.19 3.20
4 2.42 1.17 1.35 1.72 2.18 2.37 2.62 2.84 2.98 3.06
3 0.49 0.51 0.60 0.71 0.89 1.11 1.38 1.68 2.02 2.25
2 0.31 0.34 0.38 0.43 0.49 0.55 0.66 0.75 0.90 1.13
1 0.19 0.21 0.24 0.26 0.29 0.31 0.33 0.36 0.39 0.44

6 3.20 3.09 3.10 3.15 3.20 3.22 3.27 3.27 3.26 3.27
5 2.73 2.28 2.51 2.70 2.89 3.03 3.07 3.14 3.15 3.15
4 1.30 1.03 1.28 1.66 2.04 2.29 2.55 2.70 2.88 2.96
3 0.48 0.51 0.59 0.70 0.87 1.07 1.39 1.71 1.95 2.21
2 0.31 0.34 0.38 0.44 0.50 0.56 0.64 0.77 0.95 1.14
1 0.19 0.21 0.24 0.26 0.29 0.31 0.33 0.36 0.39 0.44

FIG. 7. Proportional skill improvement of VLKF over ETKF as
a function of the observation interval Dtobs for different values of
Nobs, with observational noise Ro 5 (0:25sclim)

2I. A total of 500
simulations were used to perform the ensemble average in the
RMS errors E using (25) for ETKF and VLKF. Dtobs is measured in
hours.
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unobserved variables. This is illustrated in Figs. 8 and
9. In Fig. 8 we show the proportional skill improve-
ment of VLKF over ETKF for the observed variables
and the pseudo-observables, respectively. Figure 8
shows that the skill improvement is larger for the pseudo-
observables than for the observables, which is to be ex-
pected. In Fig. 9 we show the actual RMS error E for
ETKF and VLKF for the observed variables and the
pseudo-observables. It is shown that the skill improve-
ment is better for the unobserved pseudo-observables
for all observation intervals Dtobs. In contrast, VLKF
exhibits an improved skill for the observed variables
either for small observation intervals for all values of
Nobs or for all observation intervals when Nobs 5 4, 5.
We have, however, checked that the analysis is still
tracking the truth reasonably well, and the discrepancy
with ETKF is not due to the analysis not tracking the
truth anymore. As expected, the RMS error asymptotes
for large observation intervals Dtobs (not shown) to the
standard deviation of the observational noise 0.25sclim ’
0.910 for the observables, and to the climatic standard
deviation sclim 5 3.63 for the pseudo-observable (not

shown), albeit slightly reduced for small values of Nobs

due to the impact of the surrounding observed variables
(see Fig. 10).
Note that there is an order of magnitude difference

between the RMS errors for the observables and the
pseudo-observables for large Nobs (cf. Fig. 9). This sug-
gests that the information of the observed variables does
not travel too far away from the observational sites.
However, the nonlinear coupling in the Lorenz-96 sys-
tem in (24) allows for information of the observed
components to influence the error statistics of the un-
observed components. Therefore the RMS errors of
pseudo-observables adjacent to observables are better
than those far away from observables. Moreover, the spe-
cific structure of the nonlinearity introduces a translational
symmetry breaking (one may think of the nonlinearity
as a finite-difference approximation of an advection
term zzx), which causes those pseudo-observables to
the right of an observable to have a more reduced RMS
error than those to the left of an observable. This is
illustrated in Fig. 10 where the RMS error is shown for

FIG. 8. Proportional skill improvement of VLKF over ETKF as
a function of the observation interval Dtobs for different values of
Nobs. The RMS error E is calculated using (a) only the observed
variables or (b) only the pseudo-observables. Dtobs is measured in
hours. Parameters are as in Fig. 7.

FIG. 9. RMS error of VLKF (solid lines) and ETKF (dashed
lines) forRo 5 (0:25sclim)

2I, where E is calculated using (a) only the
observed variables or (b) only the pseudo-observables. Dtobs is
measured in hours. Parameters are as in Fig. 7.
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each site when only one site is observed. The advective
time scale of the Lorenz-96 system is much smaller than
Dtobs, which explains why the skill is not equally dis-
tributed over the sites, and why, especially for large
values ofNobs, we observe a big difference between the
site-averaged skills of the observed and unobserved
variables.
In Fig. 11 we show how the RMS error behaves as

a function of the observational noise level. We see that
forNobs5 4, VLKF always has a smallerRMS error than
ETKF.
The results confirm again the results from our analysis

of the toy model in section 4, which is that VLKF yields
best performance for small observation intervals Dtobs
and for large noise levels. For large observation intervals
ETKF and VLKF perform equally well, since then the
chaotic model dynamics will have lead the ensemble to
have acquired the climatic variance during the time of
propagation.
In Ott et al. (2004) it was observed that if not all

variables zi are observed the Kalman filter diverges ex-
hibiting blow-up. Similar behavior was observed in
Harlim and Majda (2010). In Ott et al. (2004) the au-
thors suggested that the sparsity of observations leads to
an inhomogeneous background error, which causes an
underestimation of the error covariance. Here we study
this catastrophic blow-up divergence (as opposed to
filter divergence when the analysis diverges from the
truth) and its dependence on the time between obser-
vations Dtobs and the proportion of the system observed
1/Nobs.We note that blow-up divergence appears only in

the case of sufficiently small observational noise and
moderate values of Dtobs. Once Dtobs is large enough (in
fact, larger than the e-folding time corresponding to the
most unstable Lyapunov exponent, in our case 2.1 days)

FIG. 10. RMS error E for each variable zi as a function of the
lattice site i. Only one observable was used at i5 21. Time between
observations is Dtobs 5 10 h and observational noise with co-
varianceRo 5 (0:25sclim)

2Iwas used. The results are averaged over
100 different realizations.

FIG. 11. RMS error E for VLKF (solid lines) and ETKF (dashed
lines), as a function of the observational noise, measured here by
h defined via Ro 5 (hsclim)

2I. The dashed–dotted line indicates the
RMS error if only observations were used. Results for several
observation intervals: (a) Dtobs 5 1 h, (b) Dtobs 5 2 h, and (c)
Dtobs 5 5 h; Nobs 5 4 was used and 1000 simulations were carried
out to perform the ensemble averages in the RMS errors E using
(25) for ETKF and VLKF.
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we notice that no catastrophic divergence occurs, in-
dependent ofNobs. This probably occurs because for large
observation intervals the ensemble acquires enough vari-
ance through the nonlinear propagation. We prescribe
Gaussian observational noise of the order of 5% of the
climatological standard deviation sclim, and set the obser-
vational error covariancematrix toRo 5 (0:05sclim)

2I. The
initial ensemble at t5 0 is drawn again from an ensemble
with variance s2

clim.
To study the performance of VLKF when blow-up

occurs in ETKF simulations we count the number Nb of
blow-ups that occur before a total of 100 simulations
have terminated without blow-up. The proportions of
blow-ups for the respective filters is then given by Nb/
(Nb1100).We tabulate this proportion in Table 2 for the
ETKF and VLKF, respectively, and the proportional
improvement in Table 3. The 3s in the table represent
cases where no successful simulations could be obtained
due to blow-up.
Both filters suffer from severe filter instability for

Nobs 5 6 (i.e., for very sparse observational networks),
at small observation intervals Dtobs. No blow-up occurs
for either filter when every variable is observed. Note the
reduction in occurrences of blow-ups for large observa-
tion intervals Dtobs as discussed above. We have checked

that for all Nobs there is no blow-up for ETKF (and
VLKF) for sufficiently large Dtobs (not shown); the larger
Nobs the smaller the upper bound of Dtobs such that no
blow-ups occur. Collapse is most prominent for ETKF
(and for VLKF, but to a much lesser extent) for larger
values of Nobs and at intermediate observation in-
tervals that depend onNobs. Tables 2 and 3 clearly show
that incorporating information about the pseudo-
observables strongly increases the stability of the filter
and suppresses blow-up. However, we note that despite
the gain in stability VLKF has a skill less than the purely
observational skill in the cases when blow-up occurs
for ETKF, because the solutions become nontracking.
Further research is under way to improve on this in the
VLKF framework.
The fact that incorporating information about the

variance of the unobserved variables improves the sta-
bility of the filter is in accordance with the interpretation
of filter divergence of sparse observational networks
provided in Ott et al. (2004).

6. Discussion

We have developed a framework to include infor-
mation about the variance of unobserved variables in

TABLE 2. Proportion of catastrophically diverging simulations with (top) ETKF and (bottom) VLKF for different values of Nobs and
observation interval Dtobs. Observational noise with Ro 5 (0:05sclim)

2I was used.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 0.14 3 3 0.98 0.96 0.76 0.32 0.05 0.02 0.01
5 0.02 0.40 0.67 0.73 0.84 0.89 0.94 0.82 0.49 0.19
4 0 0.04 0.22 0.29 0.49 0.64 0.77 0.83 0.89 0.82
3 0 0 0 0.03 0.04 0.11 0.15 0.44 0.58 0.67
2 0 0 0 0 0 0.01 0 0.01 0.05 0.15

6 0.01 0.42 0.11 0.01 0 0 0 0 0 0
5 0 0.24 0.36 0.10 0.01 0 0 0 0 0
4 0 0.03 0.22 0.12 0.06 0.02 0 0 0 0
3 0 0 0 0.02 0 0.01 0.01 0.01 0 0
2 0 0 0 0 0 0 0 0 0 0.01

TABLE 3. Proportional improvement of VLKF and ETKF as calculated as the ratio of the values from Table 2.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 14 3 3 98.00 ‘ ‘ ‘ ‘ ‘ ‘
5 ‘ 1.67 1.86 7.30 84.00 ‘ ‘ ‘ ‘ ‘
4 1 1.33 1.00 2.42 8.17 32.00 ‘ ‘ ‘ ‘
3 1 1 1 1.5 ‘ 11.00 15.00 44.00 ‘ ‘
2 1 1 1 1 1 ‘ 1 ‘ ‘ 15.00

2664 MONTHLY WEATHER REV IEW VOLUME 139

Georg Gottwald



a sparse observational network. The filter is designed to
control overestimation of error covariances typical in
sparse observation networks, and limits the posterior
analysis covariance of the unresolved variables to stay
below their climatic variance. We have done so in a
variational setting and found a relationship between the
error covariance of the variance constraint Rw and the
assumed target variance of the unobserved pseudo-
observables Aclim.
We illustrated the beneficial effects of the variance-

limiting filter in improving the analysis skill when com-
pared to the standard ensemble square root Kalman
filter. We expect the variance-limiting constraint to im-
prove data assimilation for ensemble Kalman filters
when finite-size effects of too small ensemble sizes
overestimate the error covariances, in particular in
sparse observational networks. In particular we found
that the skill will improve for small observation intervals
Dtobs and sufficiently large observational noise. We
found substantial skill improvement for both observed
and unobserved variables. These effects can be unde-
stood with a simple linear toy model that allows for an
analytical treatment. We further established numeri-
cally that VLKF reduces the probability of catastrophic
filter divergence and improves the stability of the filter
when compared to the standard ensemble square root
Kalman filter.
We remark that the idea of the variance-limiting Kal-

man filter is not restricted to ensemble Kalman filters,
but can also be used to modify the extended Kalman fil-
ter. However, for the examples we used here the non-
linearities were too strong and the extendedKalman filter
did not yield satisfactory results, even in the variance-
limiting formulation.
The effect of the variance-limiting filter to control

unrealistically large error covariances of the poorly re-
solved variables due to finite ensemble sizes may find
useful applications. We mention here that the variance
constraint is able to adaptively damp unrealistic excita-
tion of ensemble spread in underresolved spatial regions
due to inappropriate uniform inflation. This may be an
alternative to the spatially adaptive schemes which were
recently developed (Anderson 2007; Li et al. 2009). In
addition, it is known that localization of covariance
matrices in EnKF leads to imbalance in the analyzed
fields (e.g., see Houtekamer and Mitchell 2005; Kepert
2009 for recent studies). Filter localization typically ex-
cites unwanted gravity waves that when uncontrolled
can substantially degrade filter performance. One may
construct balance constraints as pseudo-observations
and thereby potentially reduce this undesired aspect of
covariance localization. As more specific applications,
we mention climate reanalysis and data assimilation for

the mesosphere. It would be interesting to see how the
proposed variance-limiting filter can be used in climate
reanalysis schemes to deal with the vertical sparcity of
observational data and the less dense observation net-
work on the Southern Hemisphere in the preradiosonde
era (see Whitaker et al. 2004). One would need to es-
tablish though whether the historical observation in-
tervals Dtobs are sufficiently small to allow for a skill
improvement. Similarly, it may help to control the dy-
namically dominant gravity wave activity in the meso-
sphere as the upper lid is pushed farther and farther
(e.g., see Polavarapu et al. 2005). However, a word of
caution is required here. In some atmospheric data as-
similation problems, it is not at all uncommon to have an
ensemble prior variance for certain variables that is
significantly larger than the climatological variance,
when the atmosphere is locally far away from equilib-
rium. One relevant example would be in the vicinity of
strong fronts over the Southern Ocean. In such a case, it
may not be appropriate to limit the variance to the cli-
matological value.
In this work we have studied systems where for

sufficiently large observation intervals Dtobs the vari-
ables acquire their true climatological mean and vari-
ance when the model is run. In particular we have not
included model error. It would be interesting to see
whether the variance-limiting filter can help to control
model error in the case that the free running model
would produce unrealistically large forecast covari-
ances. Usually numerical schemes underestimate error
covariances, but this is often caused by severe di-
vergence damping (Durran 1999), which is artificially
introduced to the model to control unwanted gravity
wave activity and to stabilize the numerical scheme.
The stabilization may be achieved by a much smaller
amount of divergence damping by implementing the
variance-limiting constraint in the data assimilation
procedure. The VLKF would in this case act as an ef-
fective adaptive damping scheme, counteracting the
model error.
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