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We present a nonperturbative technique to study pulse dynamics in excitable media. The method is
used to study propagation failure in one-dimensional and two-dimensional excitable media. In
one-dimensional media we describe the behavior of pulses and wave trains near the saddle node
bifurcation, where propagation fails. The generalization of our method to two dimensions captures
the point where a broken front~or finger! starts to retract. We obtain approximate expressions for the
pulse shape, pulse velocity, and scaling behavior. The results are compared with numerical
simulations and show good agreement. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1772552#

Excitable media are often found in biological and chemi-
cal systems. Examples of excitable media include electri-
cal waves in cardiac and nerval tissue,1,2 cAMP waves in
slime mold aggregation,3 and intracellular calcium
waves.4 Excitable media support localized pulses and pe-
riodic wave trains. In two dimensions rotating vortices
„or spirals… are possible.5 The critical behavior of pulses,
wave trains, and spirals, i.e., propagation failure, is often
associated with clinical situations. The study of spiral
waves is particularly important as they are believed to be
responsible for pathological cardiac arrhythmias.6 Spiral
waves may be created in the heart through inhomogene-
ities of the properties of the cardiac tissue. We investigate
critical behavior relating to these three wave types. We
develop a nonperturbative test function method which
allows to study the bifurcation behavior of critical waves.
In particular, we study under what conditions a broken
front will sprout and develop into a spiral wave or re-
tract. Analytical formulas for the growing velocity of a
broken front are given. For wave trains we provide a time
dependent extension which supports a Hopf bifurcation
which is also observed in numerical simulations of excit-
able media. This seems to be related to alternans,7,8 which
also are discussed in the context of cardiac electric pulse
propagation. The methods and results are general, and
can be applied to other excitable media.

I. INTRODUCTION

Many chemical and biological systems exhibit excitabil-
ity. In small @zero-dimensional~0D!# geometry they show
threshold behavior, i.e., small perturbations immediately de-
cay, whereas sufficiently large perturbations decay only after
a large excursion. One-dimensional~1D! excitable media
support traveling pulses, or rather, periodic wave trains rang-

ing in wavelengthL from the localized limitL→` to a
minimal valueLc . Pulses and wave trains are best known
from nerve propagation along axons. In two dimensions~2D!
one typically observes spiral waves. Spirals have been ob-
served for example in the autocatalytic Belousov–
Zhabotinsky reaction,5 in the aggregation of the slime mold
dictyostelium discoideum,3 and in cardiac tissue.2

For certain system parameters the propagation of pulses,
wave trains or the development of spiral waves may fail~see
for example Refs. 9 and 10!. The analytical tools employed
to describe these phenomena range from kinematic
theory,11,12 asymptotic perturbation theory13–15 to dynamical
systems approaches.16,17 However, no theory exists which
describes propagation failure using only equation param-
eters, and which reproduces the behavior close to the bifur-
cation point. For example, asymptotic perturbation theory
fails to describe the square-root scaling behavior of the am-
plitude and the pulse velocity with respect to the bifurcation
parameter at the bifurcation point. In kinematic theory results
are not given entirely in terms of the system parameters. In
this paper we develop a nonperturbative method to study
propagation failure and compare the results with numerical
simulations.

Most theoretical investigations are based on coupled
reaction-diffusion models. We follow this tradition and in-
vestigate a two-component, two-dimensional excitable me-
dium with an activatoru and a nondiffusive inhibitorv de-
scribed by

] tu5DDu1F~u,v !, F~u,v !5u~12u!~u2us2v !,

] tv5e~u2av !. ~1!

This is a reparametrized version of a model introduced by
Barkley.18 We expect our method to be independent of the
particular model used. Note that the diffusion constantD is
not a relevant parameter as it can be scaled out by rescaling
the length.

This model incorporates the ingredients of an excitable
system in a compact and lucid way. Thus, forus.0 the rest
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stateu05v050 is linearly stable with decay ratess15us

along the activator direction ands25ea along the inhibitor
direction. Perturbingu above the thresholdus ~in 0D! will
lead to growth ofu. In the absence ofv the activator would
saturate atu51 leading to a bistable system. A positive in-
hibitor growth factore anda.0 forces the activator to decay
back tou50. Finally, also the inhibitor with the refractory
time constant (e a)21 will decay back to v50. For a
.1/(12us) the system is in zero-dimensional systems no
longer excitable but instead bistable. This relaxation behav-
ior in the 0D system for superthreshold perturbations gives
rise to pulse solutions in the 1D~and 2D! case. The relax-
ation mechanism mediated by the inhibitor forces the pulse
solution to decay in its back. Hence, we observe pulses in
excitable media and not fronts.

The Barkley model is a variant of the class of two-
component Fitzhugh–Nagumo models. In the traditional
Fitzhugh–Nagumo modelsF(u,v) in Eq. ~1! is replaced by
FFN(u,v)5u(12u)(u2us)2v. Thus, the nullclines
F(u,v)50, which in the traditional Fitzhugh–Nagumo mod-
els are cubic polynomials, are replaced by straight lines in
the Barkley model. Most of the qualitative behavior in the
relevant parameter ranges is unchanged by this. Whereas the
Barkley model is computationally more efficient and also
analytically better tractable, the traditional Fitzhugh–
Nagumo models display a feature which makes them more
realistic for the description of excitable media in biology: the
activator experiences an undershoot below its equilibrium
value and slow decay in the tail region of a pulse. We expect
that for the phenomena discussed in this paper the difference
only leads to quantitative changes~indeed, we have done
some tests to verify this assertion!.

In order to study pulse propagation in 1D it is useful to
first consider the case of constantv. The resulting bistable
model is exactly solvable19 and the pulse velocity iscf(v)
5AD/2@122(us1v)#. Hence, excitability requires thatus

is below the stall value12. The quantityD5 1
22us character-

izes the strength of excitability andcf(0) coincides with the
solitary pulse velocity fore→0.

Clearly, forus,uc5 1
2 and not too largea, pulse propa-

gation fails fore larger than someec . The critical growth
factorec describes the onset of a saddle-node bifurcation.11,13

The saddle node can be intuitively understood when we con-
sider the activator pulse as a heat source, not unlike a fire-
front in a bushfire. Due to the inhibitor the width of the pulse
decreases with increasinge. Hence, the heat contained within
the pulse decreases. At a critical width, or a criticale, the
heat contained within the pulse is too small to ignite/excite
the medium in front of the pulse.

For periodic wave trains the saddle node depends on the
wavelength. The pulses run into the inhibitor field of their
respective preceding pulse. Hence, propagation failure for
periodic wave trains is controlled by the decay of the inhibi-
tor and propagation is only possible when the interpulse dis-
tanceL becomes larger than a critical wavelengthLc . Note
that Lc diverges fora→0 when the decay rate of the inhibi-
tor s2 vanishes.

In previous analytic works on one-dimensional pulses
the limit of smalle was considered.11,13Then the solution of

the activatoru is well separated in two flat plateau regions
with u'1 andu50 which are separated by a steep narrow
front. This approach does not capture the square-root behav-
ior of c0(e) close to the saddle-node bifurcation point. Close
to the bifurcation point the solution resembles rather a bell-
shaped pulse than a plateau. In this paper we will be con-
cerned with the behavior near the bifurcation atec and make
explicit use of the observed bell-shape form of the solution.
This allows us to describe the scaling behavior close to the
bifurcation in terms of the equation parameters.

In two dimensions spiral waves are observed. Spirals can
be created in excitable media from a finger, i.e., a 1D pulse
which is extended in the second dimension and has one free
end. Fingers may be created due to inhomogeneities in the
excitability of the system.20 At long times, the free end will
either sprout or retract depending on the growing velocitycg

being positive or negative. Ifcg.0, the tip of the finger will
sprout into the fresh medium, and in particular it sprouts and
curves backwards. This causes a nonvanishing curvature at
the tip of the finger. Due to the increased curvature the finger
tip is slower than the flat part of the front further away from
the tip. Thus, the extending part far from the tip will curl up.
This leads to the formation of a spiral with the free end at its
core. The criterioncg.0 is therefore a necessary criterion
for spiral formation.

The transition to retraction always occurs before the 1D
propagation failure. It is harder to tackle analytically. Gen-
eral and universal dynamical system approaches exploiting
only the Euclidean symmetry of excitable media describe the
transition as a drift bifurcation. These model independent
theories give an explanation for the divergence of the core
radius at the bifurcation point and also explain why a finger
at the bifurcation point is translating with finite speed, i.e.,
that the transition to retracting fingers always occurs before
the 1D propagation failure.17 Unfortunately, it has the un-
physical result that at the bifurcation pointeg a spiral
changes its sense of rotation.17 Whereas these theories treat
the spiral as a global solution of the underlying equations
and see the transition to spiral waves as a pitchfork or drift
bifurcation,16,17 we take a local approach and describe the
transition not as a bifurcation but as a quantitative change in
the velocity of the finger, analogous to a Maxwell point in a
first-order phase transition. Asymptotic techniques in the
limit e!1 have also been performed for this problem14,15

and produced an analytical expression for the onset of retrac-
tion for smalle. Moreover, the authors were able to go one
step further, in a detailed and sophisticated asymptotic analy-
sis, and described the onset of meandering. In this paper we
go beyond the restriction of smalle and propose a more
intuitive approach to the problem of the growing velocity
which nevertheless gives good agreement with the numerics.

In the following we assume given excitability param-
etersa, us and takee as the bifurcation parameter. We will
be looking for solutions that move with velocityc0 in the x
direction and may grow~or retract! with velocity cg in the y
direction. Thus, we rewrite Eqs.~1! in a frame moving with
velocity (c0 , cg) as

D~]x
21]y

2!u1c0]xu1cg]yu1F~u,v !50, ~2!
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c0]xv1cg]yv1e~u2av !50. ~3!

II. PULSE PROPAGATION IN ONE-DIMENSIONAL
EXCITABLE MEDIA

We first look for pulse and wave train solutions that do
not depend ony. The reason for the failure to describe the
pulse properties atec within the framework of asymptotics
employing the smallness ofe is due to the fact that atec the
pulse shape foru cannot be separated into a steep narrow
front and a flat plateau. Hence, asymptotic techniques such
as inner and outer expansions are bound to fail. Instead the
pulse has the shape of a rather symmetric bell-shaped func-
tion ~see Fig. 1!. In the following we make explicit use of the
shape of the pulse close to the critical point and parametrize
the pulse appropriately; a method reminiscent of the method
of collective coordinates in the studies of solitary waves.21

We chooseu of the general form

u~x!5 f 0U~h! with h5wx, ~4!

whereU(h) is chosen as a symmetric, bell-shaped function,
for example a Gaussian, of unit width and height. Hence, we
restrict the solutions to a subspace of bell-shaped functions
U(h) which is parametrized by the amplitudef 0 and the
inverse pulse widthw. The aim of our method is to deter-
mine the so far undetermined parameters. This is done by
minimizing the error made by the restriction to the subspace
defined by Eq.~4!.

We avoid further uncontrolled approximations and solve
for the inhibitor fieldv explicitly

v~h!5 f 0QV~h! with

V~h!5eaQhFV!2E
L/2 w

h
dh8e2aQh8U~h8!G , ~5!

where

Q5e/~c0w!. ~6!

V! is determined via the periodic boundary condition
v(2wL/2)5v(wL/2) and is

V!5
1

2 sinhS aQ
L

2
wD E2 L/2 w

L/2w

dh8eaQ(h82 L/2 w)U~h8!.

~7!

We assume that the widthw21 is small compared to the
distance between two consecutive pulsesL. in the temporal
domain this means that the time scale for the decay of the
inhibitor is much longer than the activator pulse width. This
assures that the activator field of consecutive pulses is well
separated and only the inhibitor field overlaps, and that the
interaction between pulses is mediated only through the in-
hibitor. Otherwise we would have to choose periodic func-
tions U(h). However, in this case we can now replace the
limits of integration 6(L/2) w by 6`. For the isolated
pulse, i.e., whenL→`, V! vanishes.

We now determine the parametersf 0 andw by project-
ing Eq. ~2! onto the tangent space of the restricted subspace
defined by Eq.~4!. The tangent space is spanned by]u/] f 0

5U and]u/]w5hUh . This assures that the error made by
restricting the solution space to the test functions is mini-
mized. To achieve this, we multiply Eq.~2! with the basis
functions of the tangent-spaceU and hUh , integrate over
the h domain and require the projection to vanish, i.e.,

^Dw2uhh1u~12u!~u2us2v !uU&u5 f 0U(h)50, ~8!

^Dw2uhh1u~12u!~u2us2v !uhU8&u5 f 0U(h)50, ~9!

where the brackets indicate integration over the wholeh do-
main. The terms proportional to the velocityc0 vanish.

The resulting equations can be combined to give, at fixed
Q anda, a quadratic equation forf 0 with two solutionsf 06

which describe the stable and unstable branch, respectively
~see later for a subtle issue at the saddle node!. We obtain

A f0
21B f01C50, ~10!

where

A5
3

4
^U4&2

5Q

6
^U3V&2

aQ2

3
^hU3V&,

B52
5

6
~11us!^U

3&1Q^U2V&1
aQ2

2
^hU2V&,

C5us^U
2&. ~11!

The corresponding inverse width parametersw6 for the
stable and unstable branch are given by

w25
1

D^Uh
2&

$ f 0
2@2^U4&1Q^U3V&#1 f 0@~11us!^U

3&

2Q^U2V&#2us^U
2&%. ~12!

FIG. 1. Activator fieldu of a steady front withe'ec at e50.0485. The
points depict the solution obtained by numerically integrating Eqs.~1!. The
continuous line is the theoretical curve obtained with the test function ap-
proach. Note that heree is not even very close toec'0.049.
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The velocityc0 can now be determined in the standard way
by multiplying Eq. ~2! by ux and integrating overx. We
obtain

c05
*2`

` F~u,v !uxdx

*2`
` ux

2dx

52
f 0Q

w^Uh
2&

F f 0

3
~^U4&2aQ^U3V&!2

1

2
~^U3&

2aQ^U2V&!G . ~13!

Finally, we can determinee from e5c0wQ. Multiplying Eq.
~13! by w one sees thate can be computed without calculat-
ing w andc0 .

We will use a GaussianU5e2h2
as an ansatz function

~4!. Note that other symmetric bell-shaped functions such as
a sech-function, are possible, too. Then one has^Un&
5Ap/n and^Uh

2&5^U2&5Ap/2. The parameters of the test
function f 0 and w, and the front velocityc0 can now be
determined numerically using Eqs.~10!, ~12!, and~13!.

Simplifications are possible in the useful limitQa!1. In
this limit the ~temporal! inverse pulse width (wncn)21 is
small compared to the inhibitor decay time (ea)21 @see defi-
nition of Eq. ~6!#. Then in Eqs.~11! and ~13! the terms pro-
portional to a can be omitted, and for the calculation of
^UnV& one can omit the exponentials in Refs. 5 and 7 lead-
ing to

V~h!5Vs2E
0

h
U~h8!dh8, Vs5

Ap

2
cothS aeL

2c0
D .

~14!

Note thatVs5Ap/2 corresponds toV!50 @see Eq. 5# for
smalla. Now V can be replaced by the constantVs in ^UnV&
~the rest is an odd function! leading to

A5ApS 3

8
2

5

6)
QVsD ,

B5ApF2
5

6)
~11us!1

1

&
QVsG , C5Ap

2
us , ~15!

and from Eq.~13! we infer

e5Q2f 0

1

A6
S 12

1

)
f 0D . ~16!

A. Isolated pulses

We consider now isolated pulses for which the wave-
lengthL is large compared to the decay length of the inhibi-
tor 1/(ea). In Figs. 1 and 2 we show a comparison of our
results Eqs.~10!, ~12!, and ~13! for f 0 , w, and c0 , with a
direct numerical simulation of Eqs.~1!. The pulse shape, the
critical bifurcation point ec , and the behavior near the
saddle-node bifurcation of the amplitudef 0(e) and of the
velocity c0(e) are very well recovered. Note the square-root
behavior near the saddle node.

Let us discuss some systematic features of the isolated
pulses at criticality depending on the equation parametersa
andus , which can be extracted from our approach. Solutions
f 0 of Eq. ~10! exist when the discriminantB224AC is posi-
tive. The amplitude at the saddle nodef c is determined by
the conditionB224AC50. The corresponding bifurcation
parameterec can then subsequently be determined using Eqs.
~12! and~13!. Note that the saddle node, which occurs at the
maximal bifurcation parameterec , is not given by the rela-
tion B224AC50 since the condition of maximale is differ-
ent from that of maximalQ @see for example Eq.~16!#. In
Fig. 3 we showec and the corresponding amplitude at the
saddle nodef c as a function ofus for a50 ~continuous line!

FIG. 2. ~a! Amplitude f 0 as a function ofe. ~b! Velocity c0 as a function ofe. The parameters used wereD53.0, a50.22, andus50.1. The crosses depict
the numerically obtained values of integrating the full system Eqs.~2! and~3!, the lines depict the stable and unstable branch calculated with the test function
approach, i.e., by using Eqs.~10!, ~12!, and~13!.
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for the isolated pulse withVs5Ap/2. The points are results
from a full solution of the one-dimensional version of the
ordinary differential equations~ODEs! @Eqs.~2! and~3!#. In
our approximation the limit of excitability~that is the maxi-
mum of us for which ec→0) is uc5&(81250/&
29A81250&)/5050.4745, which is close to the exact
stall-valueuc50.5. Note thatuc is independent ofa, as it
should. Note also that pulse propagation in the neutrally
stable caseus50 is possible. Moreover, pulses are supported
even for negativeus which we have checked numerically.
We mention that for this calculation it is crucial to take into
account the difference between maximizinge and maximiz-
ing u.

In Fig. 4 we showec and f c as functions ofa for us

50.1. We see that our approximation~continuous line! re-
produces all features of the ODEs~points!. Figure 4 reveals
that arounda51.3 the saddle-node bifurcation ceases to ex-
ist. The velocityc0 approaches zero for these values. This
correlates well with the fact that in the full system pulses
become delocalized arounda51.25, i.e., front and tail of a
pulse separate creating a domain withu51, v51/a, which
represents a locally stable stationary state of the system. As a
matter of fact, the inverse pulse widthw diverges here for
the test function approach.

B. Periodic wave trains

Even if a given set of equation parameters allows for
propagation of a single solitary pulse, the system may not
necessarily support a wave train consisting of several of such
pulses. As a matter of fact, if the distanceL between two
consecutive pulses of the train becomes too small, the pulses
run into the refractory tail of the preceding pulse and con-
secutively decay. The critical wavelengthLc is a lower
bound for the wavelength for the existence of periodic wave
trains. On can also think of keepingL fixed and, as before,
vary e. Then the saddle nodeec(L) is a monotonically in-
creasing function.

One can calculateLc ~or ec) essentially as before, except
for the complication that due toVs @Eq. ~14!#, the expres-
sions for f 0 ,w andc0 , Eqs.~A4!, ~12!, and~A7!, cannot be
cast in closed form depending only onu. This is true even in
the limit of smalla. However, given the equation parameters
e, a, andus one may obtainLc numerically as a consistency
relation requiring that at eachL there exists aQ̃51/(c0w) so
that the value forc0 obtained by solving Eqs.~10! and ~12!

and using the relationc05Q̃/w, matches the value forc0

obtained by solving Eq.~13!. We obtain very good agree-
ment between our test function approach and the numerically
obtained values for the critical wavelengthLc . In Fig. 5 we
show a comparison of the values obtained by integrating the

FIG. 3. Behavior at the saddle node of an isolated pulse fora50. ~a! The
critical f c vs us . ~b! Critical amplitudeec vs us . Points correspond to
simulations of the full one-dimensional version of Eqs.~2! and ~3!. The
continuous line corresponds to the test function approach.

FIG. 4. Behavior at the saddle node of an isolated pulse forus50.1. ~a! The
critical ec vs a. ~b! Critical amplitudef c vs a. Points correspond to simu-
lations of the full one-dimensional version of Eqs.~2! and~3!. The continu-
ous line corresponds to the test function approach.
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full system Eqs.~2! and ~3! with the calculation of the test
function approach as described earlier. The critical wave-
length Lc diverges whene approachesec where the saddle
node of the localized pulse~i.e., L5`) causes propagation
failure of isolated pulses~see Sec. II A and Fig. 2!.

In the remainder of this section we will discuss the limit
of large values ofL, i.e., small perturbations to the saddle
nodeec of the isolated pulse. This causes small shifts of the
critical e, the amplitudef 0 , and velocityc0 when compared
to their respective values in the case of isolated pulses and
L5`. For simplicity, we restrict the calculation to the par-
ticular limit of small a.

We write

Vs5
Ap

2
A11r , r 5sinh22S aeL

2c0
D'4 exp~2aeL/c0!

~17!

and expand in terms of smallr . The correction to the isolated
pulse r is connected to the exponential tail of the inhibitor
from the previous pulse. It thus captures the interaction be-
tween pulses mediated by the inhibitor. At leading order the
shift with respect to the caseL5` of ec , f 0 , andc0 at the
saddle node must be proportional tor . For smalla one finds
at leading order

@ec~`!2ec~L !#/ec~`!5r 5g exp~2aeL/c0!, g54.
~18!

To see this note that the parametersf 0 ,w,c0 are entirely
given as a function ofRªQVs via Eqs.~10!, ~12!, and~13!.
Hence, if we multiply Eq.~16! by Vs

2 , we have four equa-
tions to determine the parametersf 0 ,w,c0 , andR. We ex-
pand f 0 ,R, andec with respect tor around the solutions of
the isolated pulse. In particular, we writeec(L)5ec(`)
1r e1 . The first-order correctione1 can be entirely deter-
mined using

coth2
aeL

2c
e5R2f

1

A6
F12

1

)
f G , ~19!

where we deliberately ignored the subscripts to denote thatf
andc need to be expanded inr . The saddle-node condition
de/d f50 implies that the derivative of the right-hand side of
Eq. ~19! with respect tof vanishes atr 50, and we obtain the
first-order correctione1 leading to Eq.~18!. This result is
confirmed by our numerical simulations. We have deter-
mined the shift ofec due to finite wave lengthL for a→0
and us50.1 numerically from the ODEs and findg54.3.
This shows the accuracy of our test function approach for the
saddle node shift. The leading-order approximation for the
saddle node behavior is good down to aboutaL540. For
a50.22 we find numericallyg55.5.

In Sec. IV we will touch on some questions of stability
of the wave train solutions near the saddle node.

III. GROWING VELOCITY AND RETRACTING FINGERS
IN TWO-DIMENSIONAL EXCITABLE MEDIA

In this section we develop a two-dimensional extension
of the test function approach. We study isolated finger solu-
tions, i.e., solutions which in the2y direction go over into
an isolated pulse~moving with velocityc0 in thex direction!
and rapidly decay to zero in the1y direction. In they co-
ordinate they may be regarded as fronts, which grow or re-
tract with velocitycg ~see Fig. 6 for a retracting case!. We
derive an explicit formula for the growing velocitycg . We
now investigate the full two-dimensional system~2! and ~3!
in a frame moving with velocity (c0 , cg).

We introduce a product ansatz for the activator field

u~x,y!5 f ~y!U~h! ~20!

FIG. 5. ~a! The critical wavelengthLc as a function ofe. Crosses depict the values obtained by direct simulation of the full system Eqs.~2! and~3!. Squares
depict the values obtained by the test function approach described in Sec. III. Parameters are againD53.0, a50.22, andus50.1. In ~b! the same numerical
results as in~a! are presented but here the data points corresponding to the test-function approach are shifted along thee axis such that the saddle nodes at
Lc5` ~see Fig. 2!, coincide.
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with test functionU(h). This approximation neglects pos-
sible curvature at the tip. Again, we avoid any further uncon-
trolled approximation and solve forf (y) and v(x,y) in a
systematic way. Note thatf (y) replaces the constantf 0 in
Eq. ~4!. The solution of Eq.~3! with the ansatz Eq.~20! can
be written explicitly as

v~h,y!52Q Èh
eaQ(h2s) f H 1

D F cg

c0w
~s2h!1yDG J

3UH 1

D Fs1S cg

c0wD 2

h G J ds, ~21!

whereD511(cg /c0w)2. Further calculations with this full
expression appear prohibitive. Since we are mainly inter-
ested in the reversal point ofcg we resort to an~asymptotic!
expansion in powers ofcg , restricting ourselves here to the
first two terms. From Eq.~21! one obtains

v~h,y!5Q@g0~y!V0~h!1cgg1~y!V1~h!1O~cg
2!#,

~22!

where

g0~y!5 f ~y! and g1~y!5 f 8~y!. ~23!

V0(h) coincides withV(h) of Eq. ~5! with V!50 and L
5` @or, for smalla, with Eq. ~14!# and

V1~h!52
1

c0w
eaQh Èh

e2aQh8V0~h8!dh8. ~24!

Note that the first-order correction of the inhibitor Eq.~24!
can also be obtained by inserting the ansatz Eq.~22! into Eq.
~3! and solving for successive orders ofcg .

Repeating the procedure that led to Eq.~8! for f 0 , i.e.,
multiplying Eq. ~2! with U(h) and integrating overh, we
obtain using Eq.~23!

D f 91cgf 81F~y! f 50 ~25!

with

F~y!5$2Dw2^Uh
2&1^U2@12 f ~y!U#@ f ~y!U

2Q@ f ~y!V01cgf 8~y!V1#2us#&%/^U
2&. ~26!

Note that forf (y)[ f 06 , wheref 06 are the solutions of the
quadratic Eq.~10!, we haveF(y)50.

We first neglect the higher-order correction of the inhibi-
tor field V1(y). Then F is a quadratic form inf (y) with
zerosf 06 , and Eq.~25! can be solved exactly with the an-
satz

f 8~y!5a f ~ f 2 f 0!, ~27!

which states that far away from the tipf (y) is constant and
takes values 0 orf 0 . The constant of proportionalitya can
be determined. Using Eq.~27! we obtain for the growing
velocity

cg05AD

2
A^U4&2Q^U3V&

^U2&
~ f 0122 f 02!. ~28!

The pointcg050 is fixed by the conditionf 0152 f 02 . The
value fore wherecg050 which we denote byeg , matches
very well the value obtained by numerically integrating the
full two-dimensional system Eqs.~2! and ~3!. However, the
behavior for nonzero growing velocities is not captured by
Eq. ~28!. In fact, the slope]cg0 /]e close to the reversal
point is too small by an order of magnitude for the param-
eters used in Figs. 1, 2, 5, and 6 when compared to the values
obtained by the full two-dimensional simulation.

To obtain the correct slope we need to take into account
the correctionV1(h) of the inhibitor field. Including the
first-order correctionV1(h) in Eq. ~25! we solve for cg

analogously to the determination ofc0 in Sec. II by multi-
plying Eq. ~25! by f 8(y) and subsequently integrating over
y. To O(cg) we obtain

cg5cg0

1

11 1
2 G0f 01 3

10 G1f 0
2

, ~29!

where

G052Q
^U2V1&

^U2&
and G15Q

^U3V1&

^U2&
. ~30!

As expected the higher-order correctionsG0 andG1 do not
change the value ofeg , but change the slope of]cg /]e. In
Fig. 7 we show a comparison of the test function approach
and of Eq.~29! with numerically obtained data. The corre-
spondence close tocg50 is striking. To obtain better agree-
ment further away fromcg50 one would have to include
higher-order terms in expression~22!.

IV. SUMMARY AND DISCUSSION

We have developed a nonperturbative method to study
critical wave propagation of single pulses and periodic wave
trains in one and two dimensions. The method is based on
the observation that near the bifurcation point the pulse
shape is close to a symmetric bell-shaped function. A test
function approximation, optimizing the two free parameters

FIG. 6. Contour plot of the activatoru of a retracting finger at different
times.
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of a bell-shaped function, i.e., amplitude and width, allows to
calculate the wave speed of a critical and close-to-critical
pulse. We were able to study propagation failure of isolated
pulses and wave trains, and moreover the test is capable of
capturing more general features such as the transition from
excitability to bistability. We have also performed our test
function method with a more general class of nonsymmetric
test functions to calculate the pulse parameters and veloci-
ties. It turns out that near the saddle node the asymmetry
indeed becomes irrelevant.

We extended our method to two-dimensional situations,
and used it to study broken fronts. Depending on parameters
these fingers may either retract or sprout and start spiraling.
We studied the growing velocity of a critical finger whose
growing velocity is close to zero. Our test function method
combined with a separation ansatz for the two-dimensional
finger tip yields analytical expressions for the growing ve-
locity which depend only on the equation parameters and
which are for large parameter ranges in good agreement with
the numerically obtained values. We elaborated on the im-
portance of the inhibitor field for the growing velocity.

Let us finally mention an interesting observation for one-
dimensional wave trains. Below some~rather large! pulse
separation~wavelength! the wave train looses stability not
via a saddle node but via a Hopf bifurcation. This may be
seen in numerical simulations of the full system Eqs.~2! and
~3! ~and also of other excitable media equations such as the
Fitzhugh–Nagumo equation! and in analytical approxima-
tions, either based on a time-dependent generalization of the
test function approach or on a systematic reduction scheme
valid near the saddle node. At the codimension two point
where the saddle node of the wave train coincides with the

Hopf bifurcation the Hopf frequency becomes infinite. This
time-dependent phenomenon can of course not be captured
within the current stationary algebraic framework. This phe-
nomenon and its implications will be published separately.
For completeness we have included a time-dependent exten-
sion of the test function approach which allows for Hopf
bifurcation in the Appendix. This seems to be related to the
phenomenon of alternans7 which has been studied in a dif-
ferent parameter regime far away from the saddle node.8

Another interesting problem we plan to address is the
selection of the wavelength~or pitch! of spirals. In simula-
tions we found that neareg , where growth of fingers be-
comes small, the selected wavelength diverges. Kinematic
theory11,12,22,23addresses this problem. Kinematic theory pro-
vides, in principle, a relationship between the rotation fre-
quency of a spiral and its core radius. However, it fails to
provide expressions for either of the two which only depend
on the equation parameters. A connection of our theory with
kinematic theory is planned for further research to fill this
gap.
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APPENDIX: TIME-DEPENDENT SYSTEM FOR WAVE
PROPAGATION OF PULSES AND PERIODIC
WAVE TRAINS IN ONE-DIMENSIONAL EXCITABLE
MEDIA

In this appendix we present the time-dependent calcula-
tion for our test function approach. For simplicity we restrict
ourselves to small values ofa. This means that the width of
the activator pulseu is small compared to the width of the
decaying inhibitor fieldv. We include now temporal depen-
dency of the pulse variablesf 0 ,c0, andw. We study pulse
trains and note that the localized pulse can be obtained in the
limit L→`. Hence, we chooseu of the form

u~x!5(
0

N

f n~ t !U~hn!. ~A1!

The sum extends over allN pulses. We definedhn5wn(t)
3@x2fn(t)# and U(h) is chosen as a Gaussiane2h2

as
earlier. We allow for individual dynamics of the pulses char-
acterized by the amplitudef n(t), the inverse widthwn(t),
and the positionfn(t). For a stationary wavetrain thef n and
wn will be constant and all equal, andfn5n(c/L)t, wherec

FIG. 7. Growing velocitycg as a function ofe. The crosses depict the values
obtained by direct numerical integration of Eqs.~2! and~3!. The continuous
line shows the theoretical curve Eq.~29! using the test function approach of
Sec. IV A. We have shifted the curve along thee axis by the difference of
the e valuesDe50.001 972 for the saddle nodes obtained by the numerical
simulations of the full system Eqs.~2! and ~3!, and the test function ap-
proach of Sec. II.
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is the velocity. We will restrict ourselves to the situation
where the perturbations around such a state are small and
slowly varying. We insert the ansatz Eq.~A1! into the gen-
eral expression

v~ t,x!52e È t

e2ea(t82t)u~ t8,x!,dt8

obtained from the second Eq.~1!. Assuming that the~tempo-
ral! inverse pulse width (wncn)21 is small compared to the
inhibitor decay time (ea)21, we obtain the following expres-
sion valid in the vicinity of then50 pulse, which is assumed
to pass the origin att50

v~h0!5e
f 0

w0c0
F1

2
^U&2E

0

h
dh8U~h8!G

1e^U&(
l 51

`

e2 l eaL/cl
f l

wlcl
1s0E

0

h
dh8h8U~h8!,

~A2!

where the brackets indicate integration over the wholeh do-
main, and

s052e$] t@ f 0 /~c0w0!#%/~w0f 0!. ~A3!

In order to determinef n , wn , andcn we again project
Eq. ~2! onto U(h), hU8(h), andU8(h). After combining
the first two equations appropriately one obtains

^U2&S ḟ 0

f 0
2

ẇ0

w0
D 52us^U

2&1
5

6
~11us!^U

3& f 0

2
3

4
^U4& f 0

22S ^U2&2
5

6
^U3& f 0DVp

2S 5

6
^U3&2

3

4
^U4& f 0D s0

2
, ~A4!

^U2&
ẇ0

w0
52Dw0

2^U82&1
1

3
~11us!^U

3& f 02
1

2
^U4& f 0

2

1
1

3
^U3& f 0Vp2S 1

3
^U3&2

1

2
^U4& f 0D s0

2
,

~A5!

where

Vp5e^U1&S 1

2

f 0

c0w0
1(

l 51

`

e2 l eaL/cl
f l

wlcl
D . ~A6!

The third projection gives an algebraic relation

c0w0^U82&5
e f 0

c0w0
S 1

2
^U3&2

f 0

3
^U4& D . ~A7!

These equations are written for the pulsen50. They apply
correspondingly to the other pulses.

First consider the case of a stationary, isolated pulse (L
5`) wheres050 and the sum in Eq.~A6! vanishes. The
resulting algebraic relations are easily solved, and corre-
spond in the limit ofa→0 to Eqs.~10!, ~12!, and~13!. With
reasonable initial conditions, simulation of the ODEs Eqs.
~A4!, ~A5!, together with~A7! leads to the same result as
described in Sec. II. The ODEs Eqs.~A4! and ~A5! relax to
the stationary values obtained in Sec. II.

This time-dependent test function approach allows to go
beyond the stationary bifurcations discussed in Sec. IV. As
mentioned in Sec. II the saddle-node bifurcation related to
propagation failure for well separated pulses transforms into
a subcritical Hopf bifurcation via a Takens–Bogdanov point
when the pulse separation is reduced below a critical value
Lc . This work will be published elsewhere. The Hopf bifur-
cation can be captured within the ODE system Eqs.~A4!,
~A5!, and~A7!, and some preliminary simulations have been
done.
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