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We present a nonperturbative technique to study pulse dynamics in excitable media. The method is
used to study propagation failure in one-dimensional and two-dimensional excitable media. In
one-dimensional media we describe the behavior of pulses and wave trains near the saddle node
bifurcation, where propagation fails. The generalization of our method to two dimensions captures
the point where a broken frofr fingep starts to retract. We obtain approximate expressions for the
pulse shape, pulse velocity, and scaling behavior. The results are compared with numerical

simulations and show good agreement.28004 American Institute of Physics.
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Excitable media are often found in biological and chemi-
cal systems. Examples of excitable media include electri-
cal waves in cardiac and nerval tissué;> cAMP waves in
slime mold aggregation® and intracellular calcium
waves? Excitable media support localized pulses and pe-
riodic wave trains. In two dimensions rotating vortices
(or spirals) are possible® The critical behavior of pulses,
wave trains, and spirals, i.e., propagation failure, is often
associated with clinical situations. The study of spiral
waves is particularly important as they are believed to be
responsible for pathological cardiac arrhythmias® Spiral
waves may be created in the heart through inhomogene-
ities of the properties of the cardiac tissue. We investigate
critical behavior relating to these three wave types. We
develop a nonperturbative test function method which
allows to study the bifurcation behavior of critical waves.
In particular, we study under what conditions a broken
front will sprout and develop into a spiral wave or re-
tract. Analytical formulas for the growing velocity of a
broken front are given. For wave trains we provide a time
dependent extension which supports a Hopf bifurcation
which is also observed in numerical simulations of excit-
able media. This seems to be related to alternarfs which
also are discussed in the context of cardiac electric pulse
propagation. The methods and results are general, and
can be applied to other excitable media.

I. INTRODUCTION

Many chemical and biological systems exhibit excitabil-
ity. In small [zero-dimensionalOD)] geometry they show

ing in wavelengthL from the localized limitL—o to a
minimal valueL.. Pulses and wave trains are best known
from nerve propagation along axons. In two dimensi@i3)

one typically observes spiral waves. Spirals have been ob-
served for example in the autocatalytic Belousov—
Zhabotinsky reaction,in the aggregation of the slime mold
dictyostelium discoideum,and in cardiac tissue.

For certain system parameters the propagation of pulses,
wave trains or the development of spiral waves may(&sk
for example Refs. 9 and 10The analytical tools employed
to describe these phenomena range from kinematic
theory!*? asymptotic perturbation thedriy**to dynamical
systems approaché!’ However, no theory exists which
describes propagation failure using only equation param-
eters, and which reproduces the behavior close to the bifur-
cation point. For example, asymptotic perturbation theory
fails to describe the square-root scaling behavior of the am-
plitude and the pulse velocity with respect to the bifurcation
parameter at the bifurcation point. In kinematic theory results
are not given entirely in terms of the system parameters. In
this paper we develop a nonperturbative method to study
propagation failure and compare the results with numerical
simulations.

Most theoretical investigations are based on coupled
reaction-diffusion models. We follow this tradition and in-
vestigate a two-component, two-dimensional excitable me-
dium with an activatou and a nondiffusive inhibitov de-
scribed by

Jdu=DAuU+FHu,v), Fuv)=u(l-u)(u—ug—v),

@

div=¢€e(u—av).

threshold behavior, i.e., small perturbations immediately deThis is a reparametrized version of a model introduced by
cay, whereas sufficiently large perturbations decay only afteBarkley'® We expect our method to be independent of the

a large excursion. One-dimensiondD) excitable media

particular model used. Note that the diffusion constans

support traveling pulses, or rather, periodic wave trains rangnot a relevant parameter as it can be scaled out by rescaling
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the length.
This model incorporates the ingredients of an excitable
system in a compact and lucid way. Thus, QF0 the rest
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stateupg=v,=0 is linearly stable with decay rates;=ug;  the activatoru is well separated in two flat plateau regions
along the activator direction and,= ea along the inhibitor ~ with u~1 andu=0 which are separated by a steep narrow
direction. Perturbingu above the thresholdg (in 0D) will front. This approach does not capture the square-root behav-
lead to growth ofu. In the absence af the activator would ior of cy(€) close to the saddle-node bifurcation point. Close
saturate ati=1 leading to a bistable system. A positive in- to the bifurcation point the solution resembles rather a bell-
hibitor growth factore anda>0 forces the activator to decay shaped pulse than a plateau. In this paper we will be con-
back tou=0. Finally, also the inhibitor with the refractory cerned with the behavior near the bifurcatioreatind make
time constant ¢ a)~* will decay back tov=0. For a  explicit use of the observed bell-shape form of the solution.
>1/(1—uy) the system is in zero-dimensional systems noThis allows us to describe the scaling behavior close to the
longer excitable but instead bistable. This relaxation behavbifurcation in terms of the equation parameters.
ior in the OD system for superthreshold perturbations gives  In two dimensions spiral waves are observed. Spirals can
rise to pulse solutions in the 1land 2D case. The relax- be created in excitable media from a finger, i.e., a 1D pulse
ation mechanism mediated by the inhibitor forces the pulsavhich is extended in the second dimension and has one free
solution to decay in its back. Hence, we observe pulses ignd. Fingers may be created due to inhomogeneities in the
excitable media and not fronts. excitability of the system’ At long times, the free end will
The Barkley model is a variant of the class of two- €ither sprout or retract depending on the growing velocity
component Fitzhugh—Nagumo models. In the traditionakeing positive or negative. ;> 0, the tip of the finger will
Fitzhugh—Nagumo model&(u,v) in Eq. (1) is replaced by sprout into the fresh medium, and in particular it sprouts and
Fen(U,v)=u(l—u)(u—ug)—v. Thus, the nulliclines curves backwards. This causes a nonvanishing curvature at
F(u,v)=0, which in the traditional Fitzhugh—Nagumo mod- the tip of the finger. Due to the increased curvature the finger
els are cubic polynomials, are replaced by straight lines ifiip is slower than the flat part of the front further away from
the Barkley model. Most of the qualitative behavior in the the tip. Thus, the extending part far from the tip will curl up.
relevant parameter ranges is unchanged by this. Whereas tfh&is leads to the formation of a spiral with the free end at its
Barkley model is computationally more efficient and alsocore. The criteriorcg>0 is therefore a necessary criterion
analytically better tractable, the traditional Fitzhugh— for spiral formation.
Nagumo models display a feature which makes them more The transition to retraction always occurs before the 1D
realistic for the description of excitable media in biology: thePropagation failure. It is harder to tackle analytically. Gen-
activator experiences an undershoot below its equilibriunfral and universal dynamical system approaches exploiting
value and slow decay in the tail region of a pulse. We expec®nly the Euclidean symmetry of excitable media describe the
that for the phenomena discussed in this paper the differendéansition as a drift bifurcation. These model independent
only leads to quantitative changémdeed, we have done theories give an explanation for the divergence of the core
some tests to verify this assertjon radius at the bifurcation point and also explain why a finger
In order to study pulse propagation in 1D it is useful to @t the bifurcation point is translating with finite speed, i.e.,
first consider the case of constant The resulting bistable that the transition to retracting fingers always occurs before
model is exactly solvabl8 and the pulse velocity is;(v) ~ the 1D propagation failur€’ Unfortunately, it has the un-
= D/2[1—2(us+v)]. Hence, excitability requires that, physical _result that at th_e bifurcation poirt; a _splral
is below the stall valug. The quantityA = i—ug character- changes its sense of rotatibhWhereas these theories treat

izes the strength of excitability arg(0) coincides with the the spiral as a global solution of the underlying equations
solitary pulse velocity foe—0. and see the transition to spiral waves as a pitchfork or drift

Clearly, foru,<u,= £ and not too large, pulse propa- bifurcation!®'” we take a local approach and describe the
gation fails for e larger than some,. The critical growth

transition not as a bifurcation but as a quantitative change in
factor e, describes the onset of a saddle-node bifurcattda.

the velocity of the finger, analogous to a Maxwell point in a
The saddle node can be intuitively understood when we corfirst-order phase transition. Asymptotic techniques in the
sider the activator pulse as a heat source, not unlike a firdl

imit e<1 have also been performed for this probtén?
front in a bushfire. Due to the inhibitor the width of the pulse @1d produced an analytical expression for the onset of retrac-
decreases with increasirgHence, the heat contained within 10N for smalle. Moreover, the authors were able to go one
the pulse decreases. At a critical width, or a critieathe step further, in a detailed and sophisticated asymptotic analy-

heat contained within the pulse is too small to ignite/exciteSiS: @nd described the onset of meandering. In this paper we
the medium in front of the pulse. go beyond the restriction of smad and propose a more

For periodic wave trains the saddle node depends on thi@tuitive approach to the problem of the growing velocity
wavelength. The pulses run into the inhibitor field of their Which nevertheless gives good agreement with the numerics.
respective preceding pulse. Hence, propagation failure for N the following we assume given excitability param-
periodic wave trains is controlled by the decay of the inhibi-Et€rsa, Us and takee as the bifurcation parameter. We will
tor and propagation is only possible when the interpulse dis2€ 100king for solutions that move with velocitg in the x
tanceL becomes larger than a critical wavelength. Note  direction and may growor retract with velocity ¢4 in they
thatL, diverges fora—0 when the decay rate of the inhibi- direction. Thus, we rewrite Eq¢l) in a frame moving with
tor o, vanishes. velocity (Co, ¢g) as

In previous analytic works on one-dimensional pulses
the limit of smalle was considered-*3Then the solution of D(5+ dZ)u+ Codyu+ Cdyu+ F(u,v) =0, (3]
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Codxv +Cqdyv + e(u—av)=0. 3 0.9

Il. PULSE PROPAGATION IN ONE-DIMENSIONAL 0.8}
EXCITABLE MEDIA 07

We first look for pulse and wave train solutions that do
not depend ory. The reason for the failure to describe the .~ 0.6}
pulse properties a¢. within the framework of asymptotics 5 05}
employing the smallness efis due to the fact that at, the >
pulse shape fou cannot be separated into a steep narrow ~— 0.4}
front and a flat plateau. Hence, asymptotic techniques such >
as inner and outer expansions are bound to fail. Instead the 35 037 _
pulse has the shape of a rather symmetric bell-shaped func- 02l = g
tion (see Fig. L In the following we make explicit use of the
shape of the pulse close to the critical point and parametrize 0.1¢
the pulse appropriately; a method reminiscent of the method

of collective coordinates in the studies of solitary wates. 0 . .
We chooseu of the general form 550 600 650
u(x)=foU(n) with n=wx, (4) X

whereU(») is chosen as a symmetric, bell-shaped function, _ , ,
for example a Gaussian, of unit width and height. Hence, we'C: 1 Activator fieldu of a steady front withe~e at €=0.0485. The

. . . _points depict the solution obtained by numerically integrating Efjs.The
restrict th.e sgluuons to a subspace of bel!—shaped functiongntinuous line is the theoretical curve obtained with the test function ap-
U(#n) which is parametrized by the amplitudg and the proach. Note that hereis not even very close te,~0.049.
inverse pulse widtlw. The aim of our method is to deter-
mine the so far undetermined parameters. This is done by

minimizing the error made by the restriction to the subspace_ _ .
defined by Eq(4). =U anddu/gw=nU, . This assures that the error made by

restricting the solution space to the test functions is mini-
mized. To achieve this, we multiply E@2) with the basis
functions of the tangent-spad¢ and U, , integrate over
the » domain and require the projection to vanish, i.e.,

We avoid further uncontrolled approximations and solve
for the inhibitor fieldv explicitly

v(9)=f0V(7) with
(Dwzum]+u(l—u)(u—us—v)|U)u:f0U(,7)=0, (8)

7
V(7)=e297 V*—f dy'e 207'y(y’ }, 5
(7) ow T (7") © {Dwzun,,+u(l—u)(u—us—v)|7/U’>u=fou(,,)=0, 9
where where the brackets indicate integration over the whptio-
O =el(Cow). (6) main. The terms proportional to the velocity vanish.

. ) ) oo . The resulting equations can be combined to give, at fixed
V* is determined via the periodic boundary condition g anda, a quadratic equation fdf, with two solutionsf ..
v(=wL/i2)=v(wL/2) and is which describe the stable and unstable branch, respectively

1 L/2w , (see later for a subtle issue at the saddle node obtain
V*= f dn/eaG)(r] 7L/2W)U(7]r).
ZSin)'( a@%w) e Af3+Bfy+C=0, (10
(7  Where

We assume that the widtiv~! is small compared to the 3, . 50 a®*
distance between two consecutive pulkesn the temporal A= (U7 = o (UV) = —=(7U°V),
domain this means that the time scale for the decay of the
inhibitor is much longer than the activator pulse width. This
assures that the activator field of consecutive pulses is well
separated and only the inhibitor field overlaps, and that the
interaction between pulses is mediated only through the in-  C=ug(U?). (11)
hibitor. Otherwise we would have to choose periodic func- L .

. . ) The corresponding inverse width parameters for the
tions U(#n). However, in this case we can now replace theStable and unstable branch are given by

limits of integration = (L/2)w by *oo. For the isolated

5 a0?
B=— 5 (1 Us(U%)+O(UAV) + ——(nU?V),

pulse, i.e., wher.— o, V* vanishes. ) 1 5 . . 5
We now determine the parametdgsandw by project- w :m{fo[_w )+ OUV) ]+ o[ (1+ug)(U7)

ing Eq. (2) onto the tangent space of the restricted subspace K

defined by Eq(4). The tangent space is spanneddu/ df, —0(U2V)]—ug(U?). (12)
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FIG. 2. (a) Amplitude f, as a function ofe. (b) Velocity c, as a function ofe. The parameters used webe=3.0, a=0.22, andug=0.1. The crosses depict
the numerically obtained values of integrating the full system E2jsand(3), the lines depict the stable and unstable branch calculated with the test function
approach, i.e., by using Eggl0), (12), and(13).

The velocityc, can now be determined in the standard way 3 5
by multiplying Eq. (2) by u, and integrating ovex. We A= \/;<§— OV,
obtain 6v3

o JE=Fuv)udx 5 1 \/E

=T F Zdx B=1/m T o (LHuIT OVl C=y/zu, (19

=— ﬂ f—o((U4)—a®<U3V))— £(<U3> and from Eq.(13) we infer
w(U?)| 3 2
=02f - 1 : f (16)
—a@(U2V>)} (13 €= °J6 3o

Finally, we can determinefrom e=cow®. Multiplying Eq.  A. Isolated pulses
(13) by w one sees that can be computed without calculat- We consider now isolated pulses for which the wave-

ing w andc,. ) lengthL is large compared to the decay length of the inhibi-
We will use a Gaussiald=e" " as an ansatz function tor 1/(ea). In Figs. 1 and 2 we show a comparison of our

(4). Note that other symmetric bell-shaped functions such agagits Eqs(10), (12), and (13) for fy, w, andcy, with a

a sechfunction, are possible, too. Then one h&d")  girect numerical simulation of Eqél). The pulse shape, the

=/m/n and(U?%)=(U? = \/m/2. The parameters of the test critical bifurcation pointe., and the behavior near the

function f, andw, and the front velocityc, can now be  saddie-node bifurcation of the amplitudg(e) and of the

determined numerically using Eq4.0), (12), and(13). velocity co(€) are very well recovered. Note the square-root
Simplifications are pOSSib|e in the useful ||rﬁha< 1.In beha\/ior near the Sadd'e node_
this limit the (tempora) inverse pulse width W,c,) " is Let us discuss some systematic features of the isolated

small compared to the inhibitor decay timea) ~* [see defi-  pulses at criticality depending on the equation parameters
nition of Eq.(6)]. Then in Eqs(11) and(13) the terms pro-  andug, which can be extracted from our approach. Solutions
portional toa can be omitted, and for the calculation of f, of Eq. (10) exist when the discriminaB?—4AC is posi-
(U"V) one can omit the exponentials in Refs. 5 and 7 leadtive. The amplitude at the saddle nofleis determined by
Ing to the conditionB?—4AC=0. The corresponding bifurcation
. N ael parameteg. can then subsequently be determined using Egs.
V( n)zvs—f U(n')dn', Vs=—5-coth —]. (12) and(13). Note that the saddle node, which occurs at the
0 2 2o maximal bifurcation parametet;, is not given by the rela-
(14) tion B>—4AC=0 since the condition of maximalis differ-
Note thatV=/7/2 corresponds t&/*=0 [see Eq. for  ent from that of maxima® [see for example Eq16)]. In
smalla. Now V can be replaced by the constaftin (U"V) Fig. 3 we showe. and the corresponding amplitude at the
(the rest is an odd functigreading to saddle nodé as a function ofig for a=0 (continuous ling
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) ) FIG. 4. Behavior at the saddle node of an isolated pulseder0.1. (a) The
FIG. 3. Behavior at the saddle node of an isolated puls@fe. (&) The  (yitical ¢, vs a. (b) Critical amplitudef, vs a. Points correspond to simu-

critical fc vs us. (b) Critical amplitudee. vs us. Points correspond 0 |ations of the full one-dimensional version of E48) and(3). The continu-
simulations of the full one-dimensional version of E¢®) and (3). The ous line corresponds to the test function approach.

continuous line corresponds to the test function approach.

B. Periodic wave trains

for the isolated pulse WitV = \/w/2. The points are results Even if a given set of equation parameters allows for
from a full solution of the one-dimensional version of the Propagation of a single solitary pulse, the system may not
ordinary differential equation€ODES [Egs.(2) and (3)]. In necessarily support a wave train consisting of several of such
our approximation the limit of excitabilitythat is the maxi- Pulses. As a matter of fact, if the distantebetween two
mum of us for which e.—0) is u,=vZ(81-50s2  COnsecutive pulses of the train becomes too small, the pulses

—9./81-50v2)/50=0.4745, which is close to the exact MUn into the refractory taillt_)f the preceding pulse and con-
stall-valueu,=0.5. Note that, is independent of, as it  S€cutively decay. The critical wavelength, is a lower
should. Note also that pulse propagation in the neutrallyPound for the wavelength for the existence of periodic wave
stable case,=0 is possible. Moreover, pulses are supported"@ns. On can also think of keepirigfixed and, as before,
even for negativeu, which we have checked numerically. V&Y € Then the saddle node(L) is a monotonically in-
We mention that for this calculation it is crucial to take into €réasing function.

account the difference between maximiziagnd maximiz- One can calculate, (or «.) essentially as before, except
; for the complication that due t¥, [Eqg. (14)], the expres-
ing 6. s

In Fig. 4 we showe, and f. as functions ofa for u, ~ Sions forfo,w andc,, Egs.(A4), (12), and(A7), cannot be
=0.1. We see that our approximatiéeontinuous ling re- castlln_closed form dependlnglonly onThis |s_true even in
produces all features of the ODEsoints. Figure 4 reveals the limit of smalla. Howe\{er, given t_he equation pargmeters
that arounda= 1.3 the saddle-node bifurcation ceases to ex-& & andus one may obtairk.. numerically as a consistency
ist. The velocityc, approaches zero for these values. Thisrelation requiring that at eadhthere exists & = 1/(cow) so
correlates well with the fact that in the full system pulsesthat the value foc, obtained by solving Eq€10) and(12)
become delocalized arours=1.25, i.e., front and tail of a and using the relatior,=®/w, matches the value for,
pulse separate creating a domain witk 1, v=1/a, which  obtained by solving Eq(13). We obtain very good agree-
represents a locally stable stationary state of the system. Asraent between our test function approach and the numerically
matter of fact, the inverse pulse width diverges here for obtained values for the critical wavelendth. In Fig. 5 we
the test function approach. show a comparison of the values obtained by integrating the
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FIG. 5. (a) The critical wavelengtlt. as a function of. Crosses depict the values obtained by direct simulation of the full systen{Z@sd(3). Squares
depict the values obtained by the test function approach described in Sec. Ill. Parameters dPe=cg)ira=0.22, andus=0.1. In(b) the same numerical
results as ina) are presented but here the data points corresponding to the test-function approach are shifted alerig thech that the saddle nodes at
L.=o (see Fig. 2, coincide.

full system Eqs(2) and(3) with the calculation of the test ael 1 1
function approach as described earlier. The critical wave- cotﬁxe= R —|1— —f
length L. diverges where approaches. where the saddle G V3

node of the localized pulsg.e., L==) causes propagation where we deliberately ignored the subscripts to denotefthat
failure of isolated pulseésee Sec. Il A and Fig.)2 andc need to be expanded m The saddle-node condition
In the remainder of this section we will discuss the limit 4¢/df=0 implies that the derivative of the right-hand side of
of large values oL, i.e., small perturbations to the saddle Eq. (19) with respect tdf vanishes at =0, and we obtain the
nodee, of the isolated pulse. This causes small shifts of thefirst-order correctione; leading to Eq.(18). This result is
critical €, the amplitudef,, and velocityc, when compared  confirmed by our numerical simulations. We have deter-
to their respective values in the case of isolated pulses anglined the shift ofe. due to finite wave length. for a—0
L=o. For simplicity, we restrict the calculation to the par- and u,=0.1 numerically from the ODEs and fingl=4.3.
ticular limit of smalla. This shows the accuracy of our test function approach for the

, (19

We write saddle node shift. The leading-order approximation for the
J7 ael saddle node behavior is good down to abault=40. For
VS:T vi+r, r=sinh2(f> ~4 exy —ael/cgp) a=0.22 we find numericallyy=>5.5.
0

17) In Sec. IV we will touch on some questions of stability
of the wave train solutions near the saddle node.

and expand in terms of smaill The correction to the isolated

pulser is connected to the exponential tail of the inhibitor

from the previous pulse. It thus captures the interaction be—II GROWING VELOCITY AND RETRACTING FINGERS

tween pulses mediated by the inhibitor. At leading order the

shift with respect to the cade=» of ., fy, andcg at the N TWO-DIMENSIONAL EXCITABLE MEDIA

saddle node must be proportionalrtoFor smalla one finds

at leading order
[€c(®)—€ec(L)]/e(0)=r=yexp —aellcy),

In this section we develop a two-dimensional extension
of the test function approach. We study isolated finger solu-
y=4. tions, i.e., solutions which in the y direction go over into

(18) an isolated pulsémoving with velocityc, in the x direction
and rapidly decay to zero in they direction. In they co-
ordinate they may be regarded as fronts, which grow or re-
tract with velocityc, (see Fig. 6 for a retracting caséVe
derive an explicit formula for the growing velocity,. We
now investigate the full two-dimensional systé&) and(3)
in a frame moving with velocity ¢,, c,).
We introduce a product ansatz for the activator field

ux,y)=f(y)u(n) (20)

To see this note that the parametégsw,c, are entirely
given as a function oR:=®V, via Egs.(10), (12), and(13).
Hence, if we multiply Eq.(16) by V§, we have four equa-
tions to determine the parametdigw,cy, andR. We ex-
pandfy,R, ande. with respect tar around the solutions of
the isolated pulse. In particular, we write,(L)= e.()
+re,. The first-order correctiore; can be entirely deter-
mined using
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FIG. 6. Contour plot of the activatar of a retracting finger at different
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with
F(y)={-DwXU?%)+(UZ1-f(y)U][f(y)U

—O[f(y)Vo+cyf' (y)Vil—us)}/(U?).  (26)

Note that forf(y)=f,. , wheref,. are the solutions of the
quadratic Eq(10), we haveF(y)=0.

We first neglect the higher-order correction of the inhibi-
tor field V,(y). ThenF is a quadratic form inf(y) with
zerosfy., and Eq.(25 can be solved exactly with the an-
satz

f'(y)=af(f—fo), (27)

which states that far away from the tfify) is constant and
takes values 0 ofy. The constant of proportionalityg can
be determined. Using Eq27) we obtain for the growing
velocity

D [uH—-e(udv
Cgo= \/; %(fm_z%—)- (28)

The pointcy,=0 is fixed by the conditiorfy, =2f,_. The
value for e wherecyo=0 which we denote by, matches
very well the value obtained by numerically integrating the
full two-dimensional system Eq$2) and (3). However, the

with test functionU( 7). This approximation neglects pos- behavior for nonzero growing velocities is not captured by
sible curvature at the tip. Again, we avoid any further uncon-Eg. (28). In fact, the slopedcy,/de close to the reversal

trolled approximation and solve fdir(y) andv(x,y) in a
systematic way. Note thdt(y) replaces the constarft, in
Eq. (4). The solution of Eq(3) with the ansatz Eq.20) can
be written explicitly as

7 1
v(n,y>=—@f ea<~)<n—s>f[K

2
Cq ,
CoW

% +yA
COW(S n)+y

><UA

S+

] ds, (21

whereA=1+(cg/c0w)2. Further calculations with this full
expression appear prohibitive. Since we are mainly inter-

ested in the reversal point of, we resort to arfasymptoti¢
expansion in powers aofy,
first two terms. From Eq(21) one obtains

v(1,Y)=0[do(y)Vo(7)+Cy91(Y)Vi(n) + O(Cé)],( :
22
where

go(y)=f(y) and gi(y)="f'(y). (23

Vo(7n) coincides withV(#%) of Eq. (5) with V*=0 andL
=oo [or, for smalla, with Eq. (14)] and

1 7 ,
Vl(n)=——ea®”f e 297 Vo(7')dy'. (24)
CoW o

Note that the first-order correction of the inhibitor Eg4)
can also be obtained by inserting the ansatz(Eg). into Eq.
(3) and solving for successive orders @f.

Repeating the procedure that led to E8). for f,, i.e.,
multiplying Eq. (2) with U(#) and integrating ovem;, we
obtain using Eq(23)

Df"+cqf ' +F(y)f=0 (25)

restricting ourselves here to the

point is too small by an order of magnitude for the param-
eters used in Figs. 1, 2, 5, and 6 when compared to the values
obtained by the full two-dimensional simulation.

To obtain the correct slope we need to take into account
the correctionV4(#%) of the inhibitor field. Including the
first-order correctionVy(#) in Eq. (25 we solve forc,
analogously to the determination of in Sec. Il by multi-
plying Eq. (25) by f'(y) and subsequently integrating over
y. To O(cg) we obtain

1

Ccq=C , (29
¢ 014 LGyt &G, f2
where
(U2vy) (U3Vy)
GOZ— W and G1=® <U > . (30)

As expected the higher-order correctid®g and G, do not
change the value ofy, but change the slope @ty/de. In

Fig. 7 we show a comparison of the test function approach
and of Eq.(29) with numerically obtained data. The corre-
spondence close ;=0 is striking. To obtain better agree-
ment further away front,=0 one would have to include
higher-order terms in expressi¢?2).

IV. SUMMARY AND DISCUSSION

We have developed a nonperturbative method to study
critical wave propagation of single pulses and periodic wave
trains in one and two dimensions. The method is based on
the observation that near the bifurcation point the pulse
shape is close to a symmetric bell-shaped function. A test
function approximation, optimizing the two free parameters
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Hopf bifurcation the Hopf frequency becomes infinite. This
time-dependent phenomenon can of course not be captured
005} i within the current stationary algebraic framework. This phe-
nomenon and its implications will be published separately.
For completeness we have included a time-dependent exten-
sion of the test function approach which allows for Hopf
bifurcation in the Appendix. This seems to be related to the
phenomenon of alternahsvhich has been studied in a dif-
ferent parameter regime far away from the saddle fode.
Another interesting problem we plan to address is the
selection of the wavelengttor pitch) of spirals. In simula-
tions we found that neae,, where growth of fingers be-
comes small, the selected wavelength diverges. Kinematic
theory"112222%ddresses this problem. Kinematic theory pro-
vides, in principle, a relationship between the rotation fre-
quency of a spiral and its core radius. However, it fails to
‘ . ‘ provide expressions for either of the two which only depend
0.0445 0.0447 0.045 0.0452 0.0455 on the equation parameters. A connection of our theory with
£ kinematic theory is planned for further research to fill this

-0.051

-0.151

-0.25

FIG. 7. Growing velocitycy as a function ok. The crosses depict the values gap-

obtained by direct numerical integration of E¢®) and(3). The continuous

line shows the theoretical curve EQ9) using the test function approach of ACKNOWLEDGMENTS
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We extended our method to two-dimensional situationsappeNDIX: TIME-DEPENDENT SYSTEM FOR WAVE

and used it to study broken fronts. Depending on parametesSROPAGATION OF PULSES AND PERIODIC

these fingers may either retract or sprout and start spiralingVAVE TRAINS IN ONE-DIMENSIONAL EXCITABLE

We studied the growing velocity of a critical finger whose MEDIA

growing velocity is close to zero. Our test function method

combined with a separation ansatz for the two-dimension In this appendix we present the time-dependent calcula-
. o pa ) ; aI.Jion for our test function approach. For simplicity we restrict
finger tip yields analytical expressions for the growing ve-

locitv which depend onlv on th tion parameters an urselves to small values af This means that the width of
octty ch depend only 0 € equation parameters ang, . 5 .tyator pulsel is small compared to the width of the
which are for large parameter ranges in good agreement wit

) . . decaying inhibitor fieldv. We include now temporal depen-
the numerically obtained values. We elaborated on the im- .
portance of the inhibitor field for the growing velocity. dency of the pulse variables,co, andw. We study pulse

) ) ) . ) trains and note that the localized pulse can be obtained in the
Let us finally mention an interesting observation for one-

. : . limit L—oo. Hence, we choose of the form
dimensional wave trains. Below sonteather large pulse
separation(wavelength the wave train looses stability not N
via a saddle node but via a Hopf bifurcation. This may be U(X):% fa(thU(70). (A1)
seen in numerical simulations of the full system E@3.and
(3) (and also of other excitable media equations such as thEhe sum extends over al pulses. We demedln:W;(t)
Fitzhugh—Nagumo equatiprand in analytical approxima- X[x—¢,(t)] and U(%) is chosen as a Gaussia 7 as
tions, either based on a time-dependent generalization of thearlier. We allow for individual dynamics of the pulses char-
test function approach or on a systematic reduction schemacterized by the amplitudé,(t), the inverse widthw,(t),
valid near the saddle node. At the codimension two poineand the positionrp,(t). For a stationary wavetrain tHg and
where the saddle node of the wave train coincides with thev,, will be constant and all equal, art},=n(c/L)t, wherec
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is the velocity. We will restrict ourselves to the situation These equations are written for the putse 0. They apply
where the perturbations around such a state are small amrrespondingly to the other pulses.

slowly varying. We insert the ansatz E@\1) into the gen-
eral expression

t
v(t,x)=— eJ e~ A =Oy(t’ x),dt’

obtained from the second E(.). Assuming that thétempo-
ral) inverse pulse widthw,c,) ! is small compared to the
inhibitor decay time éa) ~*, we obtain the following expres-
sion valid in the vicinity of then=0 pulse, which is assumed
to pass the origin at=0

fo
WoCo

1 7
v(ng)=¢€ §<U>—fod77’U(77’)

” f 7
+e(U) D, e"fa“°'—'+sof dn'7'U(7'),
=1 W, C 0

(A2)
where the brackets indicate integration over the whpbo-
main, and

So= — €{di[ fo/(cowo) IH (Wofo). (A3)

In order to determind,,, w,, andc,, we again project
Eq. (2) ontoU(7%), nU'(7n), andU’ (7). After combining
the first two equations appropriately one obtains

Wo
Wo

<U2>(:—°— :_US<U2>+§(1+US)<U3>fO
0
3 5
—Z(U“)fé—((UZ)—g(Ue’)fo)Vp
5 3 So
—<g<U3>—Z<U4>fo>7, (A4)
U2 %—ZD 2(U’? +1 1+ u (U3 1 U4yf2
( >WO— wo(U’%) 3( ug)(U=)fg 2( o

1 1 1
UV 5UB - HUT| 2,

(A5)
where
_ 1 fo S —leallc f'
vp—e<u1>(icowo+§le el (A6)
The third projection gives an algebraic relation
12\ _ efo (1 5 To 4
COWO<U ) C0W0(2<U > 3 <U > . (A7)

First consider the case of a stationary, isolated pulse (
=) wheresy=0 and the sum in Eq(A6) vanishes. The
resulting algebraic relations are easily solved, and corre-
spond in the limit ofa—0 to Egs.(10), (12), and(13). With
reasonable initial conditions, simulation of the ODEs Egs.
(A4), (A5), together with(A7) leads to the same result as
described in Sec. Il. The ODEs Eq#4) and (A5) relax to
the stationary values obtained in Sec. Il.

This time-dependent test function approach allows to go
beyond the stationary bifurcations discussed in Sec. IV. As
mentioned in Sec. Il the saddle-node bifurcation related to
propagation failure for well separated pulses transforms into
a subcritical Hopf bifurcation via a Takens—Bogdanov point
when the pulse separation is reduced below a critical value
L.. This work will be published elsewhere. The Hopf bifur-
cation can be captured within the ODE system Hdgl),
(A5), and(A7), and some preliminary simulations have been
done.
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