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ABSTRACT

It is shown that the influence of topography on the interaction of long, weakly nonlinear, quasigeostrophic
baroclinic waves can be described by a pair of linearly coupled Korteweg–de Vries equations, with a forcing
term in one of the equations. This system exhibits a rich dynamics that is suggestive of atmospheric blocking
such as stable stationary solutions, transient quasi-steady-state solutions, multiple equilibria, and baroclinic
instability. Topography is shown to favor the formation of blocking systems. This system is investigated both
analytically, using techniques from asymptotic perturbation theory, and through numerical simulations.

1. Introduction

There has been an active research and interest over
the past years in atmospheric blocking, that is, the oc-
currence of quasistationary, highly persistent, coherent
structures in the midlatitude lower atmosphere. The un-
derstanding of the life cycle of blocking systems is es-
sential for long-range weather forecasting since block-
ing events may dominate the weather even upstream
and downstream of the region where they occur, on a
timescale reaching to the lower end of the climatic time-
scale. The difficulty in formulating a theoretical model
for atmospheric blocking is that it involves the interplay
of planetary-scale processes, synoptic-scale processes,
and orography (see, for instance, Mullen 1987; Lupo
and Smith 1995). The analysis of observations suggests
that the formation and maintenance can be essentially
understood in the framework of quasigeostrophic dy-
namics (Hansen and Sutera 1984). Quasigeostrophic dy-
namics can schematically be viewed as a competition
between 2D processes and their inherent indirect energy
cascade toward large-scale features, and 3D processes
and their inherent direct energy cascade toward small-
scale features. The former is associated with the Taylor–
Proudman theorem, the latter with baroclinic instability,
both being features of rotation. There have been two
contrasting theoretical approaches. In one, the full qua-
sigeostrophic equations are solved numerically. In the
other, reductions of the quasigeostrophic equations are
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obtained, either in terms of Galerkin approximations
(Legras and Ghil 1985) or in terms of a weakly nonlinear
analysis and solitary-wave dynamics (Patoine and Warn
1982; Warn and Brasnett 1983; Malguzzi and Malan-
otte-Rizzoli 1984, 1985; Mitsudera 1994; Helfrich and
Pedlosky 1993, 1995; Christensen and Wiin-Nielsen
1996; Gottwald and Grimshaw 1998).

This work is a sequel to our previous work (Gottwald
and Grimshaw 1999, hereafter GG) where it was shown
that the interaction of long, weakly nonlinear quasigeo-
strophic waves could be described by a pair of coupled
Korteweg–de Vries equations (KdV). This system ex-
hibits a rich variety of dynamics suggestive of atmo-
spheric blocking systems such as stable stationary so-
lutions, transient quasi-stationary solutions, multiple
equilibria, and baroclinic instability. We will here con-
tinue this work by examining the effect of topography
on the formation and development of blocking systems.

Simulations by Lindzen (1986), Kalnay and Mo
(1986), Malanotte-Rizzoli and Malguzzi (1987), and
Shutts (1983), and observational studies by Shutts
(1986) and Illari (1984) suggest that orography is not
necessary for the formation and maintenance of a block-
ing system; but Egger et al. (1986) concede that with
only eddy forcing, blocking systems would not have the
observed amplitudes when friction is included and,
hence, we should take into account the effect of topog-
raphy. In other words topography is not necessary to
obtain blocking systems but does support their devel-
opment and may be dynamically important. We will
address this issue here.

Topography may support large-amplitude, nearly sta-
tionary waves through interaction with waves whose
phase speed is close to zero in a coordinate frame fixed



3664 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

to the topography. This interaction can occur either
through direct resonant forcing or through the trapping
of waves traveling toward the topography (e.g., Grim-
shaw et al. 1995). In both cases the linear phase speed
of the waves is close to zero. Both processes make to-
pographic forcing an attractive mechanism for the study
of atmospheric blocking. Furthermore, topography may
under certain circumstances provide the possibility of
multiple equilibria (Charney and DeVore 1979). Since
the pioneering work of Charney and DeVore (1979) the
idea of multiple equilibria was introduced into the con-
text of blocking, namely, the coexistence of a normal
small-amplitude state and a large-amplitude state rem-
iniscent of blocking systems. As mentioned above, the
importance of topographic forcing for atmospheric
blocking has since been queried. In particular, for low-
order models it is argued that multiple equilibria may
be an artifact of the truncation; see, for example, Tung
and Rosenthal (1985), Cehelsky and Tung (1985), and
Yano and Mukougawa (1992). Nevertheless, the idea of
multiple equilibria has remained intriguing and prom-
ising. And indeed, in our previous paper we were able
to present a model in which multiple equilibria occur
even in the absence of topographic forcing.

In this paper we demonstrate that, consistent with
observations (i.e., Egger et al. 1986), topography is not
necessary to support blocking systems but may provide
an environment for its enhanced generation and devel-
opment. We show that topographic forcing, indeed, does
support the same type of solutions as in the nontopo-
graphic case studied in GG, but may additionally lead
to larger amplitudes, multiple equilibria, and trapped
waves. All these features are suggestive of blocking
systems.

To overcome the unrealistic assumption of global to-
pographic theories (for instance, Charney and DeVore
1979) such as periodicity and nonlocality, Patoine and
Warn (1982) and Warn and Brasnett (1983) introduced
local models describing the interaction of solitary waves
with localized topographic features. In a similar manner
Mitsudera and Grimshaw (1991, 1994) investigated re-
lated phenomena in the oceanographic environment.
Continuing our previous work (GG) in the same spirit,
we will derive here a pair of coupled Korteweg–de Vries
equations, obtain and analyze some steady-state solu-
tions, and relate these to blocking systems.

2. Weakly nonlinear, long-wave approximation

We proceed as in GG. Thus, we take a quasigeo-
strophic two-layer model on a b plane. We shall use a
nondimensional coordinate system, based on a typical
horizontal lengthscale L; a typical vertical scale for each
layer D1, D2 with H0 5 D1 1 D2; and typical Coriolis
parameter f 0. A typical velocity U is taken to be the
maximum of the mean current velocity and the timescale
is given by U/L. We obtain the following equations

(Pedlosky 1987) for the nondimensional pressure fields
p1 and p2:

] ] ]
2 p 1 p1y 1x1 2]t ]x ]y

23 [¹ p 1 by 1 F (p 2 p )] 5 0,1 1 2 1

] ] ]
2 p 1 p2y 2x1 2]t ]x ]y

1/2E V23 [¹ p 1 by 1 F (p 2 p ) 1 h ] 5 2 Dp ,2 2 2 1 B 22e
(2.1)

with the boundary conditions

p1,2 5 const at y 5 2L, 0. (2.2)

Here the pressure fields are scaled by r1,2 f 0U0L0 and,
in this quasigeostrophic approximation, also serve as
streamfunctions for the velocity fields in each layer. The
subscripts 1 and 2 are associated with the upper and
lower layers, respectively, with r1,2 being the density of
the upper (lower) layer. We have introduced the non-
dimensional meridional gradient of planetary vorticity
b; the Rossby number e 5 U0/ f 0L0 (e K 1 in the qua-
sigeostrophic approximation); the vertical Ekman num-
ber EV, which is O(e2); the topographic feature hB 5
eD2hB; and the Froude numbers Fn 5 (L0/Ri)2, where
Ri is the internal Rossby radius of deformation for each
layer, that is, Ri 5 gDn(r2 2 r1)/r2. It is pertinent21f Ï0

to mention that very similar equations [(2.1)] hold if
surface heating is considered instead of topography. The
concept of surface heating acting as ‘‘equivalent orog-
raphy’’ has been pointed out in Fandry and Leslie
(1984), Dickinson (1978), and Davey (1981).

If we separate the mean currents, which are assumed
to depend on y only, from the perturbation field, so that

y

p 5 2 U (y9) dy9 1 c (x, y), (2.3)1,2 E 1,2 1,2

2L

we can perform a weakly nonlinear long-wave analysis
and derive an evolution equation for the perturbation
field ci. The procedure is described in detail in GG, but
for convenience it is summarized here in the appendix.
The outcome is that the perturbation field, to the leading
order, is given by

(X, T, y) 5 Ai(X, T) (y).(0) (0)c Ui i (2.4)

Thus the meridional structure of ci is entirely deter-
mined by the mean currents at this order. At the next
order we obtain a pair of coupled Korteweg–de Vries
equations for the rescaled amplitudes Ai:

A 1 D A 2 6mA A 2 lA 2 k A 5 0,1T 1 1X 1 1X 1XXX 1 2X

A 1 D A 2 6A A 2 A 2 k A 5 D 2 EA .2T 2 2X 2 2X 2XXX 2 1X X 2

(2.5)
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The definition of the parameters in (2.5) are given in
the appendix.

For the nondissipative case (E 5 0) there exists a
conserved Hamiltonian for the full system of coupled
KdV equations (2.5). Indeed, they can then be written
as a noncanonical Hamiltonian system,

1 dH 1 dH
A 5 2] and A 5 2] ,1t x 2 t x1 2 1 2k dA k dA2 1 1 2

where d denotes the functional derivative and H is the
Hamiltonian density, which is found to be

1 l
2 3 2H 5 k D A 2 mA 1 A2 1 1 1 1x1 22 2

1 1
2 3 21 k D A 2 A 1 A 2 DA 2 k k A A .1 2 2 2 2x 2 1 2 1 21 22 2

Due to the skew-symmetric operator ]x the Hamiltonian
H 5 H dx is conserved. Also, since E 5 0 there are`#2`

two Casimirs A1 dX and A2 dX.` `# #2` 2`

An equation for the energy of the full nonlinear equa-
tions (2.5) can be obtained by multiplying the first equa-
tion of (2.5) with A1 and the second equation with A2

and integrating over the whole domain. After integration
by parts, we obtain

1` 1`1 d
2A dX 5 k A A dXE 1 1 E 1 2X2 dt

2` 2`

1` 1`1 d
2A dX 5 2k A A dXE 2 2 E 1 2X2 dt

2` 2`

1` 1`

21 D A dX 2 E A dX,E X 2 E 2

2` 2`

(2.6)

and so

1` 1`d
2 2k A dX 1 k A dX2 E 1 1 E 21 2dt

2` 2`

1` 1`

25 2k A D dX 2 2k E A dX. (2.7)1 E 2 X 1 E 2

2` 2`

For the nondissipative, nontopographic case one can
derive a stability criterion from this energy equation,
which, as shown in GG, is equivalent to the Charney–
Stern condition for baroclinic instability. It is readily
shown from (2.7) that

k1k2 , 0 (2.8)

is a necessary condition for baroclinic instability. In
terms of a long-wave approximation of (2.5) the insta-
bility criterion (2.8) can be further refined to |D2 2 D1

1 dc2 2 dc1| , 2 2k1k2, where dci are the dispersiveÏ
phase speed corrections.

In the absence of topographic forcing and damping

(i.e., D 5 0 and E 5 0) the system (2.5) supports an
explicit solitary-wave solution of the form

Ai 5 ai sech2(w(X 2 cT)), (2.9)

with the following relations for the parameters:

l
2 2a 5 2 w , a 5 2w , (2.10)1 2m

and

m l
2 2c 5 D 2 4lw 2 k 5 D 2 4w 2 k . (2.11)1 1 2 2l m

Note that Eq. (2.11) determines the allowed values for
the coupling parameters k i and the linear phase veloc-
ities Di needed to keep w2 positive. An asymptotic per-
turbation theory performed in GG showed that the sol-
itary-wave solution (2.9) is stable if k1m , 0 or unstable
if k1m . 0. However, as discussed more fully in GG,
we note here that instability of a solitary wave may
merely imply separation of the upper- and lower-layer
waves and is not related to the linear instability criterion
(2.8). Indeed, we can show that there are no unstable
solitary waves of the form (2.9) when the background
is linearly unstable. That is, k1m , 0, together with
k1k2 , 0, implies that (D2 2 D1)2 1 4k1k2 . 0 when
(2.11) holds.

In section 3 we will solve steady-state solutions of
the system (2.5) by performing an asymptotic pertur-
bation theory, and investigate their stability. In section
4 we will simulate the pair of coupled KdV equations
(2.5) numerically. In section 5 we discuss the results
obtained by our asymptotic theory and test the validity
of the long-wave approximation by simulating the full
topographically forced quasigeostrophic two-layer sys-
tem (2.1) using the approximative solutions of the sys-
tem (2.5) derived in section 2 as initial conditions.

3. Asymptotic approximation

a. Introduction

In this section we use an asymptotic approximation
that assumes weak coupling, friction, and topographic
forcing. The essence of this approach is to assume that
the effect of the small perturbations is only to modify
the solitary-wave parameters, namely, amplitude and
phase, of the undisturbed, uncoupled KdV equations on
a slow timescale. Thus we assume that each solitary
wave has a slowly varying time-dependent amplitude
and phase, and obtain ordinary differential equations
describing the time evolution of these parameters. This
method was introduced by Johnson (1973), Karpman
and Maslov (1978), and Kaup and Newell (1978) for a
single KdV equation. An extension to this work was
made by Grimshaw and Mitsudera (1993) using a mul-
tiscale perturbation expansion to take into account high-
er-order terms. We will follow this approach and use
the resulting amplitude and phase equations to extract
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information about solutions of the system of coupled
KdV equations (2.5). In particular, we will be able to
discuss the stability properties of steady-state solutions.
Again the reader is referred to GG for a more detailed
discussion of the asymptotic development.

b. Asymptotic analysis

We recall the system of coupled KdV equations (2.5)

A 1 D A 2 6mA A 2 lA 2 ek A 5 0,1t 1 1x 1 1x 1xxx 1 2x

A 1 D A 2 6A A 2 A2 t 2 2x 2 2x 2xxx

1 e(2k A 2 D 1 EA ) 5 0, (3.1)2 1x x 2

where, for convenience, we have introduced a small
parameter e K 1 and have assumed that k1, k2, E, and
D are O(e). Later on, we will restore the original pa-
rameters back into the final differential equations. As
discussed above, the influence of the perturbation is to
modify the amplitude and phase of the unperturbed KdV
solitary waves (2.9) on a slow timescale T 5 eT. Thus
we seek an asymptotic expansion of the form

2A 5 u 1 eu 1 e u 1 · · ·1 0 1 2

2A 5 y 1 ey 1 e y 1 · · ·2 0 1 2

2u 5 a (T ) sech (w (T )(x 2 F (T )))0 1 1 1

2y 5 a (T ) sech (w (T )(x 2 F (T )))0 2 2 2

T1
F 5 c (T9) dT9 i 5 1, 2i E ie 0

(0) (1)c 5 c 1 ec 1 · · · i 5 1, 2. (3.2)i i i

Substitution of these expansions into Eq. (3.1) yields at
the leading order the well-known solitary-wave solutions
of the undisturbed uncoupled KdV equation provided that

l
2 2a 5 2 w , a 5 2w . (3.3)1 1 2 2m

At the next order, O(e), time evolution equations for the
amplitudes and phases are obtained. At the second order,
O(e2), one obtains the first-order speed corrections. Re-
storing the original version of the parameters k1, k2, E,
and D we summarize the results:

` 2da w w1 22 35 22k a w sech (c) sech c 2 w DF sinh c 2 w DF dc,1 2 2 E 2 21 2 1 2dt w w1 12`

` 1da w w 42 12 35 22k a w sech (c) sech c 1 w DF sinh c 1 w DF dc 2 Ea2 1 1 E 1 1 21 2 1 2dt w w 32 22`

`

21 w sech (w c)D (c 1 F ) dc,2 E 2 c 2

2`

`3dF m w w1 2 22 2 25 D 2 2ma 2 k [tanh(c) 1 c sech (c) 2 sign(l) tanh (c)] sech c 2 w DF1 1 1 E 23 1 2dt l w w1 12`

2w
3 tanh c 2 w DF dc,21 2w1

`3dF l w w2 1 12 2 25 D 2 2a 2 k [tanh(c) 1 c sech (c) 2 tanh (c)] sech c 1 w DF2 2 2 E 13 1 2dt m w w2 22`

1w
3 tanh c 1 w DF dc11 2w2

`1 E
2 21 [tanh(w c) 1 w c sech (w c) 2 tanh (w c)] 3 D (c 1 F ) dc 2 , (3.4)E 2 2 2 2 c 22a 3w22`

where DF 5 F 2 2 F1 . The amplitude equations con-
tain the leading-order energy balance, as can be seen
by inserting u 0 and y 0 into the full nonlinear energy
equations (2.7). We note that the ‘‘tanh 2 ’’ terms in

the interaction integrals of the equations describing
the time evolution of the phases F1,2 are the contri-
bution of the radiating tails to the first-order speed
corrections.
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c. Steady-state solutions and multiple equilibria

In the nondissipative, unforced case the system of
equations (3.4) supports the steady-state solution, name-
ly, w1 5 w2 5 w*, a1 5 5 2lw*2/m, a2 5 5a* a*1 2

2w*2 with

DF* 5 0 (3.5)

l m
2D 2 D 2 4(1 2 l)w* 2 k 1 k 5 0. (3.6)2 1 2 1m l

Note that this is exactly the condition (2.11) previously
found for D 5 0. But we should note that there might
also be solutions of (3.4) with ± that are notw* w*1 2

apparent in the full coupled KdV equations. We will
investigate these extraneous solutions in section 3e.

The condition DF 5 0 assures that the two waves of
the coupled layers are locked together. If topography is
present, the steady-state waves must also stay locked to
the topography, and we will get the additional constraint
F1 5 F2 5 0. The condition for steady-state solutions
determining the amplitudes now allows for the possi-
bility of multiple equilibria when topography is includ-
ed. The multiple equilibria are states where there is more
than one possible value of the amplitudes for the same
set of parameters.

In order to keep the system as simple as possible we
restrict ourselves to a symmetric topographic feature.
All symmetric topographic features support steady-state
solutions with F2 5 0, whereas this is not generally the
case for asymmetric topographic features, as can be seen
from the amplitude equation (3.4) for a2. We note that
for simplicity from this point on we do not consider
surface heating anymore. Sea surface heating would re-
quire asymmetric shapes of the equivalent orography
and, hence, would cause the algebra to be rather awk-
ward.

If an explicit expression is needed, we represent the
topography by a ‘‘sech2 ’’ profile according to

x
2D(x) 5 D sech ,0 1 2p

where p is a measure for the width of the topographic
feature. Other analogous expressions could be used and
would yield similar results. The topographic interaction
integrals of the reduced system (3.4) can be simplified
in the limiting cases p K 1 and p k 1, that is, in the
limit of narrow and broad topographic features, respec-
tively.

In the case of a narrow topographic feature, D(x) acts
like a d function and the interaction integral appearing
in the amplitude equation of (3.4) reduces to

`

2w sech (w c)D (c 1 F ) dc2 E 2 c 2

2`

2ø 22a pD sech (w F ) tanh(w F ), (3.7)2 0 2 2 2 2

where

`

2pD 5 D(c) dc,0 E
2`

and the contribution to the first-order speed correction
in the equation for F2 reduces to

`1
D (c 1 F )[· · ·] dcE c 22a2 2`

pD0 2 2ø 2 [sech (w F ) 2 w F sech (w F )2 2 2 2 2 2w2

3 tanh(w f )]. (3.8)2 2

For the case of a broad topographic feature the sol-
itary wave may be approximated by a d function and
we can simplify the topographic interaction integral in
the amplitude equation as

`

2w sech (w c)D (c 1 F ) dc ø 2D (F ), (3.9)2 E 2 c 2 F 22

2`

and the interaction integral of the phase equation as
`1 1

D (c 1 F )[· · ·] dc ø 2 D(F ). (3.10)E c 2 22a a2 22`

Note that in both these limits, we do not need to use
the explicit representation (3.7) for the topography.

In the topographically forced KdV equation we can
obtain multiple equilibria as discussed in Warn and
Brasnett (1983) and Grimshaw et al. (1995), among oth-
ers. This is not possible here for a fixed set of parameters
since the solitary wave is not only locked to the topog-
raphy but also to the other layer, which breaks the single
constraint DF 5 0 into F1 5 F2 5 0. Hence, instead
of the one equation (3.5), one obtains two equations as
a condition for steady states, namely,

m
2D 2 4lw* 2 k 5 0 (3.11)1 1 l

and

l p
2D 2 4w* 2 k 2 D 5 0 (3.12)2 2 0m w*

for a narrow topography, or

l 1
2D 2 4w* 2 k 2 D 5 0 (3.13)2 2 02m 2w*

for a broad topography. Indeed, the amplitude is unique-
ly determined by (3.11).

However, if we allow D1 and D 2 to be free param-
eters, which can be achieved by introducing a small
inhomogeneity to the mean flow according to the def-
inition of the parameters (A.15) as discussed in the
appendix, we may obtain multiple equilibria. In Fig. 1
we have depicted the steady-state amplitude 2w*2 as a
function of D: 5 (2D 2 1 k 2l/mu)/4 as determined by
the condition for a broad topographic feature [(3.13)].
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FIG. 1. Plot of an equilibrium state [(3.12) or (3.13)]. Continuous
(dotted) line for D0 . 0 or ,0, respectively. The straight line depicts
the nontopographic case.

For D 0 . 0 there is one solution for every D, shown
as the upper branch of Fig. 1. For D 0 , 0 we obtain
the lower branch of Fig. 1 and obtain two solutions if
D , 2 D 0 /2. In particular, we obtain one large-am-Ï
plitude state and one small-amplitude state. For the
narrow topography the picture looks qualitatively the
same as in Fig. 1 and analogous expressions can be
found for the two branches. We note that for small m
only a slight shift in D1 is required to allow for the
two amplitude states. Note also that in the case of a
broad topographic feature the condition for steady
states [(3.13)] is independent of the width and only
depends on the height of the topography as can be seen
from (3.10).

Next we include friction, which leads to the pos-
sibility of multiple equilibria associated with a bal-
ance between dissipation and forcing in the amplitude
equation for a 2 . In this case the multiple equilibria
do not consist of states of different amplitudes but of
states of different locations. In particular, the ampli-
tude a 2 is just that of a stationary solution, that is,
satisfying D1 2 5 0 and D 2 2 5 0 if we2ma* 2a*1 2

neglect first-order corrections, but the amplitude
equation determines now the number of possible
states and their position F 2 . The balance determining
F 2 is written as

`4
2Ea* 5 w sech (w c)D (c 1 F ) dc (3.14)2 2 E 2 c 23

2`

and can be simplified using (3.7) or (3.9). We find that
there are no multiple equilibria possible for D0 .

3E/p in the case of narrow topography and for D0 .Ï
3Epa2/2 in the case of broad topography. This impliesÏ

that for fixed dissipation a broad (narrow) topographic
feature has to be larger the broader (narrower) it is to
support multiple equilibria. Figure 2 depicts the con-
ditions (3.14). For positive forcing D0 . 0 the two states
have F2 , 0 and are attached to the western side of
the topographic feature; for negative forcing D , 0 the
two states have F2 . 0 and are attached to the eastern

side of the topographic feature. We observe that for
more complicated topographic features the number and
location of possible states is associated with the number
of extremes of Dc. Figure 2 also helps to interpret the
two solutions for E ± 0 and to understand where they
come from. This is seen for small E, that is, when the
dashed line in Fig. 2 is close to the F2 axis; one solution
arises from the topographic solution at F2 5 0, the other
solution comes from the free solitary-wave solution at
F2 5 2` where the solitary wave does not feel the
topography. The influence of dissipation is to link these
two distinct, independent solutions.

d. Stability analysis

For the moment we will again restrict ourselves to
the nondissipative case, where we have the steady state
( , , , ), namely,a* a* F* F*1 2 1 2

DF* 5 0, F* 5 F* 5 0,1 2

m
D 2 2ma* 2 k 5 0,1 1 1 l

l 1
D 2 2a* 2 k 12 2 2 m 2a*2

`

23 [tanh(w*c) 1 w*c sech (w*c)]D (c) dc 5 0.E 2 2 2 c

2`

(3.15)

We perform a linear stability analysis by linearization
about this steady state, that is, we write

F 5 F* 1 dw , F 5 F* 1 dw ,1 1 1 2 2 2

a 5 a* 1 da , a 5 a* 1 da . (3.16)1 1 1 2 2 2

After some algebra we obtain

8
2dȧ 5 k a* dDw1 1 215

8 m
2dȧ 5 2 k a* dDw 1 C (D)dw2 2 1 1 215 l

22 p m 1
dẇ 5 22m 1 1 k da1 1 11 2[ ]3 45 l a*1

22 p 1 8 m
2 1 k da* 2 r k w*dDw1 2 1 11 23 45 a* 15 l1

22 p l 1
dẇ 5 22 1 1 k 1 C (D) da2 2 2 21 2[ ]3 45 m a*2

22 p 1 8 l
2 1 k da* 1 r k w*dDw,2 1 2 21 23 45 a* 15 m2

(3.17)

where the dot denotes the time derivative and the con-
stants Ci are given by
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`

2C (D) 5 w* D (c) sech (w*c) dc,1 E cc

2`

`w*
2 2C (D) 5 [sech (w*c) 2 w*c sech (w*c) tanh(w*c)]D(c) dc2 E2a*2 2`

`1
2 2 21 [w*c sech (w*c) 2 (w*c) sech (w*c) tanh(w*c)]D (c) dc. (3.18)E c22a*2 2`

For a narrow topographic feature the coefficients C1,2(D)
are simplified to

pw*
C (D) 5 22pD a*w*, C (D) 5 D . (3.19)1 0 2 2 02a*2

For a broad topography we find

4 1
C (D) 5 2 D , C (D) 5 D . (3.20)1 0 2 02 2p a*2

This can be obtained either via linearizing (3.7), (3.8),
or (3.9), (3.10), or by going into the Eq. (3.18) with the
approximations of either a narrow or broad topography.

We set da1 5 exp(gt), da2 5 exp(gt), etc.,(0) (0)da da1 2

and obtain (omitting the superscripts) a system of linear
equations,

0 2g 0 2j j da     1

 0  0 2g 2r r 1 z  da 25 , (3.21)     
0 a b 2s 2 g s dw1     
0 e h 2u u 2 g dw     2

where the matrix elements are defined by (3.17). The
solvability condition reads as

g4 1 g3(s 2 u) 1 g2[j(a 2 e) 1 r(b 2 h) 2 zh]

1 g(2zbu 2 zhs) 2 jz(ah 2 eb) 5 0. (3.22)

If we include all effects we have an effective four-di-
mensional phase space with, in general, four distinct
eigenvalues g, which can be either real or complex val-
ued. Thus our full system contains the possibility of
chaos. Note that odd powers of g are associated with
the radiation coefficients s and u. Incidentally, we note
that if we were able to find an odd topographic feature
supporting a steady-state solution of (3.4), which as
mentioned above is not generally the case, the contri-
butions of such a topography (e.g., surface heating)
would also appear in the odd powers of g in (3.22). It
is pertinent to mention that we will talk here about in-
stability not in the nonlinear sense of baroclinic insta-
bility as derived in Eq. (2.8) from the full coupled Kor-
teweg–deVries equations but in the sense of the solitary
wave as a steady-state solution of the reduced amplitude
and phase equations (3.4). These reduced equations con-
tain an equation for the phase, that is, the location of
the solitary wave, and involve phase separation. This
allows a solution of (3.4) to be an unstable saddle point

without infinite growth of the amplitudes but instead a
growth of the phase separation. In the nonlinear criterion
for instability of the coupled KdV equations (2.5) we
have integrated over the spatial domain and thus cannot
obtain this kind of instability.

For the nontopographic case the phase plane is ef-
fectively two-dimensional and we recall the results de-
rived in GG. If one omits the first-order speed correc-
tions, the system (3.4) supports either a stable center or
a saddle point, depending on the sign of k1m. In par-
ticular, the solitary wave is stable if k1m , 0 and cor-
responds to a center, and is unstable otherwise, corre-
sponding to a saddle point.

The physical meaning of the sign combination of k1m
was interpreted in GG as a condition for a spatially
slightly perturbed steady-state solution to change its am-
plitude in such a way that the associated change in the
phase velocity forces the solitary wave to relax back to
the equilibrium position, or to separate further. It seems,
therefore, that it is not enough to look at the Charney–
Stern condition for baroclinic instability (2.8) with re-
spect to blocking but one also has to take into account
this additional criterion involving k1m. The first-order
speed corrections, which will become important for
small amplitudes, have a stabilizing effect on the dy-
namics. Radiation, in the absence of topography, does
not change the effective dimension of the phase plane.
Its effect is to convert a center into a stable focus and
to enhance the growth rates of a saddle point.

In the case of a topographic feature, which is even
with respect to the solitary wave of the lower layer, we
find for the growth rate on neglecting the effect of ra-
diation,

g4 1 g2 [j(a 2 e) 1 r(b 2 h) 2 zh)]

2 jz(ah 2 eb) 5 0. (3.23)

This invokes locally the dynamics to be constrained to
two crossing planes in the four-dimensional phase plane.
Radiation will, in this case, destroy the constraints, and
leads to the full four-dimensional phase space. To sim-
plify further we also omit the first-order speed correc-
tions arising from the coupling, in particular b and e;
hence, we get

g4 1 g2(ja 2 rh 2 zh) 2 jzah 5 0. (3.24)

Equations (3.23) and (3.24) are of the form g4 1 ag2
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FIG. 2. Schematic visualization of the condition (3.14). Plotted is
the amplitude 2w*2 against F2. The equilibrium points F2 are found
as the points of intersection of the two curves. Here a case for positive
D0 is given.

FIG. 3. Generic plot of the real part of g vs D0 when all first-order speed-correction terms are
excluded: (left) the case k1m , 0; (right) k1m . 0.

1 b 5 0, and hence allow three different stability sce-
narios. In particular, for a . 0, 0 , b , a2/4 there are
only purely imaginary solutions for g corresponding to
stability; for a , 0, 0 , b , a2/4 there are only purely
real solutions corresponding to instability; and for all
other cases we have complex-valued solutions for g,
again representing instability.

We will discuss the stability properties of the solitary
wave for the case of a narrow topography by varying
D0. Again the crucial parameter determining the sta-
bility is the sign of k1m. If we neglect all first-order
speed corrections, that is, set a 5 22m and h 5 22,
the plots for g as a function of D0 are shown in Fig. 3.
For k1m , 0 we have purely imaginary solutions for
D0 , 0, and two real solutions for D0 . 0. For k1m .
0 one can show that there are two real solutions for D0

, 0 and four real solutions for D0 . 0. For either sign
of k1m we find g ; |D0| for large |D0|.

If we include the topographic first-order speed-cor-
rection term, which as we have seen above gives rise
to multiple equilibria, but neglect the first-order speed
correction terms due to the coupling, the scenarios are
again generic and are shown in Fig. 4. The general effect
of the topographic speed correction is stabilizing. For
k1m , 0 the solution becomes stable for D0 . 4wa2/p.
Similar stabilizing effects also occur for k1m . 0 where

for D0 . 4wa2/p there are only two real solutions com-
pared to four in the previous case.

Again we can interpret the stability criteria in the
same manner as in GG for the sign of k1m by looking
at the changes in the solitary-wave speed associated with
the changes in the amplitude of the solitary wave in-
duced by the topographic forcing. In this sense stability
means that the change in the solitary-wave speed is such
that the solitary wave is forced to return to its equilib-
rium position. To filter out the purely topographic effect
we shall ignore the coupling and only consider the
forced lower layer. Using (3.8) or (3.10) the condition
for stability in this sense for a solitary wave with a2 .
0 displaced to the right from its equilibrium position,
which is centered over the topography, reads as

Ï2p
D 2 2[a* 2 sign(D )da] 2 D2 2 0 0Ïa* 2 sign(D )da2 0

Ï2p
, D 2 2a* 2 D 5 0 (3.25)2 2 0Ïa*2

for narrow topography, and

1
D 2 2[a* 2 sign(D )da] 2 D2 2 0 0a* 2 sign(D )da2 0

1
, D 2 2a* 2 D 5 0 (3.26)2 2 0a*2

for broad topography. If we linearize around the equi-
librium state we obtain the following inequalities:

p
sign(D )D . 4a* sign(D ) (3.27)0 0 2 0w*

for narrow topography, and

sign(D0)D0 . 2 sign(D0)a*2 (3.28)

for broad topography. This is exactly the condition for
stability as found above; that is, we have an unstable
band for 0 , D0 , 4 w*/p for broad topography.a*2

If we include all first-order speed corrections, that
is, solve equation (3.23) in full, the situation gets
more complicated and depends on the amplitudes a1,2 .
For k1 m . 0 the interesting case of a stable gap for
0 . D 0 . is possible, revealing the stabilizingD*0
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FIG. 4. Generic plot of the real part of g vs D0 when only topographic speed correction terms
are included: (left) the case k1m , 0; (right) k1m . 0.

effect of the first order speed corrections as discussed
above.

As we have shown in section 3c the balance of to-
pographic forcing and frictional dissipation may lead to
multiple equilibria for weak dissipation. We will now
discuss the stability of these steady states with different
phase locations. For simplicity we will restrict ourselves
to the case of broad topography. If we linearize the
system (3.4) around the steady-state solution, omitting
first-order speed corrections, we obtain for the growth
rate g

g4 2 eg3 1 g2(ja 2 rh 2 zh) 2 eajg 2 jzah 5 0,
(3.29)

where e 5 24E/3 is the frictional contribution and z
5 2Dcc( ). We rewrite the equation (3.14) determin-F*2
ing the equilibrium points for the case of broadF*2
topography

4
2D (F*) 5 Ea*, (3.30)c 2 23

which is schematically depicted in Fig. 2. In the dis-
cussion above about the stability of topographic
steady-state solutions we found that the sign of jzah
is crucial for the stability. It is readily seen that z has
a different sign for each of the two possible solutions
of (3.30). As discussed in section 3c the two possible
solutions in the dissipative case emerge from the free
solitary wave and the topographic steady-state solu-
tion, respectively, from which they also inherit their
stability properties.

e. Quasi-steady-state solutions

The reduced system (3.4) also supports, in contrast
to the full system of coupled KdV equations (2.5), so-
lutions for which w1 ± w2. To obtain these extraneous
steady-state solutions we use variational methods, ex-
ploiting the Hamiltonian structure of (2.5) as discussed
in section 2.

If we insert our ansatz (3.2) for A1 and A2 in the
Hamiltonian H and calculate the leading-order term, we
can verify after some lengthy algebra that the reduced
Hamiltonian is conserved under the flow defined by the
reduced system (3.4) provided that the radiating terms
are omitted. These are just the terms representing the
contribution of the radiating tails to the first-order speed
corrections. It is pertinent to mention that only the re-
duced system including the first-order speed corrections,
but omitting the radiating tail terms, is Hamiltonian and
thus integrable. But these speed-correction terms are
only dynamically important for small amplitudes, as can
be seen from (3.4).

If we perform a variational approach for the Ham-
iltonian under the assumption w1 5 w 2 and ignoring
topography, we obtain the steady-state solution (2.10)
with DF 5 F1 5 F 2 5 0. We could also look for
solutions of the form (3.2) (i.e., u 0 and y 0 ), whose
leading terms are solitary waves but with w1 ± w 2

and without making the assumption that a1,2 are a
priori related to w1,2 . In this case the reduced Ham-
iltonian is

2 3 2 32 a 16 a 8 2 a 16 a 81 1 2 22 2H 5 k D 2 m 1 la w 1 k D 2 1 a wred 2 1 1 1 1 2 2 21 2 1 23 w 15 w 15 3 w 15 w 151 1 2 2

` `1 w22 2 22 k k a a sech (z) sech z 2 w DF dz 2 k a sech [w (z 2 F )]D(z) dz. (3.31)1 2 1 2 E 2 1 2 E 2 21 2w w1 12` 2`
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A variational approach again gives DF 5 F1 5 F2 5
0 as a condition for steady-state solutions, but the re-
lations (2.10) and (2.11), that is, the lowest-order ap-

proximations of the adiabatic analysis performed in sec-
tion 2, are now replaced by

` `l 15 k a w 15 k a w w w1 2 2 1 2 2 2 22 2 2 2 2a 2 2 w 2 sech (z) sech z dz 1 z sech (z) sech z tanh z dz 5 01 1 E E1 2 1 2 1 2m 16 m a w 4 m a w w w1 1 1 1 1 12` 2`

` `215 a w w 15 a w w w1 2 2 1 2 2 22 2 2 2 2a 2 2w 1 k sech (z) sech z dz 2 k z sech (z) sech z tanh z dz2 2 2 E 2 E21 2 1 2 1 216 a w w 4 a w w w2 1 1 2 1 1 12` 2`

` `215 w z 15 w z2 22 2 2 21 D sech sech (w z) dz 2 D z sech sech (w z) tanh(w z) dz 5 00 E 2 0 E 2 21 2 1 216 a p 4 a p2 22` 2`

` `9 a w 3 a w w w2 2 2 2 2 22 2 2 2D 2 2ma 2 k sech (z) sech z dz 1 z sech (z) sech z tanh z dz 5 01 1 1 E E1 2 1 2 1 28 a w 2 a w w w1 1 1 1 1 12` 2`

` `23 a w w 3 a w w w1 2 2 1 2 2 22 2 2 2D 2 2a 2 k sech (z) sech z dz 2 k z sech (z) sech z tanh z dz2 2 2 E 2 E21 2 1 2 1 28 a w w 2 a w w w2 1 1 2 1 1 12` 2`

` `23 w z 3 w z2 22 2 2 22 D sech sech (w z) dz 2 D z sech sech (w z) tanh(w z) dz 5 0. (3.32)0 E 2 0 E 2 21 2 1 28 a p 2 a p2 22` 2`

For the special case w1 k w2 these equations simplify to

l 15 k a1 22a 5 2 w 11 1m 8 m a1

15 a w 15 D1 2 02a 5 2w 2 k 1 f2 2 28 a w 8 a2 1 2

9 a20 5 D 2 2ma 2 k1 1 14 a1

3 a w 3 D1 2 00 5 D 2 2a 2 k 2 f, (3.33)2 2 24 a w 4 a2 1 2

and for w1 K w2 to

l 15 k a w1 2 12a 5 2 w 21 1m 8 m a w1 2

15 a 15 D1 02a 5 2w 1 k 1 f2 2 18 a 8 a2 2

3 a w2 10 5 D 2 2ma 2 k1 1 14 a w1 2

9 a 3 D1 00 5 D 2 2a 2 k 2 f, (3.34)2 2 24 a 4 a2 2

where f 5 3 for a broad topographic feature and f 5
pw2 for a narrow topographic feature. Note that in the
limit of weak coupling (i.e., k1,2 → 0) and weak topog-
raphy (i.e., D0 → 0) these equations collapse to (2.10)

and (2.11). Thus this Hamiltonian approach allows us
to go beyond the asymptotic theory of section 3d.

4. Numerical simulations of the coupled KdV
system

In this section we will examine the dynamics of the
system of the full coupled KdV equations (2.5) numer-
ically. We will set the frictional term E 5 0, unless
otherwise specified, and assume the form (3.7) for the
topography. To integrate this system a semi-implicit
pseudospectral code is used, in which the linear terms
are treated using a Crank–Nicholson scheme and the
nonlinear terms using an explicit leapfrog scheme. Pe-
riodic boundary conditions are imposed in the x direc-
tion. To avoid self-interaction of the fields due to ra-
diation tunneling through the periodic boundaries, we
introduce an artificial viscosity acting only near the
boundaries. In the following we will simulate the be-
havior of the coupled KdV system with different pa-
rameter values and investigate the stability properties
of the background and of possible coherent structures,
that is, the steady-state solutions, and their interaction
with topography. We recall that (A.15) determines the
parameters while (2.8) and (3.23) determine the stability
properties of the background and solitary-wave solution,
respectively.

The basic dynamics of the coupling terms and the
topographic forcing term are similar. The impact of an
upper-layer solitary-wave disturbance or a topographic
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FIG. 5. Interaction of two solitary waves, where k1 5 21.0, k2 5
1.0, m 5 21, l 5 21, D1 5 21.5, D2 5 1.5, a1 5 a2 5 0.08, D0

5 20.1, and p 5 122.0.

FIG. 6. Amplitudes a1 as a function of time for the simulation
depicted in Fig. 5. The dots represent the case D0 5 0, the continuous
line D0 5 20.1.

FIG. 7. Topographic forcing as a trigger to baroclinic instability.
Parameters as in Fig. 5 but D0 5 0.168 and p 5 0.2.

feature on an undisturbed lower layer in a stable en-
vironment is to give birth to a secondary wave. Thus,
if we suppose A2 5 0 at t 5 0, it follows from (2.5)
that the further dynamics of the lower layer is given by
A2 ø k2A1xt or A2 ø Dxt, which has a dipole structure
in both cases. The basic dynamics of solitary-wave in-
teraction is determined by the interplay of these induced
changes in amplitudes and the associated changes in
wave speed according to (3.4).

Meteorological observations suggest that topography
is not necessary for the creation and development of
blocking systems but may enhance and amplify them
(Egger et al. 1986). Having this in mind, we show that
the effect of a topographic feature on the steady-state
solutions of the unforced coupled KdV equations, as
discussed in GG and therein associated with atmospher-
ic blocking systems, is twofold: it may enforce the local
character of blocking systems due to capturing traveling
waves, and it may also enhance their amplitudes. As
can be seen from Fig. 1 the amplifying influence of
topography on the amplitude is largest for small D, that
is, for small nontopographic steady-state solutions. This
already indicates that, as Egger et al. (1986) suggest,
topography may provide the forcing that leads to block-
ing systems that otherwise had amplitudes too small to
be classified as mature blocking systems.

In Fig. 5 we show an interaction of two solitary waves
meeting over a topographic feature with D0 5 20.1 and
p 5 122.0 located at x 5 0. For D0 5 0 a similar picture
is obtained, and the dynamics in both cases reflects the

quasi-blocked state of a saddle point discussed for the
nontopographic case in GG. A comparison of the am-
plitudes for the upper layer of the topographic and non-
topographic case is shown in Fig. 6. Due to symmetry
the picture for the lower layer is similar. It shows that
not only are the amplitudes larger, but also the transient
quasi-blocked period is much longer. We note that to-
pography may also trigger baroclinic instability if the
forcing is large enough. An example for this is given
in Fig. 7. The reason for this is simply that the change
in amplitude of the solitary wave caused by topography
may push the solitary wave into the unstable band of
baroclinic instability as discussed in section 2 for k1k2
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FIG. 8. Interaction of a stable center with topography, where k1 5
20.7, k2 5 20.3, m 5 1, l 5 1, D1 5 1.296, D2 5 1.696, a1 5 a2

5 0.498, D0 5 21.05, and p 5 0.2.

FIG. 9. Amplitudes a1,2 as a function of time for the simulation
depicted in Fig. 8. The continuous lines represent the upper layer a1,
the dotted line the lower layer a2.

, 0. An examination for the interaction of a stable
center with topography is given in Fig. 8. The amplitude
of the upper- and lower-layer solitary waves are depicted
in Fig. 9. The parameters are chosen such that the sol-
itary waves represent a stable center in a nontopographic
environment. The topography traps the traveling wave
and leads to a well-localized coherent structure. More-
over, as can be seen from Fig. 9, the amplitudes rise
significantly. We note that the duration of the larger-
amplitude states are about 10 days if we assume a typical
horizontal length scale of 1000 km, a typical velocity
of the mean flow of 10 m s21 and set the smallness
parameter of the long-wave theory as d 5 0.1. We also
observe significant upstream waves, reminiscent of the
single-layer forced KdV equation. Again for the case
k1k2 , 0 baroclinic instability can be triggered. It is
pertinent to mention that the parameter values chosen
to obtain Fig. 8 do not support a topographic equilibrium
solution, as can be readily seen from (3.12). This means
that the locked state observed here is not a perturbed
topographic steady-state solution but the result of an
interaction of topography with a nontopographic stable
steady-state solution.

The rise in the amplitude in both cases, for the center
as well as for the saddle point, is due to the simple fact
that topography enters Eq. (2.5) as a forcing term. The
capture owes its existence to the stabilizing effect of
topography under the condition k1m , 0 and D0 , 0.
We emphasize that topography does not change the char-
acter of the solutions but only adds new features to the

types of solutions found in GG, that is, either charac-
terized as stable centers or saddle points.

5. Discussion and summary

In this paper we have developed a weakly nonlinear,
long-wave approximation for a topographically forced
quasigeostrophic two-layer system with bottom Ekman
damping. The dynamics of two interacting waves was
found to be described by a pair of coupled Korteweg–
de Vries equations. It has been our purpose to relate the
solitary-wave solutions supported by this KdV system
to coherent structures in the atmosphere, in particular
to atmospheric blocking. The main focus was to inves-
tigate the influence of topography on solitary waves and
the relevance of topographic forcing as a mechanism
for the formation and development of blocking systems.

The validity of our theory as a model for atmospheric
blocking has to be tested in two different ways. First,
we have to show that the pair of coupled KdV equations
does describe the dynamics of the quasigeostrophic sys-
tem in the long-wave limit correctly, and is an appro-
priate approximation. Second, the results of our as-
ymptotic theory have to be consistent with observational
data.

We will start with the former, and we do so by looking
at the time evolution of a solitary-wave steady-state
solution of the coupled KdV equation (2.5) in the full
quasigeostrophic two-layer system (2.1). The numerical
scheme to integrate the quasigeostrophic two-layer sys-
tem used here is the same as in GG, namely, a finite-
difference code introduced by Holland (1978). Outgoing
waves have been taken care of by using a sponge layer
in which all time derivatives artificially are set equal to
zero near the boundary and then are smoothly connected
to the exact value in the interior. The mean flow is
supposed to be of the form Ui 5 Ui0(y 2 li)2 sin[p/L(y
2 ymax)], where L is the channel width and Ui0, li are
free parameters. In Fig. 10 we show an example of a
stable steady-state solution. For the mean flow we chose
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FIG. 10. Steady-state solution representing a topographically forced
center after T 5 400. The continuous line refers to the upper layer,
the dotted line to the lower layer.

FIG. 11. Interaction of two topographically forced solitary waves
in the quasigeostrophic two-layer system at T 5 200, which were
initially both centered around the topography at x 5 0.0. The con-
tinuous line refers to the upper layer, the dotted line to the lower
layer. The parameters chosen are U10 5 20.05, U20 5 0.06, L 5 2,
ymax 5 1, l1 5 9, l2 5 8, b 5 0.000 15, F1 5 0.015, F2 5 0.015, D0

5 20.16, p 5 30.0, and d2 5 0.15. In the x direction we used 600
grid points, in the y direction 10.

FIG. 12. Interaction of two topographically forced solitary waves
in the KdV system at time t 5 15 corresponding to Fig. 11. The
continuous line refers to the upper layer, the dotted line to the lower
layer. The corresponding parameters for the KdV equations of the
parameters given in Fig. 11 yield for the KdV equation a1 5 0.23,
a2 5 0.20, l 5 21.06, m 5 20.94, D1 5 0.10, D2 5 20.11, k1 5
0.10, k2 5 20.11, D0 5 20.16, and p 5 30.0, and we obtain for
the time stretching t 5 14T. Since l2 , 0 we had to let x → 2x to
compare it with Fig. 11.

U10 5 0.049, U20 5 0.055, L 5 2,ymax 5 1, l1 5 9, and
l2 5 29, and we set b 5 0.0025, F1 5 0.005, F2 5
0.006 25, D0 5 20.16, p 5 0.05, and d2 5 0.1. The
corresponding parameters for the KdV equations are
calculated using (A.15) and the scaling described in the
appendix to 5 20.12, 5 0.12, l 5 0.9, m 5a* a*1 2

20.9, D1 5 0.11, D2 5 0.12, k1 5 0.1, and k2 5 0.1,
and we obtain for the time stretching t 5 60T. In the x
direction we used 900 grid points, in the y direction 20.
The solitary wave is clearly stable in the quasigeo-
strophic system as well as in the KdV system.

To confirm our theory that the coupled Korteweg–de
Vries system is indeed a good approximation for the
quasigeostrophic two-layer system in the weakly non-
linear, long-wave limit, we will also show a simulation
for a set of parameters that does not yield a steady state
but instead shows solitary-wave interaction. Fig. 11
shows the two solitary waves after a time T 5 200. The
corresponding snapshot of the two solitary waves in the
KdV system is depicted in Fig. 12. The mutual inter-
action in both cases are the same.

The numerics and Figs. 10–12 show that the solitary
waves obtained as approximate solutions in the asymp-
totic theory do survive in the full quasigeostrophic two-
layer system and we can claim that the coupled KdV
equations (2.5) are indeed a valid approximation for the
quasigeostrophic system (2.1) in the weakly nonlinear,
long-wave approximation and do represent the dynamics
in this limit.

We do not attempt to make accurate quantitative com-
parisons of our asymptotic theory and the observational
data or numerical simulations of real atmospheric flows
as our solitary-wave model is designed basically to ex-
tract possible scenarios and mechanisms. Moreover, it
seems more appropriate to do a quantitative comparison
of observational data and a set of numerical simulations
of the full quasigeostrophic two-layer system. This as-
pect is currently under investigation and will be reported
in detail elsewhere. Nevertheless, we can draw quali-
tative conclusions and show consistency of our model
with the data.

We will briefly discuss the magnitude of the param-
eters of the system of coupled KdV equations (2.5).
Since the parameters reflect the details of the mean flow
structures, we need to use observational data, especially
for the meridional gradients in both layers. We will es-
timate the order of the magnitude using a rough but
reasonable approximation. We put U1 5 gU2, where g
5 D2/D1 so that each layer has the same mass flux. This
rough approximation yields

m ø g, l ø g, k1 ø F1, k2 ø gs2F2.

If we choose D2 5 10 km as the height of the tropopause
and D1 5 2.5 km as the height of the tropopause with
densities r1 5 0.45 kg m23 and r2 5 0.85 kg m23, and
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recall the typical synoptic scales as L 5 1000 km, U0

5 10 m s21, and f 0 5 1024 s21, and take the smallness
parameter d 5 0.5, we obtain m ø l ø 4, k1 ø 0.1,
and k2 ø 0.2. Thus, realistic flow structures imply a
weak coupling situation, which we used in our pertur-
bation theory. Values for the height of the topography
D0, which range from 0.1 to 1.0, correspond to topo-
graphical features of 500 m to 5 km.

The results from the asymptotic theory and the nu-
merical simulation of the KdV equations support the
observations of Egger et al. (1986) that topography is
not essential for the formation and maintenance of
blocking systems but may provide preferred conditions
under which blocking systems can occur and develop.
Our theory is consistent with this observation since to-
pography does not introduce fundamentally new solu-
tions compared to the nontopographic case previously
discussed in GG, but supports features highly supportive
for atmospheric blocking. Of the various phenomena
investigated here the most significant from a meteoro-
logical point of view are wave capturing, direct resonant
forcing, and multiple equilibria. We will briefly sum-
marize these features and their relevance to blocking
systems.

Topographic forcing was shown to modify steady-
state solutions of the nontopographic case and their in-
teraction either by direct resonant forcing or by cap-
turing traveling waves. In particular, we have shown
that quasi-locked states exhibit longer blocking periods
and larger amplitude states than they had in the non-
topographic case. Furthermore, stable waves (i.e., cen-
ters in the phase-plane analogy) moving toward a to-
pographic feature may be captured and stay locked to
it. Again the resulting steady-state solution shows larger
amplitudes than in the nontopographic case. We have
also demonstrated that topography can trigger baroclinic
instability in incident waves.

In GG we found multiple quasi equilibria of saddle
points where small perturbations of incident waves
would either lead to a repulsion regime or a quasi-locked
state, the latter being highly suggestive of transient
blocking systems. Besides these nontopographic mul-
tiple equilibria we have found here multiple equilibria
whose nature is solely due to topographical forcing. We
found two kinds of topographical multiple equilibria;
either as different amplitude states where energy con-
version due to baroclinic processes is balanced by to-
pographical forcing, or when small Ekman damping is
included and we assume a balance between topograph-
ical forcing and frictional dissipation, states of different
location relative to the topography. The difference of
the amplitudes of the topographic steady-state solution
and the nontopographic steady-state solution is most
significant for small amplitudes and can be neglected
for large amplitudes. Hence, topography may provide
the energy for high pressure fields to be actually re-
garded as a blocking highs (see Egger et al. 1986). Un-
like the multiple equilibria found by Charney and

DeVore (1979), the local multiple equilibria do not rely
on the existence of a globally resonant Rossby wave.

Further research needs to be done on solitary-wave
interactions in the full quasigeostrophic two-layer sys-
tem, and is currently under investigation. Furthermore,
since in the Southern Hemisphere topographic forcing
is less significant than thermal forcing of sea surface
temperature anomalies, we will report on this case in a
sequel to this paper and present an asymptotic theory
analogous to those used here.
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APPENDIX

Derivation of Coupled KdV Equations

We summarize here the derivation described in our
previous paper GG. If we insert the boundary conditions
(2.2) into the quasigeostrophic equations (2.1), the per-
turbations c1,2 satisfy

0] ] 1 U q 1 c Q 1 J(c , q ) 5 1/2n n nx ny n n E1 2 V]t ]x 2 Dc , 22e
(A1)

where n 5 1, 2, respectively, and
2q 5 ¹ c 1 F (c 2 s c ), (A2)1 1 1 2 1 1

2q 5 ¹ c 1 F (c 2 s c ) 1 h , (A3)2 2 2 2 2 1 B

Q 5 b 2 U 2 F (U 2 s U ), (A4)1y 1yy 1 2 1 1

Q 5 b 2 U 1 F (U 2 s U ), (A5)2y 2yy 2 2 2 1

with the Jacobian defined by

J(a, b) 5 axby 2 aybx.

The boundary conditions transform into

c1,2 5 const at y 5 2 L, 0. (A6)

Note that we adopt the usual convention that the fric-
tional term in (A1) acts only on the perturbation field;
that is, an appropriate forcing term is added to the right-
hand side of (2.1) to maintain the mean current.

For the weakly nonlinear long-wave analysis we in-
troduce the following scales:

X 5 dx
3T 5 d t
2 (0) 4 (1)c 5 d c 1 d c 1 · · ·i i i

(0) 2 (1)U 5 U 1 d U 1 · · · ,i i i

where d is a small parameter, the inverse of which mea-
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sures the horizontal scale of the disturbance. Next, we
rescale the Froude numbers

Fi → d2Fi. (A7)

It follows that our model is valid for situations where
the internal Rossby radius of deformation is of the order
of the long horizontal scale. Further, we scale

2b → d b

4h → d hB B

1/2E V 3→ d E
2e

so that Qiy ø 2Uiyy at the lowest order. This scaling of
the bottom friction means that the timescale for fric-
tional damping is measured by the slow time T. Of
course, from the point of view of applications, the scal-
ing is given by the topography and the thereby-intro-
duced spatial scale. The remaining scaling then follows
from the condition of the waves being in resonance with
the topography and the conditions described above for
the potential vorticity gradient. Substituting this scaling
into Eq. (A1), we obtain to the lowest order O(d3)

2 5 0,(0) (0) (0) (0)U c U ci iXyy iyy iX

from which we conclude that

(X, T, y) 5 Ai(X, T) (y).(0) (0)c Ui i (A8)

Hence, the meridional structure of ci is entirely deter-
mined by the mean currents at the leading order.

The O(d5) terms give us two evolution equations for
the amplitudes Ai for each layer. We reiterate that the
reason for the occurrence of two coupled equations is
the scaling of the Froude numbers (A7), which implies
the existence of two independent modes at leading order.
We obtain

2 1 Gi 5 0,(0) (1) (0) (1)U c U ci iXyy iyy iX (A9)

where
(0) (0) (0)G 5 A U 1 U A U1 1T 1yy 1 1XXX 1

(0) (0) (0) (1) (0)1 F U (U A 2 s U A ) 1 U A U1 1 2 2X 1 1 1X 1 1X 1yy

(0) (1) (0) (0)1 A U [b 2 U 2 F (U 2 s U )]1X 1 1yy 1 2 1 1

(0) (0) (0) (0)1 A A (U U 2 U U ),1 1X 1 1yyy 1y 1yy (A10)
(0) (0) (0)G 5 A U 1 U A U2 2T 2yy 2 2XXX 2

(0) (0) (0) (1) (0)2 F U (U A 2 s U A ) 1 U A U2 2 2 2X 2 1 1X 2 2X 2yy

(0) (1) (0) (0)1 A U [b 2 U 1 F (U 2 s U )]2X 2 2yy 2 2 2 1

(0) (0) (0) (0) (0)1 A A (U U 2 U U ) 1 gU h2 2X 2 2yyy 2y 2yy 2 BX

(0)1 EA U .2 2yy (A11)

The solvability conditions are obtained by integrating
(A9) with respect to y, so that, on using the boundary
conditions (A6), we get

0

G dy 5 0. (A12)E i

2L

On substituting the expressions (A10) and (A11) for Gi

we obtain the amplitude equations for Ai:

A 1 D A 2 m A A 2 l A 2 k A 5 0, (A13)1T 1 1X 1 1 1X 1 1XXX 1 2X

A 1 D A 2 m A A 2 l A 2 k A 5 D 2 EA ,2T 2 2X 2 2 2X 2 2XXX 2 1X X 2

(A14)

where

(0) 0I 5 2[U ] ,n ny 2L

0
2(0)I l 5 U dy,n n E n

2L

2(0) 0I m 5 2[U ] ,n n ny 2L

0

(0) (0) (1) (0) 0I D 5 2 (b 2 F U )U dy 2 [U U ] ,1 1 E 1 2 1 1 1y 2L

2L

0

(0) (0) (1) (0) 0I D 5 2 (b 2 s F U )U dy 2 [U U ] ,2 2 E 2 2 1 2 2 2y 2L

2L

0

(0) (0)I k 5 F U U dy,1 1 1 E 1 2

2L

0

(0) (0)I k 5 s F U U dy,2 2 2 2 E 1 2

2L

0

(0)I D 5 h U dy. (A15)2 B E 2

2L

Equations (A13) and (A14) have the form of two cou-
pled KdV equations and, as expected, are similar to
those derived by Mitsudera (1994). Note that for me-
ridional symmetric and antisymmetric flows, or more
generally just for 5 0 at the boundaries, the non-(0)U iy

linear term vanishes. The coefficients m i determine the
polarity of the solitary waves. Before proceeding fur-
ther, we shall rescale Eqs. (A13) and (A14) for con-
venience. We put

T 6l2T → , X → (signl )X, A → A ,2 n n|l | m2 2

D → l D , k → l k , F → |l |F,n 2 n n 2 n 2

D → l D,2

and

m l1 1m 5 , l 5 ,
m l2 2

in order to get
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A 1 D A 2 6mA A 2 lA 2 k A 5 0,1T 1 1X 1 1X 1XXX 1 2X

A 1 D A 2 6A A 2 A 2 k A 5 D 2 EA .2T 2 2X 2 2X 2XXX 2 1X X 2

(A16)
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