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We develop an ab initio approach to describe the statistical behavior of finite-size fluctuations
in the Kuramoto-Sakaguchi model. We obtain explicit expressions for the covariance function of
fluctuations of the complex order parameter and determine the variance of its magnitude entirely
in terms of the equation parameters. Our results rely on an explicit complex-valued formula for
solutions of the Adler equation. We present analytical results for both the sub- and the super-
critical case. Moreover, our framework does not require any prior knowledge about the structure of
the partially synchronized state. We corroborate our results with numerical simulations of the full
Kuramoto-Sakaguchi model. The proposed methodology is sufficiently general such that it can be
applied to other interacting particle systems.

Introduction. Synchronization is a generic phe-
nomenon inherent in interacting oscillators that deter-
mines their ability to exhibit a wide range of com-
plex dynamical behavior [1–7]. It has been observed
in a plethora of natural and engineered systems, includ-
ing pace-maker cells of circadian rhythms [8], networks
of neurons [9], chemical oscillators [10, 11] and power
grids [12]. The main features of synchronization are de-
scribed by the paradigmatic Kuramoto-Sakaguchi (KS)
model [13]

ψ̇i = ωi +
K

N

N∑
j=1

sin(ψj − ψi − λ) (1)

for the collective behavior of a system of N all-to-all
coupled phase oscillators. In this model, ωi are natu-
ral frequencies drawn randomly and independently from
a given distribution g(ω) and K and λ are real parame-
ters quantifying the coupling strength and the phase lag,
respectively. It is often convenient to rewrite (1) in the
corotating frame θi = ψi −Ωt with a global rotation fre-
quency Ω as

θ̇i = ωi − Ω+K Im
(
Z(t)e−iθie−iλ

)
, (2)

which reveals that each oscillator interacts with the other
oscillators only via the mean field. Importantly, the de-
gree of synchronization is quantified by the mean field,
also coined the complex order parameter,

Z(t) =
1

N

N∑
j=1

eiθj(t). (3)

A fully synchronized state with θ1 = θ2 = · · · = θN is
characterized by r(t) = |Z(t)| = 1, whereas a completely
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disordered (incoherent) state is characterized by r(t) ∼
O(1/

√
N). It is well known that for sufficiently large

values of the coupling strength K the system becomes
fully synchronized, whereas for sufficiently small values
of K the oscillators behave independently and form an
incoherent state. For intermediate values of the coupling
strength, partially synchronized states are observed in
which r(t) fluctuates around a constant value between 0
and 1. On a microscopic level the oscillator population
splits into two groups: coherent oscillators C, which are
phase locked, and rogue oscillators R, which drift with
respect to the mean field.
In the thermodynamic limit of infinitely many oscilla-

tors each oscillator interacts with the other oscillators via
a constant collective mean. This limit is well understood
and described by mean-field theory [13–16]. In particu-
lar, the rotation frequency of the coherent oscillators Ω∞
and the constant order parameter r∞ are determined by
a self-consistency relation

1

K
eiλ = i

∫ ∞

−∞
g(Ω∞ +Kr∞s)h(s)ds, (4)

where

h(s) =

{
(1−

√
1− s−2)s for |s| > 1

s− i
√
1− s2 for |s| ≤ 1.

(5)

However, recently finite-size effects have gained much
attention. Numerical experiments have lead to a better
understanding of finite-size effects and provide clear evi-
dence for their significance [17–24]. In particular, several
finite-size phenomena were observed such as a stochas-
tic drift of oscillators which disappears in the thermo-
dynamic limit [25–28] and emergent random chimera
switching in a deterministic two-population KS model
[29]. Capturing finite-size effects analytically is a no-
toriously hard problem. Relaxation rates and multi-
oscillator were obtained using kinetic theory [30–32] and
finite-size scaling near criticality has been successfully
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quantified [21, 33–35]. A general scheme for analyzing
fluctuations in systems of coupled phase oscillators was
proposed in [36–38]. In particular, accurate approxima-
tions were obtained in the subcritical case of the KS
model (1) with λ = 0 and a Lorentzian frequency dis-
tribution [38]. However, this approach relies on several
approximations which do not carry over to the case of
more general frequency distributions such as Gaussians
as we will show (see End Matter). In this Letter we
will capture finite-size effects in a first principle way and
provide explicit expressions for the covariance function
and the variance of the order parameter. Our focus will
be the hitherto unexplored parameter range away from
criticality.

Recently, it was numerically recognized that fluctua-
tions

ζ(t) =
√
N(Z(t)− ⟨Z(t)⟩) (6)

around the thermodynamic mean ⟨Z(t)⟩, where ⟨·⟩ de-
notes time averaging, approximately obey a Gaussian
process [23, 29]. Fluctuations in Z(t), with a variance
that decays as 1/N and vanishes in the thermodynamic
limit, lead to fluctuations in other macroscopic variables,
including the order parameter with fluctuations

δ(t) =
√
N(|Z(t)| − ⟨|Z(t)|⟩) =

√
N(r(t)− ⟨r(t)⟩). (7)

Gaussian processes are entirely determined by their
mean, accessible via classical mean-field theory, and their
covariance function

R(τ) = ⟨ζ(t)ζ(t+ τ)⟩, (8)

where the bar denotes the complex-conjugate. Once de-
termined, this suggests to approximate the deterministic
dynamics of the synchronized oscillators θi, which are
deterministically driven by Z(t), by an effective stochas-
tic equation for θi, which is driven by a Gaussian pro-
cess [39]. Previous work [23, 29] has shown the efficacy of
such an approach, however, these works relied on approx-
imating the general Gaussian process by an Ornstein-
Uhlenbeck process the parameters of which were esti-
mated only numerically and needed to be recalculated
for each set of equation parameters. Moreover, a precise
a priori knowledge of which oscillators are synchronized
and which are not was required.

In this Letter, we find explicit analytical expressions
for the covariance function (8) and the variance of finite-
size fluctuations of the order parameter V = ⟨δ2(t)⟩,
given entirely in terms of equation parameters K, λ and
g(ω). We present expressions for both the partially syn-
chronized and the completely incoherent state. Remark-
ably, our expressions do not require any a priori knowl-
edge about which oscillators partake in the synchronized
cluster and which do not.

Our main results can be formulated as follows. For

partially synchronized states we predict

Rps(τ) = Kr∞

∞∫
−∞

(h2(s)− 1)(1− |h2(s)|)g(Ω∞ +Kr∞s)

h2(s)− exp(iKr∞s
√

1− s−2 τ)
ds

(9)
and

Vps =
1

2
Rps(0) +O

(
1√
N

)
for N ≫ 1. (10)

For completely incoherent states we find

Rincoh(τ) =

∫ ∞

−∞
g(ω)e−iωτdω (11)

and

√
N⟨r(t)⟩ =

√
π

2
and Vincoh = 1− π

4
for N ≫ 1.

(12)
Our analytical results and their efficacy in capturing
finite-size fluctuations are illustrated in Figs. 1 and 2,
where we compare our predictions with simulations of
the full KS model (1) for a network of 1, 000 oscillators.
Fig. 1 shows the covariance function R(τ) for a partially
synchronized state described by (9) and for a completely
incoherent state described by (11). Fig. 2(a) shows the
averaged order parameter ⟨r(t)⟩ as a function of the cou-
pling strength K. The order parameter of the full KS
model (1) is very well reproduced by classical mean-field
theory (4) for values of the coupling strength K ≥ Kcrit.
Moreover, our extension of the mean-field results to the
completely incoherent state given by (12) captures the
value of the order parameter for the subcritical range
K < Kcrit. Fig. 2(b) shows how our analytical results
for the variance of the order parameter (10), (12) repro-
duce the true variance well for coupling strength away
from the bifurcation at Kcrit. We have checked that the
results for the full KS model (1) are indistinguishable by
eye when a larger network with 10, 000 oscillators is sim-
ulated. Additional numerical results for various values of
the coupling strength K are provided in End Matter.
Covariance function for a partially synchronized state.

Our approach is based on the following prerequisites.
(i) Although seeking to quantify fluctuations of Z(t), we
replace in Eq. (2) the mean-field Z(t) by its constant ther-
modynamic value Z∞, and we move into the corotating
frame

θi(t) = ψi(t)− Ω∞t+ ϕ with some ϕ ∈ R. (13)

Moreover, we assume ⟨Z(t)⟩ = Z∞. (ii) We use the well-
known fact (see End Matter for details) that the proba-
bility density of the solution to Eq. (2) with Z(t) = Z∞
is given by the Ott-Antonson ansatz [16]

fϕ(θ, ω) =
g(ω)

2π

{
1 +

∞∑
n=1

[
znϕ(ω)e

inθ + znϕ(ω)e
−inθ]} ,

(14)
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FIG. 1. Covariance R(τ) of fluctuations ζ(t) of the complex
order parameter for the KS model (1). (Top row) Partially
synchronized state at K = 6 and λ = π/4, with theoretical
prediction (9). (Bottom row) Completely incoherent state at
K = 0.5 and λ = π/4, with theoretical prediction (11).
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FIG. 2. (a) Averaged order parameter ⟨r(t)⟩, with theoretical
predictions from classical mean-field theory (4) for K > Kcrit

and from our approach (12) for K < Kcrit, and (b) its vari-
ance V , with theoretical predictions (10), (12), versus cou-
pling strength K in the KS model (1) with λ = π/4.

where

zϕ(ω) = eiϕh

(
ω − Ω∞

Kr∞

)
. (15)

Then, for every non-negative integer n we have∫ 2π

0

fϕ(θ, ω)

g(ω)
einθdθ = znϕ(ω), (16)

which, upon employing (3) and (4), implies

Z∞ =

∫ ∞

−∞
dω

∫ 2π

0

fϕ(θ, ω)e
iθdθ = −r∞ieiλeiϕ.

Moreover, due to the ergodicity property, for any 2π-
periodic function F (θ) we have

⟨F (θj(t))⟩ =
∫ 2π

0

fϕ(θ, ωj)

g(ωj)
F (θ)dθ. (17)

(iii) Finally, we establish an explicit solution of the ther-
modynamic limit of (2) with constant driver Z(t) = Z∞,
the so called Adler equation. Introducing ∆j = ωj −Ω∞
and H∞ = KZ∞e

−iλ, solutions of the Adler equation
θj(t) with initial conditions eiθj(0) are given for |∆j | ̸=
|H∞| by the explicit formula

eiθj(t) =W (t,H∞,∆j , e
iθj(0)), (18)

with

W (t,H,∆, σ) = Ha1(t) +
a2(t)σ

1 +Ha1(t)σ
, (19)

where

a1(t) = i(eiξt − 1)/χ1(t) and a2(t) = 4ξ2eiξt/χ2
1(t)

with χ1(t) = (∆− ξ)eiξt − (∆ + ξ) and

ξ =

{
−i
√

|H|2 −∆2 for |∆| ≤ |H|,√
∆2 − |H|2 for |∆| > |H|.

Note that for |∆j | < |H∞|, the jth oscillator is coherent
and the dynamics of θj(t) converges to a fixed point as
t → ∞, while for |∆j | > |H∞|, the oscillator is incoher-
ent with underlying periodic dynamics. Details on the
derivation of (18), (19) are given in End Matter.
The covariance function (8) can be expressed in terms

of the fluctuations (6) as

Rps(τ) = N⟨Z(t)Z(t+ τ)⟩ −N |Z∞|2

=
1

N

N∑
j,k=1

⟨eiθj(t)e−iθk(t+τ)⟩ −N |Z∞|2. (20)

It is easy to see that if j ∈ C or k ∈ C, the summands
can be written as

⟨eiθj(t)e−iθk(t+τ)⟩ = ⟨eiθj(t)⟩⟨e−iθk(t)⟩. (21)

Moreover, assuming that the variables eiθj(t) and eiθk(t)

with j, k ∈ R and j ̸= k are independent, and therefore
identity (21) holds, the sum in (20) can be written as

N∑
j,k=1

⟨eiθj(t)e−iθk(t+τ)⟩ =
N∑

j,k=1

⟨eiθj(t)⟩⟨e−iθk(t)⟩

+
∑
j∈R

⟨eiθj(t)e−iθj(t+τ)⟩ −
∑
j∈R

∣∣∣⟨eiθj(t)⟩∣∣∣2 .
Substitution in (20) yields, upon using (6),

Rps(τ) =
∑
j∈R

⟨eiθj(t)e−iθj(t+τ)⟩ −
∑
j∈R

∣∣∣⟨eiθj(t)⟩∣∣∣2 . (22)

Now, using (17) to replace temporal averages by averages
over the phases and the explicit formula (18) for eiθj(t+τ),
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we obtain

⟨eiθj(t)⟩ = zϕ(ωj),〈
eiθj(t)e−iθj(t+τ)

〉
=

∫ 2π

0

eiθW (τ,H∞,∆j , e
iθ)×

×fϕ(θ, ωj)
g(ωj)

dθ =
Ha1(τ)

zϕ(ωj)
(|zϕ(ωj)|2 − 1) + 1.

(Note that for the second correlation, we used iden-
tity (16) after expanding the solution (18)–(19) in a geo-
metric series. Details of the calculations can be found in
End Matter.) Altogether, this yields

Rps(τ) =
1

N

N∑
j=1

[
Ha1(τ)

zϕ(ωj)
− 1

] (
|zϕ(ωj)|2 − 1

)
.

Finally, in the thermodynamic limit, averaging over in-
dices j can be replaced by averaging over the distribution
g(ω), so we can write

Rps(τ) =

∞∫
−∞

[
Ha1(τ)

zϕ(ω)
− 1

] (
|zϕ(ω)|2 − 1

)
g(ω)dω.

(23)
After some algebraic manipulations (see End Matter),
the covariance function (23) simplifies to our expres-
sion (9). Note that if |ω − Ω| ≤ |H∞| = Kr∞, |zϕ| = 1.
Therefore such values ω do not contribute to the integral
Rps(τ). This has the desirable consequence that in order
to evaluate the covariance function, no prior knowledge
is required about which oscillators are and which are not
synchronized.

Covariance function for a completely incoherent state.
Our analysis of the completely incoherent state is based
on the following prerequisites. (i) In this state, the phases
ψj tend to be uniformly distributed on the interval [0, 2π],
and their probability density in the thermodynamic limit
is given by

fincoh(ψ, ω, t) =
g(ω)

2π
. (24)

(ii) The global order parameter shows no collective oscil-
lations, and Z(t) = 0 as N → ∞. This implies that the
dynamics of each oscillator is approximately described by
ψ̇i = ωi, and therefore ψi(t) = ωit+ ϕ with ϕ = ψi(0).
The covariance function for fluctuations ζincoh(t) of this

incoherent state is then given by

Rincoh(τ) = ⟨ζincoh(t)ζincoh(t+ τ)⟩

=
1

N

N∑
j,k=1

〈
eiψj(t)e−iψk(t+τ)

〉
−N |⟨Z(t)⟩|2.

For randomly chosen initial conditions ψi(0) the variables
eiψj(t) and eiψk(t) with j ̸= k are independent, which
implies again an identity of the form (21), and we obtain

Rincoh(τ) =
1

N

N∑
j=1

〈
eiψj(t)e−iψj(t+τ)

〉
− 1

N

N∑
j=1

∣∣∣⟨eiψj(t)⟩
∣∣∣2 .

Moreover, using the ergodicity property and the station-
ary density for incoherent oscillators (24), we find

⟨eiψj(t)⟩ =
∫ 2π

0

eiψ
fincoh(ψ, ω, t)

g(ω)
dψ = 0 (25)

and

⟨eiψj(t)e−iψj(t+τ)⟩ = e−iωjτ .

Finally, in the large-N limit we can replace averaging
over indices j by averaging over the distribution g(ω)
and arrive at our expression for the covariance function
Rincoh (11). Note that due to the normalization condition

for g(ω), we have ⟨|ζincoh(t)|2⟩ = Rincoh(0) = 1.
Variance of the order parameter for a partially syn-

chronized state. Rewriting (6) as

Z(t) = ⟨Z(t)⟩+ 1√
N
ζ(t) = Z∞ +

1√
N
ζ(t)

implies

|Z(t)|2 = |Z∞|2 + 2√
N

Re
(
Z∞ζ(t)

)
+

1

N
|ζ(t)|2, (26)

which upon expansion for N ≫ 1 becomes

|Z(t)| = |Z∞|+ 1√
N |Z∞|

Re
(
Z∞ζ(t)

)
+O

(
1

N

)
.

This allows to express the fluctuations of the order pa-
rameter (7) as

δ(t) =
1

|Z∞|
Re
(
Z∞ζ(t)

)
+O

(
1√
N

)
,

and the variance of the order parameter becomes

Vps =
1

2
Re

(
Z2
∞

|Z∞|2
R̃ps(0)

)
+

1

2
Rps(0) +O

(
1√
N

)
,

where R̃ps(t) denotes the pseudo-covariance R̃ps(t) =
⟨ζ(t)ζ(t + τ)⟩. Employing calculations similar to those

for Rps(t) we can show that R̃ps(τ) = 0 for all τ ≥ 0.
The vanishing of the pseudo-covariance can be intuitively
understood by evoking a symmetry between the real and
imaginary parts of the fluctuations ζ and their indepen-
dence. Using R̃ps(τ) = 0 for all τ ≥ 0, leads to our result
(10).
Variance of the order parameter for a completely inco-

herent state. Consider fluctuations ζincoh(t) of the com-
plex order parameter in the incoherent state. In the
large-N limit, for a completely incoherent state we have
⟨Z(t)⟩ = 0, and (26) reduces to

|Z(t)| = 1√
N

|ζincoh(t)| .
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Using the definition of fluctuations (6), we write

ζincoh(t) =
1√
N

N∑
j=1

cosψj(t) +
i√
N

N∑
j=1

sinψj(t).

In the completely incoherent state all phases ψj(t) are
uniformly distributed in [0, 2π]. This implies that in the
large-N limit fluctuations satisfy a central limit theo-
rem, and ζincoh(t) is a two-dimensional random vector
distributed according to a bivariate normal distribution.
The mean and variances are readily determined. For each
t ≥ 0 the function cosψj(t) is a random variable with zero
expected value ⟨cosψj⟩ens = 0 and variance

〈
cos2 ψj

〉
ens

=
1

2π

∫ 2π

0

cos2 ψ dψ =
1

2
,

where ⟨·⟩ens denotes the ensemble average. Similarly,
sinψj(t) ∼ N (0, 1/2). Moreover, it is easy to verify that
the random variables cosψj(t) and sinψj(t) are uncorre-
lated, since

⟨cosψj sinψj⟩ens =
1

2π

∫ 2π

0

cosψ sinψ dψ = 0.

Hence Re ζincoh(t) ∼ N (0, 1/2) and Im ζincoh(t) ∼
N (0, 1/2), and |ζincoh(t)| has a Rayleigh distribution with
expected value

⟨|ζincoh(t)|⟩ =
√
π/2

and variance

Vincoh = ⟨|ζincoh(t)|2⟩ − ⟨|ζincoh(t)|⟩2 = 1− π/4.

Note that the value ⟨|ζincoh(t)|2⟩ = 1, which follows
from the last two identities, agrees with the value
⟨|ζincoh(t)|2⟩ = Rincoh(0) obtained above.

Discussion and outlook. In this Letter, we have pro-
posed a fully analytical approach to capture the sta-
tistical behavior of finite-size fluctuations in the KS
model (1). In particular, our approach provides

(i) expressions for the covariance function of fluctua-
tions of the complex order parameter and the variance of
the order parameter entirely in terms of the KS model
parameters,

(ii) expressions for both sub- and super-critical cou-
pling strengths,

(iii) expressions that do not require prior knowledge
about which oscillators are synchronized and which are
not.

The results obtained were verified with simulations for
the full KS model and were shown to perform well away
from criticality. On the other hand, our approximations
were less accurate when approaching the critical coupling
strength Kcrit ≈ 1.92 demarcating the transition from
a desynchronized to a partially synchronized state. It
seems that near criticality, long-range correlations cannot
be neglected and our independence assumptions cease to

be valid. We envisage extensions of our framework to the
near critical case using a perturbative approach around
the expressions derived in this work.
Our approach is sufficiently general to allow for further

applications to other interacting particle systems such as
θ-neuron models and more complex network topologies
going beyond the all-to-all coupling considered in this
Letter. The mathematical tools developed here can po-
tentially be adapted to study fluctuations in coupled os-
cillator systems in the presence of noise [28, 40–44] and
finite-size corrections of Lyapunov exponents [45].
In summary, our results fully specify the statistical be-

havior of finite-size fluctuations in the KS model which
have been numerically shown to be Gaussian processes.
This opens up the way to perform systematic stochastic
model reductions for such interacting particle systems
from first principles and to construct reduced stochastic
equations for designated collective variables [27, 46].

END MATTER

Thermodynamic limit for the KS model (1).
Most of the dynamical states found in the KS model (1)
with finite N , have complex chaotic behavior. However,
in the thermodynamic limit N → ∞, they admit a sim-
ple analytic representation. If N ≫ 1, the state of the
phase oscillators {ψi(t)} can be described by a probabil-
ity density function f(ψ, ω, t), which obeys the continuity
equation

∂f

∂t
+

∂

∂ψ
(fv) = 0, (27)

where

v(ψ, ω, t) = ω +
K

2i

[
e−iλZ(t)e−iψ − eiλZ(t)eiψ

]
is the continuum version of the velocity field in Eq. (1),
and

Z(t) =

∫ ∞

−∞
dω

∫ 2π

0

f(ψ, ω, t)eiψdψ (28)

is the continuum version of the complex order parameter
(see formula (3) with Ω = 0).
It is well-known [16, 47] that the long-term dynamics of

the continuity equation (27) asymptotically approaches
the Ott-Antonsen manifold for t→ ∞, consisting of dis-
tributions of the form

f(ψ, ω, t) =
g(ω)

2π

{
1 +

∞∑
n=1

[
zn(ω, t)einψ + zn(ω, t)e−inψ

]}
,

where z(ω, t) satisfies the inequality |z| ≤ 1 and solves
the integro-differential equation

∂z

∂t
= iωz(ω, t) +

K

2
e−iλGz − K

2
eiλz2(ω, t)Gz (29)
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with the integral operator

(Gz)(t) =
∫ ∞

−∞
g(ω)z(ω, t)dω.

Remarkably, all statistically stationary states of sys-
tem (1) lie on the Ott-Antonsen manifold [14, 15]. In
particular, the zero solution z(ω, t) = 0 of Eq. (29) cor-
responds to the completely incoherent state in (1), while
all stationary partially synchronized states in (1) are rep-
resented by rotating waves

z(ω, t) = h

(
ω − Ω∞

Kr∞

)
eiΩ∞t (30)

where h(s) is defined by (5) and (r∞,Ω∞) ∈ (0, 1) × R
is a pair of numbers satisfying the self-consistency equa-
tion (4).

The physical meaning of the parameters r∞ and Ω∞
can be understood by inserting the probability density
f(ψ, ω, t) corresponding to (30) into Eq. (28). This yields

Z(t) = −r∞ieiλeiΩ∞t, (31)

and therefore

|Z(t)| = r∞ (32)

is the magnitude of the order parameter, while Ω∞ is the
angular speed of its phase.

If in the KS model (1) we move into the corotating
frame of reference (13), the probability density function
in the new frame will take on the time-independent
form (14), which is used for the calculations in the main
text.

Explicit solutions of the Adler equation Let us
consider the Adler equation written in complex form,

θ̇ = ∆+ Im
(
He−iθ

)
= ∆+

He−iθ −Heiθ

2i
(33)

with arbitrary ∆ ∈ R and H ∈ C.

Proposition 1 If |∆| ̸= |H|, the solution of the Adler
equation (33) is of the form

eiθ(t) =W (t,H,∆, eiθ(0)) :=
iH(eiξt − 1)− χ2(t)e

iθ(0)

iH(eiξt − 1)eiθ(0) + χ1(t)
,

where

ξ =

{
−i
√
|H|2 −∆2 for |∆| ≤ |H|,√

∆2 − |H|2 for |∆| > |H|,
(34)

and

χ1(t) = (∆−ξ)eiξt−(∆+ξ), χ2(t) = (∆+ξ)eiξt−(∆−ξ).

In addition, in the degenerate case |∆| = |H|, the solu-
tion of the Adler equation (33) is given by

eiθ(t) =W0(t,H,∆, e
iθ(0)) := z∗ +

eiθ(0) − z∗

1 + (eiθ(0) − z∗)Ht/2
,

where z∗ = i∆/H. (For brevity of notations, we do not
specify that ξ, χ1(t), χ2(t) and z∗ depend on ∆ and H.)

Proof: Multiplying Eq. (33) by ieiθ, we obtain a com-
plex differential equation for z = eiθ:

ż =
1

2
H + i∆z − 1

2
Hz2. (35)

For |∆| ̸= |H|, the right-hand side of this equation can
be written as

1

2
H + i∆z − 1

2
Hz2 = −1

2
H(z − z+)(z − z−),

where z± = i(∆± ξ)/H. Using the method of separation
of variables and the initial condition z(0) = σ, we obtain

z(t) =
z+(σ − z−)e

iξt − z−(σ − z+)

(σ − z−)e
iξt − (σ − z+)

,

or equivalently eiθ(t) =W (t,H,∆, eiθ(0)).

In the degenerate case |∆| = |H|, we have
z+ = z− = z∗. Integrating Eq. (35), we obtain
eiθ(t) =W0(t,H,∆, e

iθ(0)).

Remark 1 In the case |∆| ̸= |H|, we can write

W (t,H,∆, σ) = Ha1(t) +
a2(t)σ

1 +Ha1(t)σ
,

with

a1(t) =
i(eiξt − 1)

χ1(t)
and a2(t) =

4ξ2eiξt

χ2
1(t)

.

Moreover, in this case, we have |Ha1(t)| < 1, and hence

W (t,H,∆, σ) = Ha1(t) + a2(t)

∞∑
n=0

(−1)nH
n
an1 (t)σ

n+1

is an absolutely convergent series for |σ| ≤ 1.

Remark 2 If (r∞,Ω∞) ∈ (0, 1) × R satisfy the self-
consistency equation (4), it can be easily verified that
zφ(ω) defined by (15) is a fixed point of the Adler equa-
tion (33) with ∆ = ω−Ω∞ and H = −iKr∞eiϕ. There-
fore,

W
(
t,−iKr∞eiϕ, ω − Ω∞, zϕ(ω)

)
= zϕ(ω)

for all t, ω, ϕ ∈ R.

Remark 3 Under the assumptions of Remark 2, using
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Remark 1 and formula (16), we can show∫ 2π

0

eiθW (t,H,∆, eiθ)
fϕ(θ, ω)

g(ω)
dθ =

∫ 2π

0

[
Ha1(t)e

iθ

+a2(t)

∞∑
n=0

(−1)nHnan1 (t)e
−inθ

]
fϕ(θ, ω)

g(ω)
dθ

= Ha1(t)zϕ(ω) + a2(t)

∞∑
n=0

(−1)nHnan1 (t)z
n
ϕ(ω)

= Ha1(t)

(
zϕ(ω)−

1

zϕ(ω)

)
+

1

zϕ(ω)
W (t,H,∆, zϕ(ω))

=
Ha1(t)

zϕ(ω)
(|zϕ(ω)|2 − 1) + 1.

Derivation of Eq. (9) from Eq. (23). Using (5) it
is easy to verify that

|H|h
(

∆

|H|

)
=

{
∆− ξ sgn(∆) for |∆| > |H|,

∆+ ξ for |∆| ≤ |H|,
(36)

where ξ is given by (34). Note that formula (36) holds
for all ∆ ∈ R and H ∈ C.

Now, we consider the integrand of Eq. (23) recalling
that H = KZ∞e

−iλ = −iKr∞eiϕ. Recognizing that in
this case

H

zϕ(ω)
= − iKr∞e

iϕ

eiϕh

(
ω − Ω∞

Kr∞

) = − i|H|

h

(
∆

|H|

)
does not depend on ϕ, we find

Ha1(τ)

zϕ(ω)
− 1 = − i|H|

h

(
∆

|H|

) i(eiξt − 1)

χ1(t)
− 1

=
|H|2

|H|h
(

∆

|H|

) eiξt − 1

(∆− ξ)eiξt − (∆ + ξ)
− 1. (37)

For ∆ > |H|, upon using (36) and the identity ∆2−ξ2 =
|H|2, (37) is written as

Ha1(τ)

zϕ(ω)
− 1 =

|H|2(eiξt − 1)

(∆− ξ)2eiξt − (∆ + ξ)(∆− ξ)
− 1

=
eiξt − 1

h2(∆/|H|)eiξt − 1
− 1 =

1− h2(∆/|H|)
h2(∆/|H|)− e−iξt

.

Similarly, for ∆ ≤ |H| we obtain

Ha1(τ)

zϕ(ω)
− 1 =

1− h2(∆/|H|)
h2(∆/|H|)− eiξt

,

and thus in both cases we have

Ha1(τ)

zϕ(ω)
− 1 =

1− h2(∆/|H|)

h2(∆/|H|)− e−i∆
√

1−|H|2/∆2t
.

Substituting into Eq. (23), we obtain Eq. (9).
Pseudo-covariance function for a partially syn-

chronized state. Using the definition of the pseudo-
covariance function R̃ps(t) = ⟨ζ(t)ζ(t+ τ)⟩ and assuming

that the variables eiθj(t) and eiθk(t) are independent for
j ̸= k, by analogy with (22), we obtain

R̃ps(τ) =
∑
j∈R

⟨eiθj(t)eiθj(t+τ)⟩ −
∑
j∈R

⟨eiθj(t)⟩2.

Using the ergodicity property (17) and performing cal-
culations as in Remark 3, we find

⟨eiθj(t)eiθj(t+τ)⟩ =
2π∫
0

eiθW (τ,H∞,∆j , e
iθ)
fϕ(θ, ωj)

g(ωj)
dθ

= zϕ(ωj)W (τ,H∞,∆j , zϕ(ωj)) = z2ϕ(ωj).

Recalling that ⟨eiθj(t)⟩ = zϕ(ωj), we obtain R̃ps(τ) = 0.
Note that this relation is valid regardless of the choice of
ϕ in the definition of the corotating frame (13).
Numerical simulation protocol for system (1).

Given a distribution g(ω), we generate a set of N natural
frequencies ωj according to∫ ωj

−∞
g(ω)dω =

j

N + 1
, j = 1, . . . , N.

This equiprobable sampling avoids finite-size effects
such as randomly clustered natural frequencies leading
to small synchronized clusters with non-zero mean
frequencies and their respective interactions [48, 49].
For each pair of parameters K and λ, we perform
simulations using a standard Runge-Kutta solver with
constant time step dt = 0.02. We start from initial
conditions chosen randomly from the interval [0, 2π],
discard a transient period of Ttransient = 105 time units
and use the subsequent interval of length Tmax = 105

time units to calculate statistical quantities such as
means, variances, and covariances.

Additional numerical results. To demonstrate how
the accuracy of our method changes as we approach
the critical coupling strength Kcrit ≈ 1.92, we show
additional results for partially synchronized states at
K = 5, 4, 3, 2 for λ = π/4, see Figs. 3–6, as well as for a
completely incoherent state at K = 1 and λ = π/4, see
Fig. 7.
Daido’s theory. In [38], H. Daido proposed an an-

alytical approach to approximate finite-size fluctuations
in the KS model (1) with λ = 0. In particular, for the
subcritical case he obtained explicit expressions for the
covariance function and the variance of the complex order
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FIG. 3. Covariance R(τ) and pseudo-covariance R̃(τ) of the
complex order parameter fluctuation ζ(t) for a partially syn-
chronized state at K = 5 and λ = π/4 in the KS model (1).
Numerical simulations (solid curve) vs. theoretical prediction
(9) (dashed curve).

R
e 

R
p
s(

τ
)

theory

N = 1000

−0.1

0

0.1

0 τ 6

Im
 R

p
s(

τ
)

theory

N = 1000

−0.1

0

0.1

0 τ 6

R
e 

R~

p
s(

τ
)

theory

N = 1000

−0.1

0

0.1

0 τ 6

Im
 R~

p
s(

τ
)

theory

N = 1000

−0.1

0

0.1

0 τ 6

FIG. 4. The same fluctuation characteristics as in Fig. 3 but
for a partially synchronized state at K = 4 and λ = π/4.

parameter. We follow here his approach and determine
expressions for λ ̸= 0 in the subcritical case, and show
that unlike for a Lorentz distribution of the natural fre-
quencies this method is not well suited for a Gaussian
frequency distribution.

Let us assume that the dynamics of the ith oscillator
can be represented as

ψi(t) = Θi(t) +
1√
N
ϑi(t), (38)
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FIG. 5. The same fluctuation characteristics as in Fig. 3 but
for a partially synchronized state at K = 3 and λ = π/4.
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FIG. 6. The same fluctuation characteristics as in Fig. 3 but
for a partially synchronized state at K = 2 and λ = π/4.

where Θi, ϑi = O(1) for N → ∞. Upon substitution into
Eq. (2) with Ω = 0 in the subcritical case, we obtain

Θ̇i +
1√
N
ϑ̇i = ωi +K Im

(
Z(t)e−i(Θi+ϑi/

√
N)e−iλ

)
.

Next, assuming that ⟨Z(t)⟩ = 0 and hence Z(t) =

O(1/
√
N), and equating separately the terms of order

O(1) and the terms of order O(1/
√
N), we obtain

Θ̇i = ωi (39)

and

1√
N
ϑ̇i = K Im

(
Z(t)e−iΘie−iλ

)
. (40)
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FIG. 7. Covariance R(τ) and pseudo-covariance R̃(τ) of the
complex order parameter fluctuation ζ(t) for a completely in-
coherent state at K = 1 and λ = π/4 in the KS model (1).
Numerical simulations (solid curve) vs. theoretical prediction
(11) (dashed curve).

Eq. (39) is solved by Θi(t) = ωit + Θi(0). Substituting
this into Eq. (40), we obtain

1√
N
ϑ̇i(t) = K

∫ t

0

Im
(
Z(t′)e−i(ωit

′+Θi(0))e−iλ
)
dt′

with ϑi(0) = 0. Finally, substituting the expressions for
the solution to Eqs. (39) and (40) into (38) and then sub-
stituting θi(t) = ψi(t) into the definition of the complex
order parameter (3), we obtain a self-consistency equa-
tion for Z(t):

Z(t) =
1

N

N∑
j=1

ei(ωit+Θi(0)) × (41)

×
(
1 + iK

∫ t

0

Im
(
Z(t′)e−i(ωit

′+Θi(0))e−iλ
)
dt′
)

=
1

N

N∑
j=1

ei(ωjt+Θj(0))

+
K

2
e−iλ

∫ t

0

Z(t′)
1

N

N∑
j=1

eiωj(t−t′)dt′

− K

2
eiλ
∫ t

0

Z(t′)
1

N

N∑
j=1

ei(ωj(t+t
′)+2Θj(0))dt′, (42)

where we employed a Taylor expansion of the exponential
function for |Z(t)| ≪ 1.

In the next step, we will obtain an asymptotic formula
for Z(t) as t → ∞. For this, we first notice that the

function

1

N

N∑
j=1

ei(ωj(t+t
′)+2Θj(0))

is vanishing as t → ∞ and hence can be neglected. Fur-
thermore, for N ≫ 1 we have

1

N

N∑
j=1

eiωjt 7→
∫ ∞

−∞
g(ω)eiωtdω = ĝ(t).

Thus, the complex order parameter Z(t) given in (42) is
the solution of the following Volterra integral equation

Z(t) =
1

N

N∑
j=1

ei(ωjt+Θj(0))

+
K

2
e−iλ

∫ t

0

ĝ(t− t′)Z(t′)dt′. (43)

This equation can be solved using the Laplace transfor-
mation

L : f(t) 7→ F (s) =

∫ ∞

0

e−stf(t)dt.

In particular, due to the convolution theorem, Eq. (43)
we write

(LZ)(s) = 1

N

N∑
j=1

eiΘj(0)

s− iωj
+
K

2
e−iλ(Lĝ)(s)(LZ)(s),

and therefore obtain

(LZ)(s) = 1

N

N∑
j=1

(
1− K

2
e−iλ(Lĝ)(s)

)−1
eiΘj(0)

s− iωj
.

Now, assuming that

Q(s) := 1− K

2
e−iλ(Lĝ)(s) ̸= 0 for all Re(s) ≥ 0

and that 1/Q(s) is a meromorphic function in the half-
plane Re(s) < 0 that satisfies

lim
p→∞

max
π/2≤|ϕ|≤π

|1/Q(peiϕ)| = 0, (44)

we apply the inverse Laplace transformation and find
that the long-term asymptotics of Z(t) is given by

Z(t) =
1

N

N∑
j=1

ei(ωjt+Θj(0))

Q(iωj)
.

The covariance function of the complex order parame-
ter Z(t) is now evaluated as

RDaido(τ) = N⟨Z(t)Z(t+ τ)⟩

=
1

N

N∑
j,k=1

e−i(ωkτ+Θk(0)−Θj(0))

Q(iωj)Q(iωk)
⟨ei(ωj−ωk)t⟩

=
1

N

N∑
j=1

e−iωjτ

|Q(iωj)|2
≈
∫ ∞

−∞
g(ω)

e−iωτ

|Q(iω)|2
dω,
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FIG. 8. Variance V of the order parameter r(t) versus cou-
pling strength K in the subcritical case of the KS model (1)
with λ = π/4 and a Gaussian distribution. Theoretical
predictions from our approach (12) (thick line) and from
Daido’s theory (45) (circles) are compared with the results
of numerical simulations with N = 1, 000 phase oscillators
(squares). The vertical dashed line indicates the critical cou-
pling strength.

where we used ⟨ei(ωj−ωk)t⟩ = δjk. The variance of the
order parameter r(t) = |Z(t)| in the subcritical case is

then given by

VDaido = N⟨|Z(t)|2⟩−N⟨|Z(t)|⟩2 = RDaido(0)−
π

4
, (45)

where we used our result (12) for ⟨|Z(t)|⟩. Although the
above formulas have been shown to be in good agreement
with the numerical observations obtained from the full
KS model (1) with a Lorentzian frequency distribution
and λ = 0, in the case of a Gaussian frequency distri-
bution they fail to reproduce the observed behavior as
seen in Fig. 8. In particular, they can be worse than our
(K,λ)-independent formulas (11) and (12). Note that
condition (44) is not satisfied for a Gaussian frequency
distribution.
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