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Abstract. We propose a stochastic model reduction strategy for deterministic and stochastic4
slow-fast systems with a moderate time-scale separation. The stochastic model reduction strategy5
improves the approximation of systems with finite time-scale separation, when compared to classical6
homogenization theory, by incorporating deviations from the infinite time-scale limit considered in7
homogenization, as described by an Edgeworth expansion in the time-scale separation parameter.8
To approximate these deviations from the limiting homogenized system in the reduced model, a9
surrogate system is constructed the parameters of which are matched to produce the same Edgeworth10
expansion as in the original multi-scale system. We corroborate the validity of our approach by11
numerical examples, showing significant improvements to classical homogenized model reduction.12
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1. Introduction. Complex systems in nature and in the engineered world often16

exhibit a multi-scale character with slow variables driven by fast dynamics. For ex-17

ample, large proteins [12] and the climate system [26] exhibit both fast, small scale18

fluctuations and slow, large scale transitions. The high complexity often puts the19

system out of reach of both analytical and numerical approaches. Typically one is,20

however, only interested in the dynamics of the slow variables or observables thereof.21

It is then a formidable challenge to distill reduced slow equations which can make22

the problem amenable to theoretical analysis, allowing to identify relevant physical23

effects, or, from a computational perspective, allow for a larger computational time24

step tailored to the slow time scale.25

Homogenization theory [7, 28] derives reduced slow dynamics by assuming an26

infinitely large time-scale separation between slow and fast variables. It has been27

rigorously proven for multi-scale systems with stochastic [16, 17, 27] and deterministic28

chaotic fast dynamics [25, 8, 14] and has been applied with great success in the29

design of numerical algorithms for molecular dynamics [3, 15] and in stochastic climate30

modelling [19, 21].31

Several challenges remain, however, in formulating reliable stochastic slow limit32

systems. Whereas homogenization is rigorously proven only for the limiting case of33

infinite time scale separation, this assumption is never met in the real world. Hence,34

homogenized stochastic systems may fail in reproducing the statistical behaviour of35

the underlying deterministic multi-scale system for finite time-scale separation when36

an intricate interplay between the fast degrees and the slow degrees of freedom is at37

play.38

Homogenization relies on the fact that the slow dynamics experiences the integrated39

effect of, in the limit of infinitely fast dynamics, infinitely many fast fluctuations.40

Therefore, homogenization is in effect a manifestation of the central limit theorem41

(CLT). Finite time scale effects are then akin to finite sums of random variables. In42
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2 J. WOUTERS AND G. A. GOTTWALD

the context of random variables, corrections to the CLT for sums of finite length43

n can be described by the Edgeworth expansion, which provides an expansion of44

the distributions of sums, asymptotic in 1/
√
n [2]. Such an expansion provides an45

improved approximation of the pdf of sums for large enough n. Edgeworth expansions46

have been developed for independent and for weakly dependent identically distributed47

random variables [10], continuous-time diffusions [1] and ergodic Markov chains [11].48

In [30], we have derived an expression for the Edgeworth expansion of multi-scale49

systems, including the deterministic case. Similarly to the case of sums of random50

variables, we obtained an improved approximation of transition probabilities of the51

slow variable for a large enough time scale separation.52

The Edgeworth expansion is universal in the sense that it is agnostic about the53

microscopic details of the fast process. Only integrals over its higher-order corre-54

lation functions appear in the analytical expressions we obtain. We will use this55

aspect of Edgeworth expansions to derive a reduced model by constructing a low-56

dimensional surrogate model with the same Edgeworth corrections as the original57

multi-scale model. Surrogate models have previously been used to sample from58

complex multi-scale systems, see for example [29]. We numerically demonstrate that59

this surrogate system is superior to homogenization in reproducing the statistical60

behaviour of the slow dynamics.61

The paper is organised as follows. In Section 2 we introduce the multi-scale62

systems under consideration and their diffusive limits in the case of infinite time63

scale separation, as provided by homogenization theory. In Section 3 we establish64

corrections to the homogenized limit using Edgeworth expansions. These are then65

used in Section 4 to construct a reduced surrogate stochastic model which captures66

finite time-scale separation effects. We conclude in Section 5 with a discussion and67

an outlook.68

2. Multi-scale systems. We consider multi-scale systems of the form69

dx =
1

ε
f0(x, y) dt+ f1(x, y) dt(1)70

dy =
1

ε2
g0(y) dt+

1

ε
β(y) dWt +

1

ε
g1(x, y) dt,(2)71

with slow variables x ∈ Rd and fast variables y ∈ RN . We assume that the fast72

dynamics dy = g0dt+βdWt admits a unique invariant physical measure ν(dy) and the73

full system admits a unique invariant physical measure µ(ε)(dx, dy) 1. The system may74

be stochastic with a non-zero diffusion matrix β ∈ RN×l and l-dimensional Brownian75

motion dWt, or may be deterministic with β ≡ 0. In the latter case we assume that76

the fast dynamics is sufficiently chaotic 2.77

Homogenization theory deals with the limit of infinite time-scale separation ε → 0.78

In this limit it is well known that when the leading slow vector field averages to zero,79

i.e. 〈f0(x, y)〉 = 0, where 〈A(y)〉 :=
∫
ν(dy)A(y), the slow dynamics is approximated80

by an Itô stochastic differential equation [16, 17, 27, 25, 9, 13] of the form81

(3) dX = F (X)dt+ σ(X) dWt .82

1An ergodic measure is called physical if for a set of initial conditions of nonzero Lebesgue measure
the temporal average of a typical observable converges to the spatial average over this measure.

2The assumptions on the chaoticity of the fast subsystem are mild. For continuous-time fast
system, an associated Poincaré map needs to have a summable correlation function (irrespective of
the mixing properties of the flow). Systems with such mild conditions on the chaoticity include, but
go far beyond, Axiom A diffeomorphisms and flows, Hénon-like attractors and Lorenz attractors; see
[22, 23, 24]
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The drift coefficient is given by83

F (x) = 〈f1(x, y)〉+

∫ ∞
0

ds
(
〈f0(x, y) · ∇xf0(x, ϕty)〉84

+ 〈g1(x, y) · ∇y
(
f0(x, ϕty)

)
〉
)
,(4)85

where ϕt denotes the flow map of the fast dynamics, and the diffusion coefficient is86

given by the Green-Kubo formula87

σ(x)σT (x) =

∫ ∞
0

ds
〈
f0(x, y)⊗ f0(x, ϕty) + f0(x, ϕty)⊗ f0(x, y)

〉
,(5)88

where the outer product between two vectors is defined as (a ⊗ b)ij = aibj
3. For89

details the reader is referred to [13].90

3. Edgeworth approximation for dynamical systems. There are three dis-91

tinct time scales in the system (1)-(2): a fast time scale of O(ε2), an intermediate92

time-scale of O(ε) on which the fast dynamics has equilibrated but the slow dynamics93

has not yet evolved, and a long diffusive time scale of O(1) on which the slow variables94

exhibit non-trivial dynamics. It is on the intermediate time scale that we can expect95

corrections to the CLT: the time scale is sufficiently long for the fast dynamics to96

generate near-Gaussian noise but not long enough for the slow dynamics to dominate.97

This is also reflected in the homogenized SDE (3): displacements of the slow variable98

are near-Gaussian with dX ∼ σ(X) dWt on short time scales. We therefore focus99

our attention on the limit ε → 0 with t/ε = θ constant, and study the transition100

probabilities between initial conditions x0 into the interval (x, x + dx)101

πε(x, t, x0) = P
(
x(t)− x0√

t
∈ (x, x + dx)

∣∣∣∣x(0) = x0, y(0) ∼ µ(ε)
x0

)
.102

Here µ
(ε)
x0 denotes the conditional measure of µ(ε) conditioned on x = x0. In the limit103

of homogenization theory ε→ 0, the transition probability πε with t/ε constant con-104

verges to a normal distribution n0,σ2(x) with the covariance given by the Green-Kubo105

formula (5). For finite ε, the transition probability will not be Gaussian but will have106

correction terms of O(
√
ε), the so called Edgeworth corrections. As we have shown in107

[30], the corrections to the limiting Gaussian distribution of x̂(t) := (x(t)−x0)/
√
t are108

most readily calculated through the characteristic function χε(ω) = Ex0,µ
ε [exp(iωx̂)]109

where Ex0,µ
ε is the expectation value w.r.t. πε. We can expand the characteristic110

function and then determine the expansion of the probability distribution by inverse111

Fourier transform. Since lnχε =
∑
n c

(n)
ε (iω)n/n! with the cumulants of x̂112

c(p)ε = m(p)
ε −

p−1∑
j=1

(
p− 1

j − 1

)
m(p−j)
ε c(j)ε ,113

and the moments m
(p)
ε = Ex0,µ

ε [x̂p], we can expand χε by seeking an asymptotic114

expansion115

c(p)ε = c
(p)
0 +

√
εc

(p)
1
2

+ εc
(p)
1 +O(ε

3
2 ) .116

3As stated here the formulae for the drift and diffusion matrix are only valid for correlation
functions which are slightly more than integrable. When the autocorrelation function of the fast
driving system is decaying but is only integrable, more complicated formulae apply; see [14] for
details.
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4 J. WOUTERS AND G. A. GOTTWALD

To this end, the expectation values appearing in the cumulants Ex0,µ
ε are expressed117

as118

Ex0,µ
ε [A(x(t), y(t))] =

∫ ∫
A(x, y)eLεtδx0

(dx)µ(dy) ,119

with the transfer operator eLεt (also known as Frobenius-Perron operator) associ-120

ated with the multi-scale system (1)-(2). This transfer operator can be expanded121

by successive application of the Duhamel-Dyson formula [4, 32], resulting in explicit122

expressions for the c
(p)
j . We find c

(1)
0 = c

(1)
1 = 0, c

(1)
1
2

= F (x0), c
(2)
0 = σ2, c

(2)
1
2

= 0,123

c
(3)
0 = c

(3)
1 = 0, c

(4)
0 = c

(4)
1
2

= 0 and c
(p)
ε = O(ε

3
2 ) for p > 4, while the coefficients c

(2)
1 ,124

c
(3)
1
2

and c
(4)
1 depend non-trivially on the correlations of y (see appendix A for their125

expressions). Finally, by taking the inverse Fourier transform of χε, we can formally126

expand the probability density πε = π
(2)
ε +O(ε

3
2 ) with127

π(2)
ε (x, t = θε, x0) = n0,σ2(x)

[
1 +
√
ε

F (x0)

σ
H1

( x

σ

)
+
c
(3)
1
2

3!σ3
H3

( x

σ

)+ ε

(
F (x0)

2
+ c

(2)
1

2σ2
H2

( x

σ

)
128

+
c
(4)
1 + 4F (x0)c

(3)
1
2

4!σ4
H4

( x

σ

)
+

c
(3)
1
2

2

2(3!σ3)2
H6

( x

σ

))]
.(6)129

Here Hn(x) = (x− d
dx )n1 are Hermite polynomials of degree n. It is readily seen from130

(6) that for ε → 0, the homogenization limit limε→0 πε = n0,σ2 is recovered. For a131

derivation of the Edgeworth expansion and explicit formulae for the c
(p)
j the reader is132

referred to [30]. For completeness we present in the Appendix the expressions for the133

Edgeworth expansion coefficients. Note that the expressions for the cumulant expan-134

sions as derived in [30] determine the form of the expansion, but are not sufficient to135

show that an Edgeworth expansion actually holds for a given class of dynamical sys-136

tems. However, the numerical evidence presented below and in [30] suggests strongly137

that Edgeworth expansions hold for the model systems studied.138

139

3.1. Numerical validation of the Edgeworth expansion. We now numer-140

ically demonstrate the validity of the Edgeworth expansion for a multi-scale system141

of the form (1)-(2). In particular, we consider142

ẋ =
1

ε
f0(y) + f1(x)(7)143

ẏi =
1

ε2
g0(y)(8)144

with y ∈ RN , f1(x) = −∂xV (x), V (x) = x2(b2x2 − a2), g1(x, y) = 0, g0(y) =145

yi−1(yi+1 − yi−2) + R − yi and yN+i = yi for 1 ≤ i ≤ N . The system consists146

of a single degree of freedom x in a symmetric double well potential V driven by147

a fast Lorenz ’96 (L96) y-system. The L96 system was introduced to mimic atmo-148

spheric chaos in the midlatitudes [18]. The system (7)-(8) can therefore be viewed as149

a simple toy model of the ocean exhibiting two regimes, driven by a fast chaotic atmo-150

sphere. We take the classical parameters of Lorenz’ with N = 40, R = 8 and choose151

f0(y) = σm

(
1
5

∑5
i=1 y

2
i − C0

)
where C0 is chosen such that 〈f0〉 = 0. Randomness152
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is introduced solely through a random choice of the initial condition y0, distributed153

according to the physical invariant measure of the fast L96 system.154

155

To demonstrate the validity of the Edgeworth expansion we show in Figure 1156

the transition probabilities for the full multi-scale system (7)-(8) as well as those of157

the reduced homogenized system (3) and of the Edgeworth expansion (6). Whereas158

homogenization fails to approximate the transition probability (with a relative error159

in the skewness of 0.87), our Edgeworth approximation describes the statistics of the160

true system remarkably well. Note that the transition probability π
(2)
ε is not a proper161

probability density function in the sense that it is not a non-negative function. The oc-162

currence of negative values is due to the expansion of π
(2)
ε in Hermite polynomials (cf.163

(6)). This implies that one cannot sample directly from the Edgeworth-approximated164

transition probability π
(2)
ε . However, as we will see in the next section, one can con-165

struct a dynamical system with expansion coefficients approximating those in π
(2)
ε ,166

and this surrogate system can then be used to sample from a pdf which has the same167

Edgeworth expansion of the transition probability as the full multi-scale system.168

169

multi-scale
homogenized
Edgeworth

Fig. 1: Transition probability πε(x, t = 0.02, x0 = −
√

2) of the system (7)-(8) (labelled
“multiscale”) with a = 1, b = 0.5, ε = 0.1 and σm = 0.1821 (implying σ = 1.25),

the Edgeworth expansion π
(2)
ε (6) (labelled “Edgeworth”) and the pdf of X(t) in (3)

(labelled “homogenized”).

We now describe how the Edgeworth coefficients of Eqs. (7)-(8) are estimated170

numerically. For the case of the multi-scale Lorenz ’96 system Eqs. (7)-(8) the171

formulae for the Edgeworth coefficients σ, c
(2)
1 , c

(3)
1
2

and c
(4)
1 appearing in the transition172

probability π
(2)
ε (x, t = θε, x0) (6) presented in the appendix yield173

F = −∂x0
V (x0)174

σ2 = µ20175
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6 J. WOUTERS AND G. A. GOTTWALD

c
(2)
1 = −θσ2∂2x0

V (x0) +
1

θ
µ21176

c
(3)
1
2

=
1√
θ
µ30177

c
(4)
1 =

1

θ
µ40178

179

where180

µ20 = 2

∫ ∞
0

C2(τ) dτ(9)181

µ21 = −2

∫ ∞
0

τ C2(τ) dτ(10)182

µ30 = 6

∫ ∞
0

C3(τ1, τ2) dτ1dτ2(11)183

µ40 = 6µ20 µ21 − 24

∫ ∞
0

(C4(τ1, τ2, τ3)− C2(τ1)C2(τ3)) dτ1dτ2dτ3(12)184
185

with the two-point autocorrelation function C2(τ) = 〈f0(y)f0(ϕτy)〉, the three–point186

autocorrelation function C3(τ1, τ2) = 〈f0(y)f0(ϕτ1y)f0(ϕτ1+τ2y)〉 and the four–point187

autocorrelation function C4(τ1, τ2, τ3) = 〈f0(y)f0(ϕτ1y)f0(ϕτ1+τ2y)f0(ϕτ1+τ2+τ3y)〉,188

where we recall that ϕt denotes the flow map of the fast dynamics.189

The terms µ20, µ21, µ30 and µ40 can be calculated directly by estimating the corre-190

lation functions C2,3,4. This, however, is computationally expensive to get accurate191

results. Here we estimate the terms as follows. As shown in [30], the Edgeworth192

coefficients appear as the coefficients of an expansion in t and ε of the cumulants193

of transition probabilities of the multi-scale system. If we were to set V = 0, the194

terms µ20, µ21, µ30 and µ40 are the leading order terms appearing in the Edgeworth195

expansion of the second, third and fourth cumulant. More specifically, for the system196

˙̃x =
1

ε
f0(ỹ)(13)197

˙̃y =
1

ε2
g0(ỹ)(14)198

199

with initial conditions x̃(t = 0) = x̃0 and ỹ(t = 0) = ỹ0, we can integrate the slow200

dynamics to obtain201

ξε :=
x̃(t = ε)− x̃0√

ε
=
√
εz(

1

ε
)202

203

with z(t) :=
∫ t
0
f0(y(τ)) dτ . As shown in [30], the second, third and fourth cumulants204

of ξε can be expanded in orders of
√
ε as205

Ex0,µ
ε

[
ξ2ε
]

= µ20 + εµ21 +O(ε2)206

Ex0,µ
ε

[
ξ3ε
]

=
√
εµ30 +O(ε

3
2 )207

Ex0,µ
ε

[
ξ4ε
]
− 3Ex0,µ

ε

[
ξ2ε
]2

= εµ40 +O(ε2) .208209

It follows by taking t = 1
ε that µ2 := E

[
z(t)2

]
, µ3 := E

[
z(t)3

]
and µ4 := E

[
z(t)4

]
210

scale with t as211

µ2

t
= µ20 +

µ21

t
+O(

1

t2
)212
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µ3

t
= µ30 +O(

1

t
)213

µ4 − 3µ2
2

t
= µ40 +O(

1

t
) .214

215

This suggests to perform a least squares fit of µ2

t , µ3

t and
µ4−3µ2

2

t to a two-216

parameter family of functions `(t) = a+ b/t. Denoting the result of the least squares217

fit of µ2

t by a?2 and b?2, of µ3

t by a?3 and b?3 and of
µ4−3µ2

2

t by a?4 and b?4, we can218

extract the leading order coefficients. From the fits we obtain µ20 = a?2 and µ21 = b?2,219

µ30 = a?3 and µ40 = a?4. Figure 2 shows the scaled cumulants of z(t) together with220

their respective least squares fit of functions `(t) = a+ b/t.221

multi-scale

fit
multi-scale

fit

multi-scale

fit

Fig. 2: Scaled cumulants of z(t) for the system (13)-(14) with f0 and g0 as in (7)-(8).
The smooth line represents a least squares fit to `(t) = a + b/t. Top left: second
cumulant, top right: third cumulant, bottom: fourth cumulant.

4. The surrogate system. The Edgeworth expansion is universal in the sense222

that only a limited number of statistical properties of the fast system appear in the223

expansion. Therefore, the microscopic details of the fast y-dynamics are of no impor-224

tance to the slow x-dynamics. As we have seen, one cannot sample directly form225

the Edgeworth expansion of the transition probability π
(2)
ε since it is not a proper226

probability density function and involves negative values due to the expansion in Her-227

mite polynomials (cf. (6)). However, we can construct a surrogate system such that228

the Edgeworth expansion of its transition probability, which we label π
(2)
surr, closely229

approximates the expansion π
(2)
ε of transition probabilities of the full multi-scale sys-230

tem. From the macroscopic point of view the y-dynamics can be substituted with a231
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8 J. WOUTERS AND G. A. GOTTWALD

simpler surrogate system, as long as the statistical properties encoded in the Edge-232

worth expansion are preserved. This suggests a new way of performing stochastic233

model reduction for the slow dynamics: construct a class of simple surrogate sys-234

tems (X(t), η(t)) dependent on a set of parameters psurr. Here X ∈ Rd denotes the235

slow variables, approximating the slow dynamics x in the multi-scale system (1)-(2),236

and η ∈ Rk with k < N mimics the effect of the fast dynamics y. The functional237

form of the surrogate system, determining the evolution of X(t) and η(t), and the238

dimension k of the fast surrogate variables η are chosen sufficiently simple to allow239

for an explicit analytical expression of the Edgeworth expansion coefficients of the240

transition probability π
(2)
surr of the surrogate system. These coefficients will depend241

on the set of free parameters psurr appearing in the surrogate system. Judiciously242

choosing the free parameters of the surrogate system psurr allows us to match the243

Edgeworth corrections of the surrogate system to the observed Edgeworth corrections244

of the original multi-scale model we set out to model. This is achieved as follows: the245

transition probability of the surrogate slow variables X,246

πsurr(x, t = θε, x0) = P
(
X(t)−X(0)√

t
∈ (x, x + dx)

∣∣∣∣X(0) = x0

)
,247

is approximated by the second order Edgeworth expansion πsurr = π
(2)
surr + O(ε

3
2 ).248

The expression for the Edgeworth expansion of πsurr is the same as for πε given in249

(6). We denote the cumulant expansion coefficients for π
(2)
surr in (6) as c

(p,s)
k . The250

free parameters psurr of the surrogate system are then determined by the constrained251

optimization, at a fixed time which we choose arbitrarily as t = ε,252

arg min
psurr

∥∥∥π(2)
surr(x, t = ε, x0)− π(2)

ε (x, t = ε, x0)
∥∥∥(15)253

of the L2-norm with respect to x for fixed initial condition x0 subject to the constraint254

of the exact matching of the leading order diffusivity σ (5) and drift F (4). A further255

appropriately weighted norm w.r.t. x0 (e.g. weighted with the invariant measure256

restricted to x) can be taken to ensure one set of parameter values for all x0. Since257

σ and F determine the limiting system (3), this constraint assures that the surrogate258

system and the full deterministic system have the same homogenized limit. Using259

the Edgeworth expansions for both π(s) and πε, we have, if c
(2,s)
0 = c

(2)
0 = σ2 and260

c
(1,s)
1
2

= c
(1)
1
2

= F , that261

‖π(2)
surr(x, ε, x0)− π(2)

ε (x, ε, x0)‖ = εE(1)(x0) + ε2E(2)(x0) ,(16)262

with263

E(1)(x0) =
15κ23

16
√
πσ

264

E(2)(x0) =
3
(
16κ22 − 80κ2κ4 + 140κ24 + 3465κ26 + 140 (2κ2 − 9κ4)κ6

)
128
√
πσ

,265

where the coefficients266

κ2 =
c
(2)
1 − c

(2,s)
1

2σ2
, κ3 =

c
(3)
1
2

− c(3,s)1
2

6σ3
, κ4 =

c
(4)
1 − c

(4,s)
1

24σ4
, κ6 =

c
(3)
1
2

2
− c(3,s)1

2

2

72σ6
267
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are given in terms of the expansion coefficients of the original multiscale system and268

of the surrogate system. The expansion coefficients of the original multi-scale system269

c
(p)
k are determined numerically through evaluation of their expressions for long-time270

numerical simulations, as described in Section 3.1. Their surrogate counterparts c
(p,s)
k271

can be determined analytically as a function of the free parameters psurr. This then272

allows to evaluate the error terms in (16). The constrained optimization problem (15)273

can then be solved by varying the surrogate parameters psurr.274

We consider here the following family of surrogate models for the multi-scale275

system (1)-(2)276

Ẋ =
1

ε
f
(s)
0 (X, η) + F (X) + f

(s)
1 (X, η)(17)277

dη = − 1

ε2
Γ(s)η dt+

σ(s)

ε
dWt +

1

ε
g
(s)
1 (X, η) .(18)278

The fast process η(t) is a k-dimensional Ornstein-Uhlenbeck process with Γ
(s)
ij = γiδij279

and σ
(s)
ij = ζiδij . The noise is here, different to the homogenized diffusive limits,280

coloured and enters the slow dynamics in an integrated way, allowing for non-trivial281

memory.282

The vector fields f
(s)
0 , f

(s)
1 and g

(s)
1 of the surrogate system are chosen to be polynomial283

f
(s)
l (X, η) =

∑
|α|<αl,|β|<βl

a
(α,β)
l Xα ηβ(19)284

g
(s)
1 (X, η) =

∑
|α|<α2,|β|<β2

a
(α,β)
2 Xα ηβ(20)285

for l = 0, 1. The degree of the polynomials αl and βl, l = 0, 1, 2, and the dimensionality286

of the surrogate process k are chosen as the smallest degree and dimension which still287

allow the surrogate system to capture the statistical features of the vector field f0(x, y)288

of the original multi-scale system (1)-(2).289

4.1. Surrogate model for the Lorenz ’96 driven system. To test the abil-290

ity of the Edgeworth expansion-based surrogate model (17)-(18) to approximate the291

statistics of the slow variable x, we first consider the multi-scale system (7)-(8). Since292

g1 = 0 in this case, we set α2 = β2 = 0. Furthermore, we find that k = 1, α1 = β1 = 0,293

α0 = 3, β0 = 1 are sufficient. The Edgeworth coefficients (9)-(12) for the surrogate294

model can be explicitly calculated. We obtain295

c
(2,s)
0 =

11 a
(3,0)
0

2
ζ61 + 4 a

(1,0)
0

2
γ21ζ

2
1 + 2

(
a
(2,0)
0

2
+ 6 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

4 γ41

(21)

296

c
(2,s)
2,−1 = −

29 a
(3,0)
0

2
ζ61 + 12 a

(1,0)
0

2
γ21ζ

2
1 + 3

(
a
(2,0)
0

2
+ 12 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

12 γ51

(22)

297

c
(3,s)

1,− 1
2

=
3
(

22 a
(2,0)
0 a

(3,0)
0

2
ζ81 + 4 a

(1,0)
0

2
a
(2,0)
0 γ21ζ

4
1 +

(
a
(2,0)
0

3
+ 18 a

(1,0)
0 a

(2,0)
0 a

(3,0)
0

)
γ1ζ

6
1

)
2 γ61

(23)

298
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c
(4,s)
0 = 6 c

(2,s)
0 c

(2,s)
1 +

(
48 γ41a

(1,0)
0

4
+ 420 γ31ζ

2
1a

(1,0)
0

2
a
(2,0)
0

2

(24)

299

+ 66 γ21ζ
4
1a

(2,0)
0

4
+ 480 γ31ζ

2
1a

(1,0)
0

3
a
(3,0)
0300

+ 2268 γ21ζ
4
1a

(1,0)
0 a

(2,0)
0

2
a
(3,0)
0 + 1976 γ21ζ

4
1a

(1,0)
0

2
a
(3,0)
0

2
301

+ 3259 γ1ζ
6
1a

(2,0)
0

2
a
(3,0)
0

2
302

+3912 γ1ζ
6
1a

(1,0)
0 a

(3,0)
0

3
+ 3109 ζ81a

(3,0)
0

4) ζ41
8 γ91

.303
304

The parameter a
(0,0)
0 = −a(0,2)0 ζ21/(2γ1) is fixed by requiring the centering condition305

〈f (s)0 〉 ≡ 0. The remaining parameters for the surrogate system are determined by306

constrained minimization of (15) using sequential least squares programming as im-307

plemented in the SciPy library.308

Figure 3 shows the invariant measure and the third moment of the slow dynamics309

of the multiscale Lorenz system (7) with a moderate time scale separation ε = 0.15,310

as well as of the homogenized equation (3) and of the surrogate process (17)-(18). It311

is clearly seen that the stochastic model reduction based on the Edgeworth expan-312

sion captures the nontrivial non-Gaussian behaviour of the full slow dynamics very313

well, whereas the homogenized equation converges to a Gaussian with a zero third314

moment. Note that the surrogate naturally supports an invariant measure from315

which one can sample, unlike the expansion π
(2)
surr which was used for its construc-316

tion. Figure 4 shows the second and fourth cumulants, for the full multi-scale system317

(7) and for the homogenized equation (3) as well as for the surrogate process (17)-318

(18). For the second moment we show the long-time behaviour where homogenization319

matches well, as well as the intermediate time evolution where the Edgeworth expan-320

sion clearly outperforms the homogenized result. For the fourth moment the classical321

homogenization results fail to capture the long-time and the intermediate time tem-322

poral evolution whereas the Edgeworth expansion closely follows the true evolution323

of the moments, capturing the non-Gaussian behaviour of the slow dynamics in the324

moderate timescale separation case.325

4.2. Surrogate model for a triad system. We now treat a multiscale system326

that includes a non-zero backcoupling term g1. In particular, we consider the triad327

model328

dx =
B0

ε
y1y2 dt(25)329

dy1 =
B1

ε
y2xdt− γ

(t)
1

ε2
y1 dt+

σ
(t)
1

ε
dW1(26)330

dy2 =
B2

ε
xy1 dt− γ

(t)
2

ε2
y2 dt+

σ
(t)
2

ε
dW2 .(27)331

332

This model has been used as a low-dimensional toy model for fluid flows with quadratic333

nonlinearities [20]. The triad system allows for an explicit calculation of the homog-334

enized system and Edgeworth coefficients (see Appendix A for the general formulae).335

For the zero order homogenized equations, we obtain for the drift F and diffusion336

coefficient σ337

F (X) = ΘX ,(28)338
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multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

Fig. 3: The invariant measure (left) and third moment (right) for x of the multi-scale
Lorenz system (7)-(8) with ε = 0.15, a = 1, b = 2/3 and σm = 0.48567 (implying
σ = 10/3), the homogenized equation (3) and the surrogate process (17)-(18). The
parameters of the surrogate process are obtained by the method in Section 4 as γ1 =

2.479, ζ1 = 25.793, a
(0,3)
0 = −9.7467 10−3, a

(0,2)
0 = 19.72 10−2, a

(0,1)
0 = 7.1933 and

a
(0,0)
0 = −a(0,2)0 ζ21/(2γ1).

σ2 = 2
B2

0σ
2
1∞σ

2
2∞

γ
(t)
1 + γ

(t)
2

(29)339

340

with Θ = B0(
γ
(t)
1 +γ

(t)
2

)2 (B1σ
2
2∞ +B2σ

2
1∞) and σ2

i∞ =
σ
(t)
i

2

2γ
(t)
i

.341

For the Edgeworth coefficients up to order ε3/2 we find342

c
(2)
2,−1 = − σ2

γ
(t)
1 + γ

(t)
2

343

c
(2)
0,1 = σ2Θ + Θ2x20344

c
(4)
2,−1 = 6σ2c

(2)
2,−1 + 6

σ
4

γ
(t)
1 + γ

(t)
2

(
(γ

(t)
1 + γ

(t)
2 )2

γ
(t)
1 γ

(t)
2

+ 2

)
345

346

and c
(3)

0, 12
= c

(3)

1,− 1
2

= c
(2)
1,0 = c

(4)
0,1 = c

(4)
1,0 = 0.347

Since g1 is now non-zero, we construct a surrogate system with non-zero α2. We348

find that a simple surrogate system of the form349

dx =
1

ε
f
(s)
0 (y) dt(30)350

dy =
a
(1,0)
2

ε
xdt− γ1

ε2
y dt+

ζ1
ε

dW(31)351
352

with353

f
(s)
0 (y) = a

(3,0)
0 y3 + a

(2,0)
0 y2 + a

(1,0)
0 y + a

(0,0)
0354355

gives a good approximation. For the zero order homogenized equations of the sur-356

rogate, we obtain a drift F (s)(x) = Θ(s)x with Θ(s) =
a
(1,0)
2

2γ2
1

(2γ1a
(1,0)
0 + 3a

(3,0)
0 ζ21 )357

and diffusion σ(s)2 =
11 a

(3,0)
0

2
ζ61+4 a

(1,0)
0

2
γ2
1ζ

2
1+2

(
a
(2,0)
0

2
+6 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

4 γ4
1

. The non-zero358
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multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

multi-scale
homogenized

surrogate

0 0.045 0.09

multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

Fig. 4: The first moment (top left), second moment (over long times (top right) and
over intermediate times (bottom left)) and fourth cumulant over long times (bottom
right) for x of the multi-scale Lorenz system as a function of time. Parameters are
ε = 0.15, a = 1, b = 2/3 and σm = 0.48567 (implying σ = 10/3). We show results for
the full multi-scale system (Eqn (7)), the homogenized equation (Eqn (3)) and the
surrogate process (Eqns (17)-(18)). The parameters of the surrogate process are ob-

tained by the method in Section 3 as γ1 = 2.479, ζ1 = 25.793, a
(0,3)
0 = −9.7467 10−3,

a
(0,2)
0 = 19.72 10−2, a

(0,1)
0 = 7.1933 and a

(0,0)
0 = −a(0,2)0 ζ21/(2γ1).

Edgeworth coefficients of the surrogate system are given by those in Eqns. (21)-(24)359

and360

c
(2,s)
0,1 = σ(s)2Θ(s) + Θ(s)2x20361

c
(2,s)
1,0 = a

(1,0)
2 x

91a
(2,0)
0 a

(3,0)
0 ζ41 + 42a

(1,0)
0 a

(2,0)
0 γ1ζ

2
1

12γ41
362
363

Figure 5 shows the mean and standard deviation over time of an ensemble of real-364

izations starting from a fixed initial condition x0 = −1 for the multiscale triad system365

(25)-(27), the limiting homogenized equation (3) with drift (28) and diffusion (29)366

and the surrogate model (30)-(31). The mean and standard deviation are indistin-367

guishable from those of the multiscale triad system, whereas the standard deviation368

of the homogenized equation exhibits significant deviations from that of the original369

triad system.370

5. Discussion. We developed a new framework in which to perform stochas-371

tic model reduction of multi-scale systems with moderate time scale separation. We372
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0 .0 0 0 .0 5 0 .1 0 0 .1 5 0 .2 0 0 .2 5 0 .3 0 0 .3 5 0 .4 0
1 .8

1 .6

1 .4

1 .2

1 .0

0 .8

0 .6

0 .4

0 .2

0 .0
triad

surrogate

homogenized

t

x

Fig. 5: Mean and standard deviation of the triad model (25)-(27), the homogenized
system (3) and the surrogate system (30)-(31). The solid lines represent the mean of
the sample, while the upper and lower dashed lines represent the mean plus or minus
two standard deviations, respectively. The parameters of the triad model are B0 =

−0.75, B1 = −0.25, B2 = 1, γ
(t)
1 = 4/3, σ

(t)
1 =

√
8/3, γ

(t)
2 = 1, σ

(t)
2 =

√
2, ε = 0.25.

The parameters of the surrogate model are γ1 = 2.166, ζ1 = 1.243, a
(3,0)
0 = 0.786,

a
(2,0)
0 = −5.6 10−6, a

(1,0)
0 = 0.301 and a

(1,0)
2 = −0.4569.

showed how Edgeworth expansions can be used to construct reduced models for the373

slow dynamics of a chaotic deterministic multi-scale model. The surrogate system374

implies a non-Markovian effective slow dynamics, where the noise enters the slow dy-375

namics in an integrated fashion. This reflects the memory effects in slow-fast systems376

with finite time-scale separation, where the fast dynamics has not yet sufficiently equi-377

librated on a slow characteristic time scale, preventing the homogenized Markovian378

limit. We considered a family of surrogate models where the free parameters were379

chosen to match the Edgeworth expansion of the original multi-scale model under380

consideration. The degree of the surrogate model was chosen by assuring to have the381

lowest possible order of the polynomials while still allowing for the surrogate system382

to capture the overall statistical features of the full multi-scale system. Matching the383

Edgeworth expansion then singles out the optimal member in the prescribed class.384

We remark that the Edgeworth expansion is based on the transition probability on385

the intermediate time scale. In some applications, such as weather forecasting, one386

is interested in the transitional dynamics and their statistical modelling rather than387

in the long term statistical behaviour. In this situation Edgeworth expansions allow388

for a faithful description of the effects of finite time scale separation. The aim of the389

reduced model in other applications, however, may be to describe the statistical be-390

haviour on the longer diffusive time scale, for example in climate science. We observe391

that in the system considered here, matching the short time transition probabilities392

translates into a more reliable description of the long time statistics as well. Although393
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14 J. WOUTERS AND G. A. GOTTWALD

this property may not hold in general, we expect it to hold in sufficiently smooth sys-394

tems.395

Our framework is not limited to deterministic continuous time systems. It can be396

extended to stochastic multi-scale systems and to discrete time maps which would397

allow the study of numerical integrators and their statistical limiting behaviour of re-398

solved modes. More importantly, Edgeworth approximations can be determined from399

observational data; this allows for the application to systems with high complexity400

prohibiting an analytical estimation of the Edgeworth corrections. This opens up401

the door to perform mathematically sound stochastic model reductions for real-world402

problems. Furthermore, Edgeworth approximations are not limited to multi-scale sys-403

tems. As an extension of the CLT, they can be used to study finite size effects to the404

thermodynamic limit of weakly coupled systems such as Kac-Zwanzig heat baths for405

distinguished particles [6, 31, 5].406

Acknowledgments. The research leading to these results has received fund-407
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2013) under grant agreement noPIOF-GA-2013-626210. We thank Ben Goldys and409

Françoise Pène for enlightening discussions and comments.410

Appendix A. Cumulant expansion for slow-fast system.411

In [30] we derived expression for the expansion in ε of the cumulants of the slow412

variable x in the slow-fast system (1)-(2).413

The first cumulant is given up to order O(ε
3
2 ) by414

c(1) =
√
t c

(1)

0, 12
,(32)415

416

where417

c
(1)

0, 12
= F (x0) = 〈f1〉 − 〈f0L−10⊥∂xf0〉 − 〈(g1∂y)L−10⊥f0〉 .(33)418

419

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this420

becomes421

c(1) =
√
εθ c

(1)

0, 12
.(34)422

423

The second cumulant is given up to order O(ε
3
2 ) by424

c(2) = m(2) = c
(2)
0 + t c

(2)
0,1 +

ε2

t
c
(2)
2,−1 + ε c

(2)
1,0.(35)425

426

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this427

becomes428

c(2) = m(2) = c
(2)
0 + εc

(2)
1 ,(36)429430

with c
(2)
1 = θ c

(2)
0,1 + 1

θ c
(2)
2,−1 + c

(2)
1,0. The O(1) contribution is given by the homogenized431

Green-Kubo formula (5)432

c
(2)
0 = σ2 = −2〈f0L−10⊥f0〉433

and higher-order contributions are given by434

c
(2)
0,1 =

1

2
σ2

(
∂σ

∂x

)2

+
1

2
σ3 ∂

2σ

∂x2
+ σ2 ∂F

∂x
+ Fσ

∂σ

∂x
+ F 2(37)435
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c
(2)
2,−1 = −2〈f0L−20⊥f0〉(38)436

c
(2)
1,0 = −2〈f0L−10⊥f1〉 − 2〈f1L−10⊥f0〉+ 2〈f0L−10⊥∂xf0L

−1
0⊥f0〉437

+ 4〈f0L−10⊥f0L
−1
0⊥∂xf0〉+ 2〈f0L−10⊥(g1∂y)L−10⊥f0〉438

+ 2〈(g1∂y)L−10⊥f0L
−1
0⊥f0〉.(39)439440

Here L−10⊥ denotes the invertible operator whose inverse is the restriction of L0 to the441

space orthogonal to the projection onto the invariant measure µ
(0)
x0442

The third moment and its cumulant are given up to order O(ε
3
2 ) by443

c(3) = m(3) =
√
t c

(3)

0, 12
+

ε√
t
c
(3)

1,− 1
2

.(40)444
445

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this446

becomes447

c(3) = m(3) =
√
εc

(3)
1
2

,(41)448
449

with450

c
(3)
1
2

=
√
θ c

(3)

0, 12
+

1√
θ
c
(3)

1,− 1
2

(42)451

c
(3)

0, 12
= 6〈f0L−10⊥f0〉

∂

∂x
〈f0L−10⊥f0〉(43)452

c
(3)

1,− 1
2

= 6
〈
f0L−10⊥f0L

−1
0⊥f0

〉
.(44)453

454

The fourth cumulant is given up to order O(ε
3
2 ) by455

c(4) = t c
(4)
0,1 + ε c

(4)
1,0 +

ε2

t
c
(4)
2,−1 .(45)456

457

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this458

becomes459

c(4) = εc
(4)
1(46)460461

with462

c
(4)
1 = θ c

(4)
0,1 + c

(4)
1,0 +

1

θ
c
(4)
2,−1

(47)

463

c
(4)
0,1 = −24 〈f0L−10⊥f0〉

(
∂

∂x
〈f0L−10⊥f0〉

)2

− 16 〈f0L−10⊥f0〉
2 ∂

2

∂x2
〈f0L−10⊥f0〉

(48)

464

c
(4)
1,0 = −24 〈 ∂

∂x
f0L−10⊥f0L

−1
0⊥f0〉〈f0L

−1
0⊥f0〉 − 36 〈f0L−10⊥f0L

−1
0⊥f0〉

∂

∂x
〈f0L−10⊥f0〉

(49)

465

c
(4)
2,−1 = 24

(
〈f0L−20⊥f0〉〈f0L

−1
0⊥f0〉 − 〈f0L

−1
0⊥f0L

−1
0⊥f0L

−1
0⊥f0〉

)
.

(50)

466
467
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