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Abstract

Data-driven prediction and physics-agnostic machine-learning methods have attracted increased in-
terest in recent years achieving forecast horizons going well beyond those to be expected for chaotic
dynamical systems. In a separate strand of research data-assimilation has been successfully used to
optimally combine forecast models and their inherent uncertainty with incoming noisy observations.
The key idea in our work here is to achieve increased forecast capabilities by judiciously combining
machine-learning algorithms and data assimilation. We combine the physics-agnostic data-driven
approach of random feature maps as a forecast model within an ensemble Kalman filter data as-
similation procedure. The machine-learning model is learned sequentially by incorporating incoming
noisy observations. We show that the obtained forecast model has remarkably good forecast skill
while being computationally cheap once trained. Going beyond the task of forecasting, we show that
our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn
effective model closure in multi-scale systems.
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1. Introduction

Designing computationally cheap models able to predict a system’s state in the future is of utmost
importance across disciplines in science and engineering. Often modellers face the situation when the
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underlying model is unknown and has to be inferred from observational data. There exists a plethora
of data-driven approaches but most face the problem that their forecast skill is severely impeded by
inevitable contamination of observational noise. This work proposes a method that produces cheap
surrogate models from noisy observations and provides remarkably good forecast horizons. Data-
driven physics-agnostic modelling has become particularly attractive for modelling high-dimensional
complex systems where the detailed evolutionary laws are either unknown or are too complex to be
resolved numerically, and provide a desirable cost-effective alternative to the numerical simulation
of high-dimensional possibly stiff dynamical systems (see, for example, [1, 2, 3, 4]). Designing such
surrogate dynamical models can be formulated abstractly as a problem of function approximation
under supervision: mapping a current state to a new state at a later point in time, using information
of a given training data set. Being able to approximate this function with satisfactory accuracy then
allows for forecasting by mapping unseen data. The concept of supervised learning can further be
exploited to find computationally tractable reduced models for a subset of resolved variables. This
problem arises in the context of multi-scale systems where one is typically interested in the dynamics
of the slow resolved variables. Reducing a stiff potentially high-dimensional multi-scale system to
an effective evolution equation for the slow variables only has obvious computational advantages,
reducing the dimensionality and allowing for a larger time step in the numerical discretisation. In
this context the aim of machine learning is to learn the so called closure term which parametrizes
the effect of the fast unresolved degrees of freedom on the resolved slow dynamics. Ideally one aims
at determining the closure term when only observations of the resolved variables are available.

A particularly simple and computationally cheap machine learning technique involves random
feature maps [5]. In the same spirit as expressing a function as a linear combination of basis functions
in some Hilbert space such as for example Fourier or Chebychev basis functions, here functions are
expressed as linear combinations of functions σ(wTu+ b), the so called random features,where w and
b are randomly drawn. It was shown that linear combinations of random feature maps are able to
approximate continuous functions arbitrarily close, a property known as the universal approximation
property [6, 7, 8]. We will use the special choice σ(z) = tanh(z) in this paper. The task of training
consists of learning the coefficients of the linear combination which can be achieved efficiently by
linear ridge regression; see [9, 10, 11, 12] for recent accounts. In the context of dynamical systems
the framework of random feature maps was extended to include internal degrees of freedom with
their own dynamics in so called echo-state networks [13, 14, 15, 16]. Random feature maps and
their extensions have been successfully used when the training data set is noise-free, e.g. when the
data originate from precise measurements of the model states. In the case when the training data set
instead consists of noisy state observations, we shall see that the standard machine learning approach
of linear regression becomes suboptimal and provides a mapping that is less suitable for forecasting
unseen data.

Incorporating noisy observations to estimate the state of a dynamical system is a problem ad-
dressed by data assimilation (DA) or filtering [17, 18, 19]. In DA incoming noisy observations are
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optimally incorporated to increase the predictability of a given forecast model. DA can be used to
estimate the state variables as well as unknown parameters of the model. DA now constitutes a stan-
dard tool in science and engineering and is used, for example, in numerical weather forecasting where
it is the main driver for the increased predictability enjoyed over the past decades. DA has already
been used successfully in data-driven modelling where the forecast model is constructed using Takens’
embedding theorem and phase space reconstruction [20]. More recently, data assimilation techniques
have been combined with techniques from machine learning in order to perform combined state and
parameter estimation. We mention in particular the work of [21, 22, 23, 24, 25] on smoothing tech-
niques and the recent work of [26] on sequential learning of both state and parameters. Monte Carlo
and optimization based methods for combined state and parameter estimation have also already been
investigated extensively in the computational statistics community; see [27] for a review. However,
most of these techniques are not applicable to the high-dimensional inference problems that arise
from semi-parametric representations of the unknown dynamical propagator maps.

Here we shall combine the random feature map architecture within a sequential data assimilation
procedure. The idea is to learn the coefficients of the linear combination of the random feature
map approximation sequentially by updating them in time with incoming observations rather than
performing linear regression on the entire training data set. The forecast model within the data
assimilation procedure is given by the random feature map model itself. It should be noted, however,
that the resulting combined state-parameter estimation problem is no longer linear. Within such a
setting, an attractive DA framework is provided by ensemble Kalman filters (EnKF) where the sta-
tistical information needed for the Kalman filter is provided through a Monte Carlo approximation
of an ensemble of model forecasts [17, 18, 19]. Such ensemble filters were shown to perform very
well for nonlinear dynamical systems unlike the classical Kalman filter. We coin our methodology
with the acronym RAFDA, standing for RAndom Feature maps and Data Assimilation. We shall
consider three prototypical dynamical systems to numerically investigate RAFDA and to illustrate
how RAFDA is able to extend the good forecast skills of classical random feature maps to the case
of noisy training data. We consider the Lorenz-63 model, the Kuramoto-Sivashinsky equation and
the multi-scale Lorenz-96 system to show how RAFDA achieves the goals we set out above. Besides
an improved forecast skill of single trajectories compared to classical random feature maps, RAFDA
naturally extends to probabilistic forecasting when used in an ensemble setting. We will see that our
method generates reliable ensembles for which each ensemble member has equal probability of being
closest to the truth. In these applications the aim is to provide a cheap surrogate model which is
learned from noisy training data without any information about the underlying dynamical system.
In the context of multi-scale systems scientists often know the form of the physical model for the
resolved slow scales but lack detailed information about the closure term driving the physical model.
The issue of such subgrid-scale parametrisations has recently been addressed anew using machine
learning techniques; see for example [28, 29, 30, 31, 32, 33]. For the Lorenz-96 multi-scale system
we show that given noisy observations of the slow variables RAFDA can determine the closure term
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and can be used to perform subgrid-scale parametrization.

The paper is organised as follows. In Section 2 we develop our RAFDA methodology. In Section 3
we present applications to the Lorenz-63 model, where we test in particular for the dependency of
the forecast skill on the length of the training data set, the noise level and the reservoir dimension.
We further show that ensembles generated through the combined random feature map and data
assimilation procedure provide reliable ensembles to be used in probabilistic ensemble forecasting.
We further consider the Kuramoto-Sivashinsky equation as a paradigmatic model for spatio-temporal
chaos in partial differential equations in Section 4. In Section 5 we consider the multi-scale Lorenz-96
model and show that RAFDA can be used to learn closure models for the effective slow dynamics.
We conclude in Section 6 with a discussion and an outlook.

2. Computational methods

Consider a D-dimensional dynamical system

u̇ = F(u), (1)

which is observed at discrete times tn = n∆t of interval length ∆t > 0, n = 0, . . . , N , to yield a noisy
time series of vector-valued observations

uo
n = un + Γ1/2 ηn (2)

with uo
n ∈ R

D , un = u(tn), measurement error covariance matrix Γ ∈ R
D×D and independent

and normally distributed noise ηn ∈ R
D, that is, ηn ∼ N (0, I). We will typically work with a

measurement error covariance matrix
Γ = ηI (3)

with scalar variance parameter η ≥ 0. The special case η = 0 corresponds to exact state observations.
In this paper, we are primarily interested in noisy state observations, that is, in η > 0.

For the purpose of data-driven modelling and machine learning it is instructive to view the
evolution of the time-dependent model state u(t) in the time interval ∆t as a propagator map

un+1 = Ψ∆t(un). (4)

The aim of data-driven modelling is then to find an approximation of this map and construct a
surrogate model

ûn+1 = ΨS(ûn) (5)

with û0 = u0, which is to be learned from the observational data (2). The observational data may
come as outputs from a known model or are given by actual observations without any knowledge
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of the underlying model. In the case when the model is known a surrogate model may still have
computational advantages, in particular for high-dimensional models and/or for stiff multi-scale
models, where solving the full model may require prohibitively small step-sizes δt ≪ ∆t. One can
also encounter the case when the underlying dynamics (1) is only partially known. This situation
arises typically in multi-scale systems, where u(t) characterises the resolved (slow) degrees of freedom
and the analytic form of F is known but the effect of the unresolved dynamics on the resolved ones
has to be inferred from data.

Independent of whether the underlying model (1) is known or not, one ends up with a combined
problem of having to estimate the states un at times tn = n∆t as well as the functional form of the
propagator ΨS from the noisy data uo

n, n = 0, . . . , N . This problem has been well studied in the
literature, both within parametric and non-parametric settings, using different approximation tools
such as radial basis functions (RBF) and reproducing kernel Hilbert spaces (RKHS). In this paper,
we focus on a particular class of shallow neural networks and the RKHS induced by their random
feature maps. See, for example, [10, 11, 12] for recent theoretical results on such approximations.
In particular, the attractiveness of this RKHS, as compared to more complex machine learning
architectures such as those considered for example in [34], is its easy embedding into sequential data
assimilation via the ensemble Kalman filter [35], as we will demonstrate in this paper.

We now provide a short derivation of the random feature approximation from a RKHS and
Gaussian process perspective [36, 37]. The starting point is a kernel function k(u, v), which we
define to be

k(u, v) =

∫

RD+1

tanh(wT
inu+ bin) tanh(w

T
inv + bin) p(win)p(bin) dwindbin (6)

with p(win) some multivariate distribution of dimension D and some univariate distribution p(bin).
We denote the associated reproducing kernel Hilbert space by Hk. Monte Carlo integration with Dr

terms is used to approximate the integral in (6) to obtain

k̂(u, v) =
1

Dr

Dr∑

k=1

tanh(wT
in,ku+ bin,k) tanh(w

T
in,kv + bin,k) (7)

with win,k ∼ p(win) and bin,k ∼ p(bin) independently distributed. Using the approximation (7) as the
covariance function of a Gaussian process leads to the following random feature representation

ΨS(u) =

√
1

Dr

Dr∑

k=1

wk tanh(w
T
in,ku+ bin,k) (8)

of realisations from the Gaussian process G(0, k̂) with the wk’s independently and standard Gaussian
distributed. Note that

k̂(u, v) = E[ΨS(u)ΨS(v)], (9)
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where the expectation is taken over the random weights wk in (8). The Gaussian process G(0, k̂) and
its random feature realisations (8) provide a prior for the estimation of the desired propagator ΨS(u)
in (5) in case of D = 1.

Our random feature approximation to (5) for D ≥ 1 proceeds now as follows: We define Dr-
dimensional feature maps, which we write in vector form as

φ(u) = tanh(Winu+ bin) ∈ R
Dr (10)

using a weight matrix
Win = (win,1, . . . ,win,Dr

)T ∈ R
Dr×D

and a bias
bin = (bin,1, . . . , bin,Dr

)T ∈ R
Dr×1.

The weight matrix and the bias are chosen randomly and independently of the observed uo
n, n =

0, . . . , N , according to the distributions p(win) and p(bin), respectively. It is pertinent to mention
that here the randomly drawn hyper-parameters Win and bin are kept fixed once drawn and are not
learned.

The surrogate propagator (4) is then defined by

ΨS(u) = Wφ(u), (11)

where W ∈ R
D×Dr is a matrix of coefficients which will be learned from the data uo

n, n = 0, . . . , N .
The case D = 1 corresponds to

W =

(
w1√
Dr

, . . . ,
wDr√
Dr

)
∈ R

1×Dr (12)

in (8). The fact that the coefficients W appear linearly in (11) allows for learning by simple linear
regression and makes random feature maps a computationally very attractive network architecture.
Despite its simplicity, it was shown that random feature maps and their associated RKHS enjoy
the universal approximation property [6, 7, 8], ensuring that their associated RKHS is dense in the
space of continuous functions. Their success in practical applications, however, depends crucially
on an appropriate choice of two random sets of parameters Win and bin, that is, the distributions
p(win) and p(bin) in (6). It is also permissible to consider different Gaussian prior distributions for
the weights W leading to different Gaussian process priors. We will comment on these aspects in
more detail later.

The Monte Carlo approximation perspective on the random feature maps (11) suggests that any
function Ψ∆t ∈ Hk can be approximated by a finite random feature representation (11) with an error
rate of O(1/√Dr) which does not contain terms exponentially increasing with the dimension D of
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the underlying dynamical system (see [38] for a precise statement). The rate constant, however, may
be large depending on the underlying dynamical system and its dimension.

In the next two subsection, we discuss how to employ random feature maps to estimate (11) from
data. We first describe the standard linear regression approach which assumes a sequence of exact
state observations uo

n, n ≥ 0. We then present our sequential data assimilation approach to the
simultaneous estimation of the model states un and the model parameters W .

Remark: Recently there has been a lot of interest in echo-state networks and reservoir computing
[14, 15, 16] which involve internal reservoir dynamics. For the examples considered here we find that
this additional complexity is not necessary to achieve good forecasting skill. Random feature maps
have recently also been extended to solution maps of partial differential equations; see, for example,
[39]. All these contributions assume exact state observations and ignore measurement errors.

2.1. Zero measurement noise: Linear Regression

If the measurement noise in (2) is zero, that is un = uo
n, the external weight matrix W ∈ R

D×Dr ,
which maps the random features to the state variable at the next time step, can be determined via
linear ridge regression (LR) over a training data set of length N [36, 38, 39]. More precisely, we seek
the minimiser of

L(W ) =
1

2
‖WΦ−U o‖2F +

β

2
‖W ‖2F, (13)

where ‖A‖F denotes the Frobenius norm of a matrix A, U o ∈ R
D×N is the matrix with columns uo

n,
n = 1, . . . , N , and Φ ∈ R

Dr×N consists of columns

φn = φ(uo
n−1), (14)

n = 1, . . . , N with fixed draws of the the random internal parameters (Win, bin) and φ(u) given by
(10). The parameter β > 0 is used for regularization. The minimiser of (13), which we denote by
WLR, is explicitly given by

WLR = U oΦT
(
ΦΦT + βI

)
−1

. (15)

We remark that if β is chosen too small, the inverse may not be defined and has to be replaced by the
pseudo-inverse. Algorithm 1 below provides a pseudocode outlining the relevant input parameters.

Bounds on the empirical risk

RN (WLR) =
1

2N
‖WLRΦ−U o‖2F

and its generalization error have been derived in [38] for a regularized cost functional slightly different
from (13). More precisely, under some additional assumptions on the kernel function k(u, v), the
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authors obtain a rate of O(1/Dr +1/
√
N) provided the regularization parameter is chosen appropri-

ately.
From a Gaussian process perspective, the linear ridge regression estimator (15) can be interpreted

as the MAP estimator to the following Bayesian inference problem [36]: Let us assume D = 1 for
simplicity and that the prior distribution for the desired propagator map is provided by the Gaussian
process ΨS(u) ∼ G(0, k̂). Then the negative log-likelihood function of the data is of the form

l(U o|ΨS) =
Dr

2β

N∑

n=1

‖un −ΨS(un−1)‖2 ,

which corresponds to an additive Gaussian model error ξn in (5), that is,

ûn+1 = ΨS(ûn) + ξn, (16)

of mean zero and variance β/Dr. Setting β = Dr in (13) corresponds to the standard error model

as expected from (12) since k̂(uon−1, u
o
m−1) = D−1

r φT
nφm. As in many machine learning applications,

the data U o ∈ R
1×N is assumed to be noise-free. We shall explore in Sections 3-5 in how far linear

ridge regression can be used to construct a forecast model trained on noisy observations U o and zero
model errors, that is ξn ≡ 0 in (16), instead.

Finding an appropriate weight matrix W in (11) has also been investigated from the perspective
of data-driven approximations of the underlying Koopman operator; the so called extended dynamic
mode decomposition (EDMD) [40]. The key idea is to first use the complete data set Φ of some
observed user-specified feature maps φ(uo

n), n = 0, . . . , N , which forms the so called dictionary, to
construct an approximation of the Koopman operator and to then use its eigenfunctions to approx-
imate the identity map, which in turn implies a computable approximation to the propagator map
(5) as a linear combination of the features maps, that is, in the form of (11). This approach is
computationally quite involved as it requires the solution of high-dimensional eigenvalue problems.
The problem of extracting Koopman operators from noisy data U o has, for example, been addressed
in [41].

We finally mention that the quadratic penalty term in (13) can be replaced by a sparsity enforcing
penalty as suggested in [42] and extended to noisy state observations in [43]. It is however not obvious
how to extend this, so called, sparse identification of nonlinear dynamics (SINDy) approach to an
online learning procedure within a Bayesian inference framework.

2.2. Non-zero measurement noise: RAFDA

If the observations are contaminated by noise, we propose here to estimate the weight matrix
W recursively using sequential DA [17, 18, 19]. Whereas the non-recursive estimation described
in the previous section using linear ridge regression only utilizes the information contained in the
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Algorithm 1: Linear Regression (LR)

input data : time series uo
n, n = 1, . . . , N

parameters: regularization parameter β, reservoir dimension Dr,
internal parameters Win ∈ R

Dr×D, bin ∈ R
Dr

perform the following:

construct : observation matrix U o = [uo
1,u

o
2, · · · ,uo

N ] ∈ R
D×N

random features φn = tanh(Winu
o
n−1 + bin) ∈ R

Dr

feature matrix Φ = [φ1,φ2, · · · ,φN ] ∈ R
Dr×N

output : WLR = U oΦT
(
ΦΦT + βI

)
−1

observations, we aim here at optimally estimating the weight matrix using both the observations as
well as the underlying dynamical surrogate model (5). In particular, we employ a combined state
and parameter estimation via state augmentation [17, 19]. More precisely, we formulate the forecast
model for constant parameters W as

uf
n+1 = W a

n φ(ua
n) (17a)

W f
n+1 = W a

n , (17b)

where the superscript f denotes the forecast and the superscript a denotes the analysis defined below.
Furthermore, the model states ua

n, W
a
n and uf

n+1, W
f
n+1, respectively, are now treated as random

variables. To formulate the Kalman filter analysis step, we unravel the weight matrix W ∈ R
D×Dr

into a parameter vector w ∈ R
DDr with w1:Dr

= W11, . . . ,W1Dr
, wDr+1:2Dr

= W21, . . . ,W2Dr
and so

forth. Concatenating further we introduce z = (uT,wT)T ∈ R
Dz with Dz = D +DDr. While the

forecast step (17) leads to an update of the random variable za
n into zf

n+1, the analysis step for the
mean za

n+1 is provided by
za
n+1 = zf

n+1 −Kn+1(Hzf
n+1 − uo

n+1) (18)

with the observation matrix H ∈ R
D×Dz defined by Hz = u, i.e., we assume that we observe all

state variables u. The Kalman gain matrix K is given by

Kn+1 = P f
n+1H

T
(
HP f

n+1H
T + Γ

)
−1
, (19)

where the forecast covariance matrix is given by

P f
n+1 = 〈ẑf

n+1 ⊗ ẑf
n+1〉 =

(
〈ûf

n+1 ⊗ ûf
n+1〉 〈ûf

n+1 ⊗ ŵf
n+1〉

〈ŵf
n+1 ⊗ ûf

n+1〉 〈ŵf
n+1 ⊗ ŵf

n+1〉

)
. (20)

The angular brackets 〈f(z)〉 denote the expectation value of a function f(z) and the hat denotes the
perturbation of zf

n+1 from its mean zf
n+1 = 〈zf

n+1〉, that is,
ûf

n+1 = uf
n+1 − uf

n+1. (21)
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Since we are only observing the state variables u, the Kalman update (18) can be written to explicitly
separate the state and parameter variables as

ua
n+1 = uf

n+1 − P f
uu

(
P f

uu
+ Γ

)
−1 (

uf
n+1 − uo

n+1

)
(22)

wa
n+1 = wf

n+1 − P f
wu

(
P f

uu
+ Γ

)
−1 (

uf
n+1 − uo

n+1

)
, (23)

where P f
uu

= 〈ûf
n+1 ⊗ ûf

n+1〉 and P f
wu

= 〈ŵf
n+1 ⊗ ûf

n+1〉.
The Kalman filter is optimal in the sense that z̄a maximizes the likelihood of the observations

provided that both the observations and the state variables are Gaussian distributed random vari-
ables. Since the forward model (17) is nonlinear in the augmented state variables and the involved
random variables cannot assumed to be Gaussian distributed, the combined forecast and analysis
cycle is not well defined and we employ the stochastic EnKF [44, 35] to define a computationally
robust Monte Carlo closure. In particular, define an ensemble of states Z ∈ R

Dz×M consisting of M
members z(i) ∈ R

Dz , i = 1, . . . ,M , that is,

Z =
[
z(1), z(2), . . . , z(M)

]
, (24)

with empirical mean

z =
1

M

M∑

i=1

z(i), (25)

and the associated matrix of ensemble deviations

Ẑ =
[
z(1) − z, z(2) − z, . . . , z(M) − z

]
∈ R

Dz×M . (26)

We define these objects for the forecast and analysis ensembles Z f
n and Za

n, respectively, for all n ≥ 0.
Each ensemble member is propagated individually under the forecast step (17). This defines the
update from the last analysis ensemble Za

n to the next forecast ensemble Z f
n+1. The EnKF analysis

step is now defined as follows. The ensemble deviation matrix Ẑ f
n+1 can be used to approximate the

forecast covariance matrix (20) as

P f
n+1 =

1

M − 1
Ẑ f

n+1 (Ẑ
f
n+1)

T ∈ R
Dz×Dz . (27)

Upon introducing the matrix U o
n+1 ∈ R

D×M of perturbed observations

U o
n+1 =

[
uo

n+1 − Γ1/2η
(1)
n+1,u

o
n+1 − Γ1/2η

(2)
n+1, . . . ,u

o
n+1 − Γ1/2η

(M)
n+1

]
, (28)

where the η
(i)
n+1 ∈ R

D, i = 1, . . . ,M , are realisations of independent and normally distributed random
variables (cf (2)), we obtain the following compact representation of the EnKF update step:

Za
n+1 = Z f

n+1 − P f
n+1H

T
(
HP f

n+1H
T + Γ

)
−1 (

HZ f
n+1 −U o

n+1

)
. (29)
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The ensemble forecast step defined by (17), together with the EnKF analysis step (29) constitute
our combined RAndom Features maps and Data Assimilation (RAFDA) method. Training is done
with a single long trajectory of length N , and the ensemble mean of the weight matrix W a

N at final
training time tN = ∆tN is denoted by WRAFDA. We note that random perturbations, such as in
(16) can easily be included into the forecast step (17a). Throughout this paper we assume however
that the models are deterministic as in (4). In the subsequent two subsections we discuss further
algorithmic details of our method.

2.3. Choice of random feature maps

The choice of the random coefficients Win and bin in the feature maps (10) and their dimension
Dr is crucial for the success of our method. In this study, we choose these entries to be independent
and uniformly distributed with

(Win)ij ∼ U [−w,w] and (bin)i ∼ U [−b, b]. (30)

The hyper-parameters w > 0 and b > 0 should be chosen such that the random feature maps (14)
evaluated at the observed data points cover their full range of [−1, 1]D as uniformly as possible, in
particularly sampling their nonlinear domain. See the numerical experiment section for more details.

We mention that one could also dynamically adapt the internal parameters (Win, bin). This would
extend our method from random feature maps to two-layer networks, going from RKHS to Barron
spaces [45, 46, 47, 48, 49]. We leave this option in combination with data assimilation as a topic for
further research.

2.4. Further algorithmic details of RAFDA

The required ensemble size M of the standard implementation (29) of an EnKF needs to be of
the order O(Dz), which can become prohibitive for typical reservoir dimensions of Dr ∼ O(103) and
potentially high-dimensional dynamical systems. Within the EnKF community further approxima-
tions such as localisation and inflation have been developed to deal with finite-size effects [35, 19, 50].
Here we follow the concept of B-localisation [51, 52, 53], where the empirical covariance matrix P f

n+1

is tempered by a symmetric positive definite localisation matrix B via the Kronecker product, that
is,

P̃ f
n+1 = B ◦ P f

n+1. (31)

The EnKF update step (29) is then replaced by

Za
n+1 = Z f

n+1 − P̃ f
n+1H

T
(
HP̃ f

n+1H
T + Γ

)
−1 (

HZ f
n+1 −U o

n+1

)
. (32)

Localisation implies that certain correlations between variables get reduced or even set to zero if
the corresponding entry in B is less than one or zero, respectively. This allows to control spurious
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correlations between uncorrelated variables of O(1/
√
M), caused by the finite ensemble size. In our

numerical experiments we employ the following form of localisation. The jth row of the weight matrix
W is responsible for updating the jth component of the dynamic state variable u under the forward
model (17a). We reflect this property in the approximate covariance matrix P̃ f

n+1 by ignoring all
correlations between the jth row of W and all components of the observed uo

n+1 except for its jth
entry. We still require M to be O(Dr) to mitigate against possible spurious correlations. The issue
of localisation in the context of combined state and parameter estimation has also been addressed
recently in [26].

We also employ multiplicative inflation in which the ensemble members z
(i)
n+1 of the forecast

ensemble Z f
n+1 are replaced by

z
(i)
n+1 → zn+1 + α(z

(i)
n+1 − zn+1), (33)

i = 1, . . . ,M , prior to the EnKF data assimilation step (29) with α > 1 being the inflation factor
[54]. Note that the inflation step maintains the ensemble mean while increasing the covariance matrix
P f

n+1 of the ensemble.

We finally need to specify the distribution of the extended state variable z at initial time t = 0 from
which to draw our initial ensemble. We treat the two components u0 and w0 of z0 as independent,
and set

u0 ∼ N (uo
0,Γ) (34)

and
w0 ∼ N (wLR, γI), (35)

where wLR is the vectorial form of the solution WLR to the ridge regression formulation (13) and
γ > 0 is a parameter. Alternatively, one can also use w0 ∼ N (0, γI) if wLR is unavailable.

We recall that the linear regression formulation (13) ignores measurement errors in the states,
that is, assumes u0 = uo

0. The regularization term in (13) corresponds to the choice of prior for w0

in (35). However, we re-emphasize that LR and RAFDA solve different estimation problems.
We provide a pseudocode outlining the relevant input parameters in Algorithm 2. In the sub-

sequent sections we illustrate the proposed RAFDA methodology in several dynamical systems,
demonstrate its improved forecast skill compared to the linear regression approach (15), and inves-
tigate the dependency of RAFDA on the noise strength and the available training size N , as well as
showing the impact on the approximation properties of RAFDA of the various choices a modeller
needs to take such as the reservoir dimension Dr and the choice of the random elements Win and bin.
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Algorithm 2: Random Feature Map DataAssimilation (RAFDA)

input data : time series uo
n, n = 0, . . . , N

parameters: random feature maps: dimension Dr, internal parameters Win ∈ R
Dr×D,

bin ∈ R
Dr

EnKF: ensemble size M , observational noise covariance Γ, inflation α,
initial ensemble parameters (wLR, γ)

perform the following:

initializing ensemble:

Za
0 with members drawn according to u0 ∼ N (uo

0,Γ) and w0 ∼ N (wLR, γI);
for n = 1 : N do

forecast Za
n−1 → Z f

n: each ensemble member is propagated according to
uf

n = W a
n−1 φ(u

a
n−1);

W f
n = W a

n−1;
data assimilation analysis update Z f

n → Za
n:

inflation & localisation: P f
n ← B ◦P f

n

Za
n = Z f

n − P f
nH

T
(
HP f

nH
T + Γ

)
−1 (

HZ f
n −U o

n

)
;

output : WRAFDA = ensemble average of W a
N

3. Ordinary differential equations: Lorenz-63 equation

We consider as a first test bed the Lorenz-63 system [55]

ẏ = 10(y − x)
ẋ = 28x− y − xz

ż = −8
3
z + xy (36)

with u = (x, y, z)T ∈ R
3. Observations are taken every ∆t = 0.02 time units and un corresponds to

the solution at tn = n∆t. In all simulations a transient of 40 model time units is discarded to ensure
that the dynamics has settled on the attractor.

To assess the propensity for random feature maps with data assimilation and for classical random
feature maps with linear regression to be used as a forecast model we test the forecast models of LR

un+1 = WLR φ(un) (37)

with WLR given by (15), and of RAFDA

un+1 = WRAFDAφ(un), (38)
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where WRAFDA is determined via the training data as the final outcome of the iterative DA procedure
given by (17) and (29). In both cases the reservoir variables are constructed using (10). For LR we
employ a regularization parameter of β = 4 × 10−5 (unless stated otherwise). For RAFDA, unless
stated otherwise, we do not use inflation (α = 0) and set Dr =M = 300 and N = 4, 000. We assume
that we know the observational noise strength η = 0.2.
We test the respective forecast capabilities in a validation data set uvalid(tn), n ≥ 0. As a quantitative
diagnostic for the forecast skill we record the forecast time τf , defined as the largest time such that
the relative forecast error E(tn) = ||uvalid(tn) − un||2/||uvalid(tn)||2 ≤ θ. We choose here θ = 0.05.
This threshold was chosen to correspond with an eye-ball metric that the truth and the surrogate
model have diverged.

We measure time in units of the Lyapunov time tλmax with the maximal Lyapunov exponent
λmax = 0.91. We shall present results for the mean behaviour over realisations, which differ in ob-
servations used for the training, in the validation data set, each of which with independently drawn
initial conditions, as well as in the random draws of the internal parameters (Win, bin) and of the
initial ensembles for RAFDA (unless stated otherwise). The different training and validation data
sets are generated by drawing random initial conditions, which then each subsequently evolve into
random dynamic states on the attractor after a transient time of 40 model time units. In the follow-
ing we discuss the effect of the various parameters as well as on the length of the available data and
the noise levels on the forecast capabilities of the two models.

3.1. Dependency on the internal parameters

We first address the issue of the choice of the randomly chosen internal parameters Win and
bin. The entries of the internal weight matrix and bias are chosen uniformly randomly over intervals
[−w,w] in case of Win and [−b, b] in case of bin (cf (30)). Figure 1 shows the forecast times τf and the
standard variations as a function of the two parameters w and b averaged over 50 independent reali-
sations of (30) using the same training data set and the same validation data set uvalid but differing
in the random draws (Win, bin). The forecast times are estimated using the ridge linear regression
matrix WLR with N = 20, 000 training data points. Results are shown for training on noiseless and
on noisy observations with η = 0.2. The forecast capabilities clearly depend sensitively on the choice
of w and b. In particular, parameter choices leading to excellent forecast times in the noiseless case
may not lead to good forecast times in the case of non-zero measurement noise (note the different
range in w for the contour plots shown in Figure 1). The optimal forecast times τf for noiseless data
is 5.5 whereas it drops to 1.8 when trained on noisy data, illustrating that random feature maps
have difficulties when trained on noisy data. Moreover, in the noiseless case parameter combinations
(w, b) associated with large forecast times exhibit small variances which renders random feature maps
and linear regression insensitive to the particular random draw. In the case of noisy data, however,
it is seen that parameter combinations (w, b) corresponding to large forecast times also have larger
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standard variance, rendering this method unreliable for noisy data. To explore what constitutes a
good set of internal parameters corresponding to long forecast times we show in Figure 2 normalized
histograms of one of the components of the random feature map φj (cf (10)). We pick values (w, b)
which we identified to lead (on average) to poor forecast times τf < 0.5 and which we identified to
lead to good forecast times with τf > 4 in the case of noiseless observations (cf. Figure 1). We
then choose randomly drawn typical realisations corresponding to each of the (w, b). The histogram
is then generated by evaluating φ1 along a time trajectory u(t) of the Lorenz-63 system of length
N = 200, 000 sampled every 0.02 time steps, to explore the range of the random feature map φ1

for the Lorenz-63 dynamics. For internal parameter choices corresponding to poor forecast times
τf < 0.5 the histograms exhibit strongly localised behaviour near ±1, caused by the tanh-random
feature map (10) having scale parameters w such that the tanh-function cannot resolve the whole
range of dynamical states of the underlying observations. Internal parameters corresponding to long
forecast times on the other hand resolve the whole dynamical range within the nonlinear range of
the tanh-function. In the following the internal weight matrix and bias are chosen randomly with
w = 0.005 and b = 4 which yields (on average) large forecast times τf for η = 0 and η = 0.2 (cf.
Figure 1).

3.2. Dependency of LR on the regularization parameter β

Figure 3 shows the mean of the forecast time τf obtained from LR for reservoir dimensionDr = 300
for different choices of the regularization parameter β, averaged over 500 realisations, each trained
on N = 4, 000 observations. Each realisation uses a different random draw of the internal parameters
Win and bin as well as different training and validation data sets. For values of the regularization
parameter log β < −16 the inverse in the LR solution (15) is badly scaled and we instead use the
pseudo-inverse (we use the natural logarithm throughout the paper). We observe that when noiseless
data are used to train LR, the forecast time plateaus to its maximal value of around τf = 3.8 for
log β < −20, including the case of no regularization with β = 0. For noisy observations with η = 0.2
the mean forecast time τf is relatively robust to changes in the regularization parameter for a wide
range of β with log β ∈ [−25,−7]. Within this range the forecast times τf are consistently larger
for the training set consisting of noiseless observations. In the following we employ a regularization
parameter of β = 4× 10−5 (log β ≈ −10).

3.3. Dependency of RAFDA on the initial ensemble

Turning to RAFDA, we now investigate the influence of the choice of the initial ensemble for
the parameters on its performance. We consider initial ensembles drawn in an unbiased fashion
w0 ∼ N (0, γI) as well as drawn around the prior provided by LR with w0 ∼ N (wLR, γI) as in
(35). Recall that the small-cap w denotes the vectorial representation of the parameter matrix
large-cap W which is learned in RAFDA. The model is trained on N = 4, 000 noisy observations
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Figure 1: Contourplot of the forecast time τf (left) for different choices of the internal parameters, averaged over
50 realisations, and the associated standard deviations (right) computed using LR. Top: noiseless observations with
η = 0. Bottom: noisy observations with η = 0.2.
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Figure 2: Normalized empirical histogram of the random feature map (10) φ1 for four choices of internal parameters
(Win, bin), drawn for four separate values of (w, b). Left: for internal parameters corresponding to forecast times
τf < 0.5. Right: for internal parameters corresponding to forecast times τf > 6.
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Figure 3: Mean of the forecast time τf in units of the Lyapunov time for varying regularization parameters β for LR
for noiseless (η = 0) and for noise contaminated observations (η = 0.2).
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with noise level η = 0.2 and a reservoir of dimension Dr = 300 was used. We chose M = 300
ensemble members for RAFDA, and averaged over 500 realisations, each involving independently
drawn random internal parameters Win and bin, independently drawn initial ensembles for RAFDA
as well as different training and validation data sets. Figure 4 shows the dependency of the mean
forecast time on the initial spread of the ensemble γ. At each value of γ choosing the initial ensemble
to be centred around the prior provided by LR produces forecast times which are better or equal
than those obtained with an unbiased initial ensemble for the same value of γ. The forecast time
vacillates around τf ≈ 1.5 for LR (the small fluctuations occur due to each realisation having different
independent training and validation data sets). For both types of initial RAFDA ensembles there is
a wide range of initial ensemble spreads γ for which good forecast times are obtained. When γ is too
small and the spread of the initial ensemble in the data assimilation component of RAFDA is too
small, EnKF experiences filter divergence and collapses, implying a small error covariance matrix P f .
This leads to the filter trusting its own forecast, ignoring the information from incoming observations.
The filter then amounts to running the bare forecast model, leading to poor forecast skills with small
τf → 0 for γ → 0. Centering the initial ensemble around the LR prior wLR significantly delays this
filter collapse with forecast times τf ≈ 2.5 when the unbiased initial ensemble has already collapsed
near log γ ≈ −4. When further decreasing the spread of the initial parameter ensemble γ with
log γ / −10, the parameters w of RAFDA, when initialised on the prior provided by LR, are not
corrected by the incoming observations and RAFDA and LR perform equally well.

For large values of γ, as to be expected, the same forecast times τf are produced independent of
the chosen initial RAFDA ensemble. The same forecast times τf are obtained for ensembles centred
centred around the prior WLR and for unbiased ensembles for log γ ≈ 0. For log γ < 0, centering
the initial ensemble around the prior provided by LR produces larger forecast times than LR for
noisy data, and generally leads to more robust forecast times with respect to the initial spread γ
than the unbiased initial ensemble. We remark that the differences between the two initialisation
choices depend on the noise level of the training data set; for small noise levels, centering the initial
ensemble around the prior provided by LR leads to better forecast times compared to the unbiased
initial ensemble for a wider range of values of γ. In the following we will use initial ensembles centred
around the prior provided by LR with γ = 1, 000.

Whereas the particular draw of the initial parameters (Win, bin) can have a large impact on the
performance of RAFDA (see also Figure 7 below), the DA component of RAFDA seems insensitive to
the particular random draw of w0. For initial ensembles (34)–(35), which achieve good analysis error
of the state variables, we observed that the forecast times do not depend strongly on the particular
random draw.

3.4. Distribution of the learned parameters WLR and WRAFDA

Figure 5 shows how the learned parameters WLR and WRAFDA are distributed. Shown are the
empirical histograms WLR and WRAFDA histogram for a single realisation of a training data set with

18



-15 -10 -5 0 5 10
0

1

2

3

4

5

Figure 4: Mean of the forecast time τf in units of the Lyapunov time for varying γ for RAFDA for noise contaminated
observations with η = 0.2. Shown are results when the initial ensemble is drawn around the prior provided by LR
w0 ∼ N (wLR, γI) (35) and for the unbiased choice w0 ∼ N (0, γI).

N = 40, 000, Dr = M = 1, 000 and observational noise covariance η = 0.2. LR yields a forecast
time of τf = 0.9 and RAFDA a forecast time of τf = 4.4. The parameters WLR are determined
by learning all the data at once, with a distribution which is strongly peaked at small values. The
parameters WRAFDA on the other hand are learned sequentially. Surprisingly, we do not see that
individual components of W (or its vectorial form w) converge, but they converge in distribution. In
particular, it is seen that their distribution is near-Gaussian with comparatively much wider support
than those obtained by LR. The lack of convergence of the individual entries of W in RAFDA during
the assimilation, we believe, is due to the non-uniqueness of the map un+1 = Wφ(un), i.e., the same
mapping can be achieved (within the error tolerance of the observational noise) for more than one
parameter combinations in W .

3.5. Dependency on the reservoir dimension Dr

Figure 6 shows the dependency of the forecast time τf on the reservoir dimension Dr for fixed
training length N = 4, 000, averaged over 500 realisations, each involving independently drawn
random internal parameters Win and bin as well as different training and validation data sets. For
each reservoir dimensionDr we choose an ensemble withM = Dr members. The forecast performance
of both RAFDA and LR increases with the reservoir dimension Dr initially, with a very steep increase
for RAFDA between logDr = 3 and logDr = 4, and then saturates for sufficiently large Dr. LR
saturates for reservoir dimensions logDr ≈ 4 to τf ≈ 1.4. RAFDA saturates at larger reservoir
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Figure 5: Empirical histogram of the learned entries of the weight matrix WLR (left) and WRAFDA (right). For
RAFDA several histograms are shown at different times to illustrate the convergence of the distribution during the
assimilation procedure.

dimensions. At saturation RAFDA achieves forecast times τf ≈ 3.4, more than twice than the
corresponding values for classical LR. Note that the mean forecast time τf of LR at large reservoir
dimensions Dr ≈ 1, 500 (logDr ≈ 7.3) is still smaller with τf ≈ 1.4 than the mean forecast time of
RAFDA for the reservoir dimension Dr = 50 (logDr ≈ 3.9) with τf ≈ 2.0. This suggests that for
training it is far more important to control the noisiness of the observations than the expressivity of
the model.

Figure 6 also shows that there is a large spread in the obtained forecast times τf caused by outliers
in both LR and RAFDA; the spread, relative to the mean forecast time τf , however, is diminished
by approximately 25% on average for RAFDA compared to LR.

To further illustrate the spread of the forecast times, we show in Figure 7 the empirical histogram
of the forecast time τf for RAFDA and for LR obtained from 500 independent realisations for a
reservoir of size Dr = 1, 600. RAFDA clearly exhibits improved forecast times with a mean of
τf = 3.4 over LR with a mean of τf = 1.4 Lyapunov time units. Moreover, the large outliers for
RAFDA can have forecast times larger than 9 Lyapunov times, whereas extreme cases for LR only
reach up to 5.6 Lyapunov times. We used here M = 1, 600 ensemble members. The models are
trained with N = 4, 000 noisy observations.

In anticipation of the application to higher-dimensional dynamical systems presented in Section 4
and 5 we state that the reservoir dimension Dr for which the forecast skill saturates depends on the
dimension D of the underlying system; the higher the dimension of the dynamical system, the higher
the expressivity of the model needs to be.
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Figure 6: Mean of the forecast time τf in units of the Lyapunov time for varying reservoir dimensionDr for RAFDA and
for LR, for noise contaminated observations with η = 0.2. The error bars denote two standard deviations, estimated
from 500 independent realisations, differing in their randomly drawn internal parameters (Win, bin), training and
validation data sets.

Figure 7: Empirical histogram of forecast times τf in units of the Lyapunov time forDr = 1, 600, for noise contaminated
observations with η = 0.2.
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3.6. Dependency on the training data size N

The size of the training data set needs to be sufficiently large for two distinct reasons. First
of all, the training data set needs to sample sufficiently large parts of phase space to allow for an
application of the learned mapping to unseen data which may evolve into hitherto unexplored areas
of phase space. Secondly, the size of the training data set needs to be sufficiently large to allow for
good statistical estimation in both the linear regression as well as the data assimilation components
(which has its own initial transient period) and hence to ensure a sufficiently accurate estimation of
the mappings (37) and (38), respectively.

Figure 8 shows the dependency of the mean of the forecast time τf on the size N of a noisy
training data set, averaged over 500 realisations, again each involving independently drawn random
internal parametersWin and bin as well as different training and validation data sets. We checked that
the analysis fields for the Lorenz-63 system state variables were close to the truth and no ensemble
inflation was required. As for the reservoir dimension, the forecast times τf increase with increasing
length of the training data set N and saturate for sufficiently large training data sets, exhibiting the
same twofold improvement of RAFDA over LR as observed in Section 3.5. The slight decline in the
forecast time for logN > 10 for LR is consistent with sampling errors, illustrated by the error bars
shown in Figure 8. Both LR and RAFDA suffer from outliers in the prediction which gives rise to
the variance in forecast times (see also Figure 7). We observe that the spread does not decrease with
increasing training data length N but saturates in conjunction with the mean forecast time τf . As in
the dependency on the reservoir dimension, the spread relative to the mean forecast time is reduced
on average by 20% for RAFDA compared to LR.

3.7. Dependency on the measurement noise level η

We now test how the forecast capabilities depend on the observational noise level η. Figure 9
shows the dependency of the forecast time τf on the noise level for fixed training data length and
reservoir dimension, averaged over 500 realisations, each involving independently drawn random
internal parameters Win and bin as well as different training and validation data sets. For sufficiently
small noise levels η < 0.0067 (log η < −5) RAFDA asymptotes to a mean forecast time of τf ≈ 5
whereas LR asymptotes to only τf ≈ 2, albeit for a longer range in noise levels. We remark that
the regularization parameter chosen for LR of β = 4 × 10−5 was chosen to yield optimal results for
fixed η = 0.2. However, for β → 0 which is optimal for LR for η = 0 the maximal forecast time is
τf ≈ 3.8 (cf Figure 3), below the corresponding value of RAFDA with τf ≈ 5. The range of constant
forecast times is followed upon increasing the noise level by an exponentially decaying range, before
the models lose any forecast skill with τf → 0. The exponential behaviour of the forecast time τf with
respect to the observational noise strength η is consistent with the sensitivity of chaotic dynamical
systems with respect to their initial condition and the exponential separation of nearby trajectories.
To corroborate this interpretation we have confirmed that the same forecast times are achieved when
simultaneously doubling the data size to N = 8, 000 and the noise level η.
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Figure 8: Mean of the forecast time τf in units of the Lyapunov time for varying lengths N of the training data
set for RAFDA and for LR, for noise contaminated observations with η = 0.2. The error bars denote two standard
deviations, estimated from 500 independent realisations, differing in their randomly drawn internal parameters (Win,
bin), training and validation data sets.

The forecast time τf varies non-monotonically with the observational noise strength η for LR.
We observe an increase in τf for log η ≈ −3. The value of the observational noise η for which this
increase in the τf occurs depends on β and decreases for decreasing values of β (not shown). Recall
that LR has been devised under the assumption of model error, with covariance proportional to β,
without consideration of eventual observational error. It seems that a time series with a specified
observational noise can be approximated by an equivalent model error, and hence allows for an
adequate application of LR for this particular observational noise strength.

To further illustrate that standard random feature maps and LR are not suited to learn the
dynamics from noisy observations, we tested that simple denoising does not lead to an improved
forecasting skill of LR. By applying a simple denoising algorithm of a moving average whereby each
observation uo(ti) is replaced by 1

3
(uo(ti −∆t) + uo(ti) + uo(ti +∆t)) to average out the noisy sig-

nal [56], yields a mean forecast time of τf = 1.6 for η = 0.2, compared to τf = 3.3 for RAFDA,
when averaged over 500 realisations as above. Similarly, the RMS error at lead time t = 1 is 9.1
compared to 3.9 for RAFDA. It is likely that a more refined denoising scheme could boost the per-
formance of LR; but such a scheme would be problem dependent and would require additional tuning.

The reader may wonder why RAFDA outperforms LR for η → 0 as for η = 0. If the output data
were lying in the span of the random feature maps, then linear regression would be the optimal solu-
tion minimising (13) with L(WLR) = 0. We remark that LR with β > 0 assumes an intrinsic model
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error (16) which is absent from our deterministic Lorenz-63 system. We have tested for β = 10−11

and several larger values of β that 0 < L(WLR) < L(WRAFDA) for the training data but nevertheless
RAFDA generates surrogate models which consistently exhibit larger forecast times τf when applied
to unseen data (not shown). Hence, despite the fact that RAFDA performs suboptimally in minimis-
ing the cost function (13) it generalises much better to unseen data. The fact that the EnKF does
not yield optimal estimates for nonlinear problems has long been known (see, for example, [57]).
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Figure 9: Mean of the forecast time τf in units of the Lyapunov time for varying noise levels η for RAFDA and for
LR. The error bars denote two standard deviations, estimated from 500 independent realisations, differing in their
randomly drawn internal parameters (Win, bin), training and validation data sets.

3.8. Application to ensemble forecasting

In chaotic dynamical systems a single forecast is to a certain degree meaningless as small uncer-
tainties in the initial condition can lead to widely differing forecasts at a later time. Probabilistic
forecasts provide a more appropriate framework for forecasting. In particular, ensemble forecasting,
whereby a Monte Carlo estimate of the underlying probability density function is provided by running
an ensemble of initial conditions, are now widely used in numerical weather forecasting issuing both
the most probable forecast and its associated uncertainty [58, 59, 60]. The quality of such ensemble
forecasts crucially depends on how the ensembles are generated. There exist several strategies using
singular vectors [61, 62], bred vectors [63, 64, 65], analysis ensembles from ensemble Kalman filters
[66, 67], and more recently analogs [68]. Here we show that ensembles obtained from RAFDA provide
reliable forecast ensembles to be used in probabilistic forecasts. A good probabilistic forecasts is not
necessarily one with the smallest root-mean-square (RMS) error (consider a probability density func-
tion with disjoint support, then the mean may not be even an actual physical state), but rather one
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where each ensemble member has equal probability of being closest to the truth. Such ensembles are
called reliable. We probe the reliability here with the continuous ranked probability score (CRPS)
[69, 70]. The CRPS is defined for a lead time τ as

CRPS(τ) =
1

D

D∑

k=1

∫
∞

−∞

[
F (u; τ, k)− Ftruth(u; τ, k)

]2
du, (39)

where F and Ftruth are the cumulative probability distributions of the forecast ensemble and truth,
respectively, which are estimated as

F (u; τ, k) =
1

M

M∑

m=1

Θ
(
u− u(m,k)(τ)

)
, (40)

Ftruth(u; τ, k) = Θ
(
u− u(k)truth(τ)

)
, (41)

where Θ(x) is the Heaviside function with Θ(x) = 0 for x < 0 and Θ(x) = 1 otherwise, and u(m,k)(τ)
denotes the k-component of the mth ensemble member u(m)(τ) at forecast time τ > 0. Smaller values
of CRPS indicate better reliability.

We consider here ensembles obtained in an EnKF data assimilation where the forecast model is
given by the surrogate model obtained from either RAFDA or from LR. Both surrogate models and
their associated weight matrices were obtained prior to and independently from the data assimilation
cycles using a training set of length N = 250, 000, consisting of noisy observations with η = 0.2
sampled every ∆t = 0.02 model time units. The LR and RAFDA models are kept fixed and no
further parameter estimation occurs during the data assimilation. We use an observation time of
∆t = 0.02 for the independent data assimilation cycles used to generate the ensembles; the same
time interval used for training both LR and RAFDA. We further compare with results obtained from
a traditional EnKF ensemble where the full Lorenz-63 model (36) is employed as forecast model. We
perform 500 independent analysis cycles, allowing for each a burn-in period of 2, 000 analysis cycles
before the analysis error and the CRPS are evaluated. RAFDA performs equally well as the full
EnKF which uses the full Lorenz-63 model (36) as forecast model, with analysis errors of 2.4 and 2.3,
respectively. The LR model was not able to produce good analysis with a remarkably larger analysis
error of 11.0. Figure 10 shows CRPS(τ), averaged over the 500 independent realisations. Whereas
LR ensembles cannot be classified as reliable, RAFDA ensembles are shown to be as reliable as EnKF
ensembles.
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Figure 10: CRPS as a function of the lead time τ for RAFDA, LR and EnKF ensembles.

4. Partial differential equations: Kuramoto-Sivashinsky equation

We now consider artificially generated time series obtained from a numerical simulation of the
Kuramoto-Sivashinsky equation [71, 72, 73, 74]

ut + uux + uxx + uxxxx = 0 (42)

with periodic boundary conditions. For system length L = 22 the Kuramoto-Sivashinsky equation
is chaotic with a maximal Lyapunov exponent of λmax = 0.043 [75]. We remark that although the
Kuramoto-Sivashinsky equation is a partial-differential equation, its dynamics evolves on a finite
dimensional manifold [76].

We generate observations uo
n by integrating (42) using a pseudo-spectral Crank-Nicolson scheme

where the nonlinearity is treated with a second-order Adams-Bashforth scheme. We employ a tem-
poral discretization step of δt = 0.001 and use 64 spatial grid points, and sample every ∆t = 0.25
time units to obtain observations uo

n ∈ R
64. An initial transient period of 25 × 106 time units is

discarded to ensure that the dynamics has settled onto the attractor.
The internal weight matrix and bias are chosen randomly according to (30) with w = 0.1 and

b = 1 with a reservoir of size Dr = 2, 000. We consider here only a single realisation of the internal
parameters (Win, bin). We train RAFDA on a noisy training data set of length N = 70, 000 with η =
0.01. The data assimilation component of RAFDA was executed withM = 1, 000 ensemble members
and without any inflation with an initial ensemble chosen according to (35) with γ = 6.4 · 10−6.
Figure 11 depicts results of the RAFDA forecast showing that reasonable forecasts can be made up
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to four Lyapunov times. Classical random feature maps with linear ridge regression trained on the
same data set only yield forecast horizons of one Lyapunov time (not shown). If LR is trained on
noiseless data, it achieves comparable forecast skill to RAFDA (not shown), again illustrating that
LR has difficulties with training on noisy data.

To explore the capabilities of RAFDA to deal with higher-dimensional systems more careful nu-
merical simulations would be needed. We have refrained here from optimizing the reservoir weights w
and b and the reservoir dimension Dr to achieve larger forecast horizons, and have only shown a single
realization which shows that higher-dimensional problems can be addressed within our framework.

Figure 11: Hovmöller diagram of the forecast field u(x, t). Left: RAFDA forecast. Right: Root-mean-square error of
the RAFDA forecast with respect to the truth. Times are in units of 1/λmax.

5. Closure models: Multi-scale Lorenz-96 system

We consider now the problem of model closure in multi-scale systems. In multi-scale systems one
is typically only interested in the dynamics of the large-scale slow variables. Moreover, one typically
only has access to observations of the resolved slow dynamics. The objective of model closure, also
known as the subgrid-scale parametrization problem, is to find a self-consistent dynamical model for
the resolved slow large-scale variables. The effective model for the slow large-scale dynamics allows
for a larger time step in the numerical simulation compared to the prohibitively small time steps
required in the full stiff multi-scale system.

We consider here the multi-scale Lorenz-96 system for K slow variables X(k) which are each
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coupled to J fast variables Y (j,k), given by

d

dt
X(k) = −X(k−1)(X(k−2) −X(k+1))−X(k) + F − hc

d

J∑

j=1

Y (j,k), (43)

d

dt
Y (j,k) = −cbY (j+1,k)(Y (j+2,k) − Y (j−1,k))− cY (j,k) +

hc

d
X(k), (44)

with cyclic boundary conditions X(k+K) = X(k), Y (j,k+K) = Y (j,k) and Y (j+J,k) = Y (j,k+1), giving
a total of D = K(J + 1) variables. This set of equations was introduced as a caricature for the
midlatitude atmosphere dynamics [77]. The variables X(k) model large scale atmospheric fields
arranged on a latitudinal circle, such as synoptic weather systems. Each of the X(k) variables is
connected to J small-scale variables Y (j,k). The time scale separation is parametrized by the coefficient
c, and the ratio of the amplitudes of the large-scale and the small-scale variables is controlled by b. The
coupling between the slow and fast variables is controlled by the parameter h. Both large-scale and
small-scale variables evolve, when uncoupled, according to nonlinear transport and linear damping;
the large-scales are additionally subjected to external forcing F . We choose here as parametersK = 8
and J = 32, leading to a total of 256 variables, and F = 20, c = d = 10 and h = 1 as in [78, 79]. The
choice c = d = 10 implies that the fast variables Y (j,k) fluctuate with a 10 times higher frequency
and with an approximately 10 times smaller amplitude when compared to the slow variables X(k).
Setting the coupling constant h = 1, corresponds to strong coupling where the dynamics is driven by
the fast sub-system [80].

Our aim is to provide a reduced model of the form

d

dt
X(k) = G(k)(X) + ψ(X(k)), (45)

with X = (X(1), . . . , X(K))T, G(k)(X) = −X(k−1)(X(k−2)−X(k+1))−X(k)+F , and where the closure
term ψ(x) parametrizes the effect of the fast unresolved dynamics. Here the closure term ψ(x) will
be learned by RAFDA. Note that one and the same closure map can be applied at all grid points due
to the spatial homogeneity of the problem. The application we have in mind is that a scientist has
available a physics-based model for the resolved slow large-scale dynamics, i.e. the general form of
the equation (45) and the expression for the resolved vectorfield G(k)(X), but does not have access
to the unresolved fast small-scale model, and the closure model needs to be inferred from noisy
observations.

In the case when the full multi-scale model (43)–(44) is available and noiseless data of both the
slow and fast variables are available, the closure problem has been attempted outside the scope of
machine learning in [78, 79]. Therein deterministic parametrizations were proposed by data-fitting
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of the closure term to the resolved variables with polynomials to obtain

ψWilks(x) = 0.262 + 1.45x− 0.0121x2 − 0.00713x3 + 0.000296x4 (46)

ψAMP(x) = 0.341 + 1.3x− 0.0136x2 − 0.00235x3. (47)

Here we assume we are only given noisy observations of the slow variables Xn at discrete times
tn = n∆t. In LR, we set un = Xn, n = 0, . . . , N , and the closure mapping ψ(x) is learned directly
from the data via finite-differencing. More specifically, the closure is performed by minimising the
difference between the random feature map approximation of the closure term ψ(x) = φ(x) over all
grid points x = X(k), and the approximation of the closure term provided by the observations

X
(k)
n −X(k)

n−1

∆t
−G(k)(Xn−1).

This finite differencing, however, constitutes a bad estimator of the closure term ψ(x) for noisy
observations of the slow variables. In the following we therefore only present results for LR in
the case of zero measurement error (i.e. the same setting in which the polynomial fits (46) and
(47) were obtained). RAFDA, on the other hand, employs as the forecast model within the data
assimilation training phase the reduced model (45) where ψ(x) is estimated using random feature
maps ψ(x) = W tanh(Winx + bin) (cf. (10) and (11)) where W ∈ R

1×Dr , Win ∈ R
Dr×1, and

bin ∈ R
Dr . RAFDA is trained on N = 100, 000 noisy observations of all components X(k) of X with

variance η = 0.02 sampled at ∆t = 0.0005, and an initial ensemble chosen according to (35) with
γ = 0.01, centred around the prior provided by LR. We employ inflation α = 1 + 0.1∆t. We chose
a reservoir of size Dr = 1, 000 and draw the internal parameters using w = 0.05 and b = 1. The
validation is performed by propagating the reduced model (45) with the learned mapping ψ(x) added
at each grid point in an Euler time-stepping method with step-size δt = 0.005 for a total of 106 time
steps.

Figure 12 shows the closure term ψ(x) estimated from RAFDA, which was trained with noisy
data with η = 0.02, and from LR and from the polynomial fits (46)–(47), which were all obtained
from noise free data. Table 1 lists the associated relative errors of the mean and the variance of X for
the various parametrization schemes used. The closure model provided by RAFDA outperforms both
the closure of LR and the ones given by (46)–(47). We show in Figure 13 the empirical probability
density function of a validation time series, created independently of the training data set. It is
seen that the reference empirical probability density function of the full multi-scale L96 system
assigns more probability to higher values of X. We conjecture that this underdispersiveness of the
closure models stems from their assumed deterministic nature. The deterministic closures schemes
considered here ignore the diffusive effect of the fast variables which arises for finite time-scale and
spatial-scale separation as fluctuations around the deterministic mean behaviour. As a first step
towards a full stochastic parametrization one could use RAFDA to learn the propagator of the mean
E(k) =

∑J
j=1 Y

(j,k) alongside the mapping ψ(x).
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Table 1: Relative error of the mean µ and the variance σ2 of the slow variables X for the various parametrization
schemes.

µ σ2

RAFDA 0.0056 0.019
LR 0.029 0.028

Wilks 0.033 0.065
Arnold et al. 0.016 0.063

-5 0 5 10 15
-20

-10

0

10

Figure 12: Closure terms ψ = ψ(x) for the multi-scale L96-system (43)-(44) estimated using various parametrizations.
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Figure 13: Empirical probability density function of the slow variables Xk of the full multi-scale L96-system (43)-(44)
and of the RAFDA closure model.

6. Discussion and outlook

We have proposed a new data-driven physics-agnostic forecast model, coined RAFDA, which
combines random feature maps with DA. The method is designed to provide cheap surrogate map-
pings to be used in forecasting or to construct closure models when no a priori knowledge of the
evolution equations is available and the underlying system is only accessible via noisy observations.
The linear coefficients of the random feature map are sequentially updated incorporating incoming
observations using an EnKF, which itself uses the random feature map as its forecast model. We have
tested the forecast capabilities in several situations for ordinary and partial differential equations.
For the Lorenz-63 model and the Kuramoto-Sivashinsky equation we were able to achieve a forecast
horizon of several Lyapunov times. We investigated the influence on the data length, the number
of feature maps and the noise strength on the forecast horizon. Depending on the dimension of
the underlying dynamical system a larger number of random feature maps and larger training data
sets are required. Once trained, however, the computational cost to run the surrogate model can
be significantly cheaper than numerical integration of the original full model. For example, for the
Kuramoto-Sivashinsky model we used a discretization time step of δt = 10−3 whereas the surrogate
RAFDA model was trained on a time series with ∆t = 0.25, which implies a computational gain
in running time of ∆t/δt = 250. However, we stress that the real advantage of RAFDA becomes
apparent when the model is unknown.

Besides providing remarkable forecast skills for individual trajectories, we showed that ensembles
generated in data assimilation cycles which use a pre-trained RAFDA forecast model are reliable
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which makes them attractive candidates for probabilistic forecasting where one would like to issue an
uncertainty quantification of a forecast. Furthermore, we showed that in the multi-scale Lorenz-96
model RAFDA allowed us to find a Markovian closure model for the resolved variables having only
observed its slow variables.

We remark that our methodology of sequentially updating the parameters with the incoming
observations using data assimilation is not restricted to EnKFs, but one may instead employ other
linear or nonlinear filtering methods such as [81]; equally to estimate the parameters W one is not
restricted to linear regression but may employ nonlinear regression methods if desired.

An open question is how to choose the random parameters of the feature map. The universal
approximation property ensures that any continuous function can be well approximated by a linear
combination of the features, but it does not provide any statement on how to choose the hyper-
parameters and on how many features are needed to achieve good appproximation. We have shown
that the forecasts capabilities sensitively depend on the random hyper-parameters and that param-
eters which lead to good approximation in the noiseless case may fail to approximate the forecast
map when trained on noisy data. A natural extension is to determine the optimal parameters Win

and bin simultaneously with W , possibly using again an ensemble Kalman filter. Rather than ran-
dom features which are related to RKHS, the machine-learning framework would then consist of a
two-layer network [45, 46, 47, 48, 49]. This extension is planned for further research.

Further, recent developments on operator-valued kernels in the context of random feature maps
has shown that the number of learnable parameters can be reduced to Dr, independent of the dimen-
sion D of the underlying system [82, 39]. The methodology developed in this paper easily generalizes
to such vector- or operator-valued random feature maps. However, it remains to be investigated
whether or not the required number Dr of feature maps remains indeed independent of the dimen-
sion D of the underlying dynamical systems unless the random feature maps are specifically designed
for the problem at hand. This poses an interesting question for further research, in particular in
view of dealing with high-dimensional systems. The same applies to the application of localization
to the EnKF. Provided more information is available on the correlation structure of the unknown
parameters W , a more refined localization procedure could be employed.

The numerical experiments in this paper have all been conducted under an ideal twin setting
where the underlying dynamics is deterministic and no random or systematic model errors had to be
considered. The robustness of the proposed RAFDA with regard to such random or systematic per-
turbations will be the subject of future work. The same applies to a more systematic and theoretical
investigation of the impact of the various algorithmic parameters on the behavior of RAFDA within
the ideal twin setting and beyond.
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