Thursday, April11  «x  Green's Theorem

Green’s Theorem is a 2-dimensional version of the Fundamental Theorem of Calculus: it relates the
(integral of) a vector field F on the boundary of a region D to the integral of a suitable derivative of F
over the whole of D.

1. Let D be the unit square with vertices (0,0), (1,0), (0,1), and (1,1) and consider the vector field
F(x,y) =(P(x,¥), Q(x,y)) ={xy, x+y). See below right for a plot.
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3. Consider the quarter circle C shown below
and the vector field F(x, y) = (2xe”, x + x*e’). Y o

The goal of this problem is to compute the line B=(0,4)
integral Iy = f F-dr.
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(a) Parameterize C and start directly expanding out I into an ordinary integral in ¢ until you
are convinced that finding I, this way will be a highly unpleasant experience.

(b) Check that F is not conservative, so we can’t use that trick directly to compute I.

(c) Find a function f(x, y) such that F = G+ V f, where G is the vector field (0, x).

(d) Argue geometrically that G integrates to 0 along any line segment contained in either the
x-axis or the y-axis.

(e) Use part (d) with Green’s Theorem to show that f G-dr=4nm.
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(f) Combine parts (c—e) with the Fundamental Theorem of Line Integrals to evaluate /. Check
your answer with the instructor.

4. Consider the shaded region V shown, bounded by a circle C;
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compute f F-dr. Check your answer with the instructor.
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5. Suppose D is a region in the plane bounded by a closed curve C. Use Green’s Theorem to show

that both f x dyand - f y dx are equal to Area(D).
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6. The curve satisfying x° + y® = 3xy is called the y
Folium of Descartes and is shown at right.

(@) Let C be the “bulb” part of this folium,
more precisely, the part in the positive
quadrant. Show that any line y = ¢x for
t > 0 meets C in exactly two points, one
of which is the origin. Use this fact to

parameterize C by taking the slope t as
the parameter.

(b) Use part (a) and Problem 5 to compute
the area bounded by C. Check your an-
swer with the instructor.




