Thursday, March 14 * Solutions = I[ntroduction to multiple integrals

1. Evaluate the following integral by reversing the order of integration:
1,1
f f Vx3+1ldxdy.
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(Hint: When you change to dxdy, be sure to also change the bounds of integration.)
SOLUTION:

We are integrating over the region below:
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Changing the order of integration we get
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2. Consider the region bounded by the curves determined by —2x + y> =6 and —x+ y = —1.

(a) Sketch the region R in the plane.
SOLUTION:
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(b) Setup and evaluate an integral of the form f f dA that calculates the area of R.
R
SOLUTION:
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3. Consider the region R in the first quadrant which lies above the x-axis and between the circles
of radius 1 and 2 centered at (0,0). Without using polar coordinates, evaluate

f ydA.
R

SOLUTION:Notice that both the function y and the region R are symmetric about the y-axis,
so we can integrate y over the half of R which lies in the first quadrant (Call this R") and double
our answer. R’ is shown below.
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Break up R’ into two parts A and B as above. Integrating, we obtain
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Now double this value to get 14/3, which is the integral over the entire region R.



4. Evaluate
0 ,V4-x2
f f (x*+yHdydx.
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Hint: don’t do it directly.
SOLUTION:

The region over which we are integrating is:
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Converting to polar we get
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5. The function P(x) = e~* is fundamental in probability.

(a) Sketch the graph of P(x). Explain why it is called a “bell curve.”
SOLUTION:
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(b) Compute I = [ e dx using the following brilliant strategy of Gauss.
i. Instead of computing I, compute I* = ( f e dx) ( f eV dy).

ii. Rewrite I? as an integral of the form ff rf(x,y)dA where R is the entire Cartesian
plane.
SOLUTION:
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iii. Convert that integral to polar coordinates.
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iv. Evaluate to find I2. Deduce the value of I.
SOLUTION:
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SOLUTION:

As in the previous problem, let’s convert to polar coordinates.
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This is an improper integral, so
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