
Tuesday, March 5 ∗ Solutions ∗ Integrating vector fields.

1. Consider the vector field F = (y,0) on R2.

(a) Draw a sketch of F on the region where −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Check you answer with the

instructor.

SOLUTION:

Below is the image for parts (a) and (b)

(b) Consider the following two curves which start at A = (−2,0) and end at B = (2,0), namely the line

segment C1 and upper semicircle C2.

Add these curves to your sketch, and compute both
∫

C1
F ·dr and

∫
C2

F ·dr. Check you answers with

the instructor.

SOLUTION:

Parametrize C1 by r1(t ) = (t ,0),−2 ≤ t ≤ 2 and parametrize C2 by r2(t ) = (−2cos t ,2sin t ),0 ≤ t ≤ π.

We have

∫
C1

F ·dr =
∫ 2

0
F (r1(t )) · r′1(t )d t =

∫ 2

0
(0,0) · (1,0)d t = 0

∫
C2

F ·dr =
∫ π

0
F (r2(t )) · r′2(t )d t =

∫ π

0
(2sin t ,0) · (2sin t ,2cos t )d t = 4

∫ π

0
sin2(t )d t

= 4 · 1

2

[
t − 1

2
sin(2t )

]π
0
= 2π

(c) Based on your answer in (b), could F be ∇ f for some f : R2 →R? Explain why or why not.

SOLUTION:

By the Fundamental Theorem of Line Integrals, if F =∇ f for some f : R2 → R then
∫

C F ·dr is path

independent for any curve C starting at A = (−2,0) and ending at B = (2,0). Since we obtained

different answers for the paths C1 and C2, F cannot be of this form.



2. Consider the curve C and vector field F shown below.

(a) Calculate F ·T, where here T is the unit tangent vector along C . Without parameterizing C , evaluate∫
C F ·dr by using the fact that it is equal to

∫
C F ·Tds.

SOLUTION:

From the picture we suppose that F(x, y) = (1,1). We have T = 1p
5

(−2,−1), so F ·T = −3p
5

. So∫
C

F ·dr =
∫

C
F ·Tds = −3p

5

∫
C

ds =−3

since
∫

C ds is simply the distance between (1,1) and (3,2).

(b) Find a parameterization of C and a formula for F. Use them to check your answer in (a) by com-

puting
∫

C F ·dr explicitly.

SOLUTION:

Parametrize C by r(t ) = (3−2t ,2− t ),0 ≤ t ≤ 1. We already have F = (1,1). So

∫
C

F ·dr =
∫ 1

0
(1,1) · (−2,−1)d t =−3

3. Consider the points A = (0,0) and B = (π,−2). Suppose an object of mass m moves from A to B and

experiences the constant force F =−mg j, where g is the gravitational constant.

(a) If the object follows the straight line from A to B , calculate the work W done by gravity using the

formula from the first week of class.

SOLUTION:

Recall that the work done on an object moving along a straight line subject to a constant force F
is W = F ·D, where D is the displacement vector. In this case D = (π,−2) and F = (0,−mg ). So

W = (π,−2) · (0,−mg ) = 2mg .



(b) Now suppose the object follows half of an inverted cycloid C as shown below. Explicitly parameter-

ize C and use that to calculate the work done via a line integral.

SOLUTION:

A parametrization for the inverted cycloid C is r(t ) = (t − sin t ,cos t −1),0 ≤ t ≤π. So

W =
∫

C
F ·dr =

∫ π

0
(0,−mg ) · (1−cos t ,−sin t )d t =

∫ π

0
mg sin t d t = mg [−cos t ]π0 = 2mg

(c) Find a function f : R2 →R so that ∇ f = F. Use the Fundamental Theorem of Line Integrals to check

your answers for (a) and (b). Have you seen the quantity − f anywhere before? If so, what was its

name?

SOLUTION:

If such an f exists, we must have fx = 0 and fy =−mg . Integrating −mg with respect to y we obtain

f =−mg y+C (x), where C (x) is some function of x. Differentiating this with respect to x we obtain

fx =C ′(x) = 0, so f =−mg y +K , where K is a constant, is a potential function for F.

By the Fundamental Theorem of Line integrals, both (a) and (b) must have the same answer, namely∫
L

F ·dr =
∫

L
∇( f ) ·dr = f (B)− f (A) = f (π,−2)− f (0,0) = (−mg (−2)+K )−K = 2mg

where L is the line segment from A to B and∫
C

F ·dr =
∫

C
∇( f ) ·dr = f (B)− f (A) = 2mg

The quantity − f is called the potential energy.



4. If you get this far, work #52 from Section 16.2:

SOLUTION:

We are assuming that B has magnitude which only depends on the distance from the wire. So B = |B|
is constant along any circle centered around the wire in a plane perpendicular to the wire. Let C =
r(t ) be such a circle with radius r parametrized in the counterclockwise direction and let B denote the

magnitude of B along C . Note that B(r(t )) is a positive multiple of r′(t ) by definition. So it follows that

T(t ), the unit tangent vector to C , is given by T(t ) = B(r(t ))

B
. We have

∫
C

B ·dr =
∫

C
B ·Tds =

∫
C

B ·B

B
ds = B

∫
C

ds = 2πr B

By Ampere’s Law,
∫

C B ·dr =µ0I , so we have 2πr B =µ0I , or B = µ0I

2πr
.


