Tuesday, January 15 * Solutions * A review of some important calculus topics
1. Chain Rule:
(a) Let h(t) =sin (cos(tan t)). Find the derivative with respect to .
Solution.

d (h(1) = d (sin(cos(tan t)))

dt S dt
d

= cos(cos(tant)) - % (cos(tant))

= cos(cos(tant)) - (—sin(tan ?)) - % (tant)

= cos(cos(tan t)) - (—sin(tan ?)) - sec’t

d
(b) Let s(x) = v/x where x(¢) =In(f () and f(¢) is a differentiable function. Find d_i

Solution. From % = % . %, we get

ds 1 .f'(t)
dt  4x3% f(n’

But we need to make sure that % is a single variable function of f, so

ds _ 1 [
dr  4(In(fen]** f@0

2. Parameterized curves:

(a) Describe and sketch the curve given parametrically by

27
for 0<t<—.
3

x=5sin(31)
y=3cos(3t)

What happens if we instead allow ¢ to vary between 0 and 27?

Solution. Note that

(g)z + (%)2 =sin®(3¢) + cos*(31) = 1.

So this parameterizes (at least part of) the ellipse (%)2 + (%)2 =1.



By examining differing values of t in0 <t < %”, we see that this parametrization travels

the ellipse in a clockwise fashion exactly once.
t=0:(x(0),y(0)) =(0,3)
t=m/6:(x(m/6),y(/6)) =(5,0)
t=m/3:(x(m@/3),y/3)) =(0,-3)
t=m/2:(x(m/2),y(@/2)) =(=5,0)

Figure 1: Ellipse.

If we let ¢ vary between 0 and 27, we will traverse the ellipse 3 times.

(b) Setup, but do not evaluate an integral that calculates the arc length of the curve described
in part (a).

Solution. Arc length

=[G

= f? vV (15cos(31))2 + (-=9sin(31))2dt.
0

(c) Consider the equation x? + y? = 16. Graph the set of solutions of this equation in R?> and
find a parametrization that traverses the curve once counterclockwise.

Solution. If we let x = 4cos t and y = 4sin ¢, then x? + y* = (4cos t)? + (4sin t)? = 16. More-



over, as f increases, this parametrization traverses the circle in a counterclockwise fashion:

t=0:(x(0),y(0) = 4,0)
t=m/2:(x(m/2),y®/2)) =(0,4)
t=m:(x(m),ylr) =(-4,0)
t=3n/2:(x(3n/2),y(Bmr/2)) =(0,-4)
t=2n:(x2n),y2n)=(4,0)

Figure 2: Circle.

To ensure that we travel the curve only once, we restrict ¢ to the interval [0,27). So the
parametrization is

x=4cost
when 0=<t¢=<2m.

y=4sint

3. 1st and 2nd Derivative Tests:

(a) Use the 2nd Derivative Test to classify the critical numbers of the function f(x) = x*-8x?+
10.

Solution. First, we find the critical points of f(x).
f'(x) =4x® - 16x.

f'(x) = 0when 4x3—16x = 4x(x*—4) = 4x(x—2)(x+2) = 0. Hence f'(x) =0when x = 0,x =2
or x=-2.



Now apply the 2nd Derivative Test to the three critical points. From f"(x) = 12x% - 16, we
get:

f"(0)=-16<0, so y = f(x) is concave down at the point (0, f(0)). So alocal max occurs at
(0,10).

f"(=2)=32>0,s0 y = f(x)is concave up at the point (-2, f(—2)). So alocal min occurs at
(-2,-6).

f"(2) =32>0, so y = f(x) is concave up at the point (2, f(2)). So a local min occurs at
(2,-6).

(b) Use the 1st Derivative Test and find the extrema of h(s) = s* +4s3 —1.

Solution. First, find the critical points of h(s).
h'(s) =4s> +125°%.

Then h'(s) = 0 when 453 + 125> =45%(s+3) = 0. So h/(s) = 0 when s =0 and s = —3.

For the 1st Derivative Test, we need to determine if / is increasing or decreasing on the
intervals (—oo, —3), (—3,0) and (0, 00).

On (—oo,—3) choose any test point (for example, choose s = —1000). The sign of /'(s) =
453 +125% < 0 on this interval. Hence h(s) is decreasing on (—oo, —3).

On (—3,0) choose any test point (for example, choose s = —1). The sign of h'(s) = 453 +
125 > 0 on this interval. Hence h(s) is increasing on (-3, 0).

On (0,00) choose any test point (for example, choose s = 1000). The sign of h'(s) = 453 +
1252 > 0 on this interval. Hence h(s) is increasing on (0,00).

Since at s = -3 the function changes from decreasing to increasing, the function must
have obtained a local min at s = —3.

At s = 0, neither a max or a min occurs in the value of .

(c) Explain why the 2nd Derivative test is unable to classify all the critical numbers of h(s) =
st+4s3 1.

Solution. When s = -3, h"(-3) = 36 > 0. A local min occurs when s = —3 by the 2nd
Derivative Test.

When s =0, h"(0) = 0. The 2nd Derivative Test is inconclusive. The graph of y = h(s) has
no concavity at (0, 2(0)). Without more information (the 1st Derivative Test), we are un-
able to identify (0, 1(0)) as alocal max, min or a point of inflection.

4. Consider the function f(x) = x?e™*.



(a) Find the best linear approximation to f at x =0.

Solution. Recall that in Calc I and II, the "best linear approximation" is synonymous
with the equation of the tangent line or the 1st order Taylor polynomial. Hence, f'(x) =
2xe "+ x%(—e™¥).

Since f'(0) = 0, the tangent line has no slope at (0, f(0)) = (0,0). The equation of the tan-
gentlineis y =0.

(b) Compute the second-order Taylor polynomial at x = 0.

Solution. By definition, the second-order Taylor polynomial at x = 0 is

SO gy [1O

T T(x—0)2.

I(x) = f(0) +

Since f"(x) = 2e”* —4xe™* + x*e~*, we compute that f"(0) = 2. Hence

To(x) =0 0 0 2 0)? = x?
2(x) = +1—!(x— )+2—!(x— )< = x°.

(c) Explain how the second-order Taylor polynomial at x = 0 demonstrates that f must have
alocal minimum at x = 0.

Solution. The second-order Taylor polynomial is the best quadratic approximation to the
curve y = f(x) at the point (0, f(0)). Since T»(x) = x2 clearly has a local minimum at (0, 0),

and (0, 0) is the location of a critical point of f, then f must also have a local minimum at
(0,0).

V3n
5. Consider the integral f 2xcos (x?) dx.
0

(a) Sketch the area in the xy-plane that is implicitly defined by this integral.

Solution. The shadow area in the following picture is the area defined by the integral.



Figure 3: 5(a).

(b) To evaluate, you will need to perform a substitution. Choose a proper u = f(x) and rewrite
the integral in terms of u. Sketch the area in the uv-plane that is implicitly defined by this
integral.

Solution. Let u = x2. Then du = 2xdx, so the integral becomes

V3n 37
f 2xcos(x®)dx = f cosudu.
0 0

Figure 4: 5(b).

V3n
(c) Evaluate the integral f 2xcos (x?) dx.
0

Solution.

V3 3w u=3m
f 2xcos(x?)dx = f cosudu = [sin u] 0 = sin(37) —sin0 = 0.
0

0 u=



