Last time: curl and div

Let $\mathbf{F} = \langle P, Q, R \rangle$ be a vector field on $D \subset \mathbb{R}^3$.

$$\begin{aligned} &\text{curl} \mathbf{F} = \nabla \times \mathbf{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle; \\ &\text{div} \mathbf{F} = \nabla \cdot \mathbf{F} = P_x + Q_y + R_z. \end{aligned}$$

Let $\mathbf{F}(x,y,z) = \langle P(x,y), Q(x,y), 0 \rangle$. Compute curl \mathbf{F} and find the function curl $\mathbf{F} \cdot \mathbf{k}$, where \mathbf{k} is the vector $\langle 0, 0, 1 \rangle$.

- (a) $P_x Q_y$
- (b) $Q_x P_y$
- (c) $P_x + Q_y$
- (d) $P_y + Q_x$
- (e) I don't know how.

Solution

Find $\operatorname{curl}\langle P(x,y), Q(x,y), 0 \rangle \cdot \langle 0, 0, 1 \rangle$.

$$\begin{aligned} \operatorname{curl} \langle P(x,y), Q(x,y), 0 \rangle &= \langle \frac{\partial 0}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial 0}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle \\ &= \langle 0, 0, Q_x - P_y \rangle. \end{aligned}$$

So

$$\begin{aligned} \operatorname{curl} \langle P(x,y), Q(x,y), 0 \rangle \cdot \langle 0, 0, 1 \rangle &= \langle 0, 0, Q_x - P_y \rangle \cdot \langle 0, 0, 1 \rangle \\ &= 0 + 0 + Q_x - P_y \\ &= Q_x - P_y. \end{aligned}$$

Physical interpretation of curl

Let **F** be a vector field on $D \subset \mathbb{R}^3$, representing the velocity of a fluid flowing through the region D.

For a point $P \in D$, we consider the vector $curl(\mathbf{F})(P)$.

- The line through P in the direction of $curl(\mathbf{F})(P)$ is the axis of rotation of a tiny ball at point P.
- The direction of curl(F)(P) is related to the direction of rotation by the right-hand rule.
- The magnitude $|\text{curl}(\mathbf{F})(P)|$ is proportional to the speed of rotation.

In particular, when $curl(\mathbf{F}) = 0$, the little ball doesn't rotate at all; we say that \mathbf{F} is irrotational at P.

Note: the ball can still be moving! It's floating along the current, it's just not spinning as it moves past the point P.

Practice with curl

Let $\mathbf{F}(x,y,z) = \langle y,0,0 \rangle$. By imagining a tiny ball placed at different locations in the vector field, decide whether curl(\mathbf{F}) points up, points down, or is zero.

- (a) It always points up.
- (b) It always points down.
- (c) It's always zero.
- (d) It depends what point we look at.
- (e) I don't know.

If you're done, calculate $curl(\mathbf{F})$ from the definition and see if it matches your prediction.

The correct answer is (b); you can check that $curl(\mathbf{F}) = \langle 0, 0, -1 \rangle$.

Physical interpretation of div

- If div**F** is positive, fluid flows out of *B*, a small ball around the point.
- If div**F** is negative, fluid flows in to B.
- If divF is zero, there is no net change: the volume of fluid coming in is equal to the volume of fluid going out. In that case, we say that F is incompressible.

Practice with div

Let $\mathbf{F}(x,y,z) = \langle x,0,0 \rangle$. Imagine a small region around a point. Is fluid leaving the region more quickly than it is entering it? Use your observation to decide whether div \mathbf{F} is

- (a) always positive.
- (b) always negative.
- (c) always zero.
- (d) It depends on the point.
- (e) I don't know.

If you're done, calculate div**F** from the definition, and see if your prediction is correct.

The correct answer is (b): more fluid is leaving the small region; and you can check that $\text{div}\mathbf{F} = \langle 1, 0, 0 \rangle$.