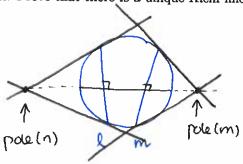
MATH 402 Practice questions

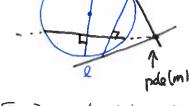
Friday 2 November, 2018

Exercise 1. Hyperbolic geometry: Let ℓ and m be two Klein lines which are parallel but not limiting parallel. Prove that there is a unique Klein line n which is perpendicular to both ℓ and m.



CASE 1 - no diametes

Make sure you undestand all terms used.



CASE 2 - 1 diameter

Exercise 2. Checking something is an isometry:

(a) What is the definition of an isometry $f: \mathbb{R}^2 \to \mathbb{R}^2$?

(b) Review the proof that any isometry can be written as a composition of at most three reflections.

1

(c) For each of the following functions, is it an isometry? Prove or disprove.

$$f(x,y)=(y,x)$$
 - yes (reflection)
 $g(x,y)=(x+y,y+a)$ - yes (reflection)
 $h(x,y)=(x+a,y+b)$ - yes (mankbhou)
 $j(x,y)=(-y,x)$ - yes (rotation)

Exercise 3. Using the classification of isometries to identify isometries:

Consider the following functions of the Euclidean plane. For each, indicate in the table whether it is possible that the function is a reflection, (non-identity) rotation, (non-identity) translation, glide reflection (with non-zero displacement vector), or the identity. For this problem, assume that ℓ and m are two lines and O is a point on ℓ .

2.	Reflection	Rotation	Translation	Glide reflection	Identity
$f = r_{\ell} \circ r_{m} \circ r_{\ell}$					
An isometry f which satisfies $f(O) = O$		/			/
An even isometry		~			/
The composition of a glide reflection and a translation				/	
The function $f(x, y) = (2x, y)$					
An isometry f which has ℓ as its only invariant line					
An isometry f which satisfies $f^3 = id$		/			/
An isometry f which can be represented by a 2×2 matrix	V	V			V-
An isometry f which has no fixed points			/	/	
An isometry f which is the square of a glide reflection					