Exercise 6. Are the following statements true or false?

	in the Deligery I	Thun	Folgos
(a)	Limiting parallels exist in the Klein model but not the Poincaré	11 de	Taise
	model.		
(b)	Pasch's axiom is true for omega-triangles, but it's not an axiom	Trug	False
` ′	anymore.		
(c)	A limiting parallel is a special kind of ultraparallel.	True	False
1			17.1
(d)	Every line has exactly two omega points.	Trug	False
		True	(False
(e)	A Saccheri quadrilateral has exactly two congruent sides.	True	Palse
	(rould have 3!)	True	False
(f)	AAA congruence is a theorem in hyperbolic geometry, but not in	True	raise
	Euclidean geometry.		
(g)	A finite symmetry group which has $2n$ elements is dihedral.	True (False
1.07	(card be cyclic)		DI
(h)	It is possible to cut a Lambert quadrilateral into two Saccheri	True	False
	quadrilaterals		
(i)	Given two omega points, Ω_1, Ω_2 there is exactly one line which	True	False
1 "	contains both of them.		