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netid.:

Math 402: Exam 1

Fall semester 2018

¢ Do not forget to write your name and netid on top of this page.

¢ No notes, books, calculators, or other exam aids are allowed. You may use a ruler and
colored pens or pencils if you wish.

e Turn your cell phones off and put them away. No use of cell phones or other
communication devices during the exam is allowed.

¢ Write your answers clearly and fully on the sheets provided. If you need additional
paper, raise your hand.

¢ Do not tear pages off of this exam. Doing so will be considered cheating.
o The exam consists of 6 problems and 9 pages. Check that your exam is complete.

e You have 50 minutes to complete the exam.

Good luck!!

Problem 1 2 3 4 5 6 >

Total possible 5 10 35 15 20 15 100

Your points




Problem 1: (5 Points) In class, we proved the AAA similarity theorem. Use this to prove an AA
similarity theorem in Euclidean geometry.
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Problem 2: (10 Points) Suppose that £ and ¢ are parallel lines. Suppose that m is a line which
intersects £ but is not equal to £. Use Playfair’s postulate to show that m intersects #.
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Problem 3: (3+3+34+6+5+6+5+4=35 Points) Let AABC be a triangle in Euclidean
geometry. Extend side AB to a point R, and choose a point P on the side AC not equal to A or
C. Let m be the line through B parallel to the side AC, and consider the ray ﬁ

(a) Explain why the ray RP must intersect either side BC or side AB.
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(b) Now prove that the ray R? must intersect BC by showing that it cannot intersect AB. Label
the intersection point Q.
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(¢) Explain why the ray I@ also intersects the line m. Label the intersection point 8.
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{d) Prove that the triangles ARAP and ARBS are similar.
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(e) Use the previous question to write down a formula that shows the relationship of lengths SB
and RB to the corresponding sides of ARAP.
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{f) Prove that the triangles ACPQ and ABSQ are similar.
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(g) Use the previous question to write down a formula for the length C'P in terms of CQ and the
corresponding sides of ABSQ.
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(h} Use parts (d) and (f} to prove that
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Problem 4: (5 + 10 = 15 Points)
(a) Give a careful definition of (the boundary of) the circle with centre O and passing through the

point P. Recall that in Hilbert's system distance is not an undefined term, but congruerice for
line segments is.

T hm_mdm, of e crae  covishy o} au pomts Gy
w8 = Op.

(b) Let c be a circle, and let P and Q be points such that the power of P with respect to ¢ is —%
and the power of @ with respect to ¢ is % Does the line segment PQ intersect the boundary
of the circle ¢? Draw a picture and justify your answer.
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Problem 5: (20 Points) In four sentences or fewer, describe the development of non-Euclidean
(specifically, hyperbolic) geometry. You do not need to know dates or names of mathematicians.

You should use words from the following list: axiomatic system, postulate/aziom, independent,
consistent, contradiction, model.
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Problem 6: (3 x5 = 15 Points) Are the following statements true or false? Circle the correct
answer.

No partial credit will be given.

{a) Every Euclidean triangle is inscribed in a circle. True )| False

>

{b) In neutral geometry, a line which is perpendicular to one of two || True { False
parallel lines is also perpendicular to the other.

(c) SAS congruence is an axiom in Hilbert’s axiomatic system.

(d) z* + 2y% = 4 is the equation of a (Euclidean) circle.

(e) The measure of an inscribed angle is twice that of its corresponding || True
central angle.




