Examples of Chaotic behaviour

Memcapacitor model and its application in a chaotic oscillator*

Guang-Yi Wang(王光义)[†], Bo-Zhen Cai(蔡博振), Pei-Pei Jin(靳培培), and Ti-Ling Hu(胡体玲)

$$\begin{cases} dx/d\tau = m((e-1)(ax+bx^2)+y), \\ dy/d\tau = ax+bx^2-y+z, \\ dz/d\tau = -ky. \end{cases}$$

$$\begin{cases} dx/d\tau = m((e-1)(ax+bx^2)+y), \\ dy/d\tau = ax+bx^2-y+z, \\ dz/d\tau = -ky. \end{cases}$$

Experimental investigation of the collision of Feigenbaum cascades in lasers

C. Lepers, J. Legrand, and P. Glorieux

Laboratoire de Spectroscopie Hertzienne, Université des Sciences et Techniques de Lille Flandres-Artois,

59655 Villeneuve d'Ascq CEDEX, France

FIG. 1. Bifurcation diagram of the laser with modulated losses with the dc bias as control parameter $(60 < V_{\rm dc} < 460 \text{ V})$ and a fixed modulation $(V_{\rm c} \approx 3 \text{ V})$

Chaos in the 3-body Problem (Henri Poincaré, 1854-1912)

No closed curve

Chaos in Astronomy

Asteroids, e.g., 522 Helga (Lyap. time= 7kyr)

Saturn

Hyperion Moon

Chaos is typical in Astronomy

TABLE 1

Lyapunov Exponents and Times for the Solar System

Planet	Lyapunov Exponent (yr ⁻¹)	Lyapunov Time (yr)
Mercury	7.32029×10^{-7}	1.36607×10^6
Venus	1.38561×10^{-7}	7.21703×10^6
Earth	2.07484×10^{-7}	4.81964×10^6
Mars	2.22353×10^{-7}	4.49736×10^6
Jupiter	1.19528×10^{-7}	8.36623×10^6
Saturn	1.56875×10^{-7}	6.37452×10^6
Uranus	1.33793×10^{-7}	7.47423×10^6
Neptune	1.49602×10^{-7}	6.68440×10^6

ON THE DYNAMICAL STABILITY OF THE SOLAR SYSTEM

Konstantin Batygin¹ and Gregory Laughlin^{1,2}

The Astrophysical Journal, 683:1207–1216, 2008 August 20

Double Pendulum

$$L = K - V, \quad \frac{\partial L}{\partial \theta_i} = \frac{d}{dt} \frac{\partial L}{\partial \theta_i}$$

$$V = l_1(1 - \cos\theta_1)m_1g + [l_1(1 - \cos\theta_1) + l_2(1 - \cos\theta_2)]m_2g$$

$$K = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 + m_2l_1l_2\theta_1\dot{\theta}_2\cos(\theta_1 - \theta_2)$$

Non-linear Coupling

$$+m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1-\theta_2)$$