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Figura 4.1: Retrato de fases para o mapa padrão com K = 0, caso integrável. Iteramos mil vezes oitenta
condições iniciais sobre o eixo y, marcando os pontos no mapa.

isso ocorre para K ≥ 0,971635...
2π = 0, 15464... = Kc). Em torno das ilhas, que possuam por

sua vez uma freqüência associada, surgem ressonâncias secundárias que provocam cadeias de
ilhas de bifurcação cujas ilhas também estão suscet́ıveis a ressonâncias que criam novas ilhas
e assim sucessivamente. Um aumento ainda maior da perturbação faz com que as ilhas redu-
zam seu tamanho no espaço de fases e pontos fixos eĺıpticos estáveis se tornem hiperbólicos
instáveis. Esse cenário descrito é t́ıpico de sistemas quase-integráveis e é explicado pela teoria
KAM [Lichtenberg e Lieberman, 1983, Walker e Ford, 1969, Zaslavsky, 1991].

No caso do aumento do parâmetro de controle aleatório (figura 4.3), também notamos a
perda de estabilidade das trajetórias integráveis. No entanto, ela se dá de um forma distinta,
passando a desviar levemente cada uma das trajetórias de seu traçado determińıstico. A medida
que aumentamos a perturbação, as estruturas vão tornando-se cada vez menos ńıtidas.

4.2 Transporte no modelo

A descrição do movimento de cada uma das part́ıculas sob a ação de um sistema dinâmico
é, muitas vezes, uma tarefa imposśıvel seja pelo desconhecimento preciso da dinâmica ou pela
complexidade dos cálculos. Outras vezes não estamos interessados em saber o comportamento
individual de part́ıculas, mas em conhecer comportamentos médios do sistema. Essas são as
duas principais razões para a introdução de métodos estat́ısticos na descrição dos fenômenos
dinâmicos.

Em nosso caso estamos interessados em conhecer de que forma um conjunto de trajetórias
(que denominaremos muitas vezes part́ıculas) se dispersa. Um exemplo intuitivo é pensarmos
em como se afastam as part́ıculas de contaminante se pingarmos uma gota de tinta em uma
superf́ıcie ĺıquida (ou sobre o nosso mapa).

4.2.1 Transporte difusivo

A primeira abordagem sistemática para esse problema parece ter sido dada por um médico
austŕıaco, Adolf Fick, em 1855 (veja a descrição em [Sokolov et al., 2002]). Ele imaginou que a
corrente de contaminante, a exemplo do que ocorre com a corrente elétrica ou de calor, deve ser
proporcional à diferença de concentração entre duas regiões

!j(!r, t) = −D ∇P(!r, t) , (4.11)
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Figura 4.2: Retrato de fases do modelo a medida que cresce o parâmetro de controle não linear K (com R=0).
Para cada figura foram escolhidos 100 pontos iniciais uniformemente distribúıdos sobre o eixo y e iterados 800
vezes.

Figura 4.3: O mesmo que na figura 4.2, mas crescendo parâmetro de controle aleatório (com K = 0, 2).
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Figure 2.1: (Color online) (a) Phase space of a representative example of an Hamiltonian system with mixed
phase space, the standard map (2.14) with K = 0.45. Inset shows an amplification close to the island. (b)
Sketch of part (a) with the labels of the different structures of each structure. In parenthesis (q, n) the period
and winding number of the island and in brackets its possible position in the Markov-tree model discussed in
Sec. (2.2.3).

space. The violation of the twist condition (2.13) may lead to a different topological structure
(locally) around the shearless torus [HH84, dCNGM96, dCNGM97] and to systems like the web-
map [Zas91] that may have all tori broken for any small perturbation. The KAM theory also fails
completely when the system cannot be written in a near-integrable form (as in Sec. 2.1.2) giving
rise to phenomena like the nets and web tori emphasized in chapters 7 and 8 of Ref. [Zas05]. Ad-
ditionally, there exist the so-called tangle islands, islands that appear inside the lobes created by
the stable and unstable manifold of an hyperbolic point between two intersections. These islands
may also appear hierarchically distributed in the phase space, as emphasized in Ref. [RKZ99],
where the classification of different kinds of islands was proposed. These structures may coexist
in the phase space and typically have different “sticky” properties [Zas02b].

In summary, near-integrable Hamiltonian systems have regions of chaotic motion – created
through the heteroclinic intersection of manifolds – and regions of quasi-periodic motion – KAM
tori similar to the integrable one and KAM islands. These regions coexist and build a mixed
phase space, i.e., they exist for the same control parameter for different initial conditions. The
hierarchical picture of near-integrable systems is expected to appear in generic Hamiltonian
systems with mixed phase space near the border of regular regions and is the relevant scenario
for stickiness. Nevertheless, islands with different properties may exist (or even coexist) in the
phase-space.

Text



Recorrências para detectar rompimento de tori
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Interesse em sistemas temporalmente reversíveis
(dinâmica quasi-Hamiltoneana pode aparecer)

N=4 

Se mais de uma simetria esta presente 
no sistema a condição de torção 

(twist) é violada:

Exemplo: Osciladores acoplados



4 osciladores de fase acoplados:

Sistema não Hamiltoneano 
mas com dinâmica quasi-

Hamiltoneana e torus “não 
torcidos”!



Reconexões típicas de 
sistemas não torcionais 
também ocorrem em 

sistemas não 
Hamiltoneanos



Para o transporte de trajetórias é importante determinar quais 
parâmetros (ε,ω) o torus existe (divide o espaço de fases).

Método:
Verificar se uma trajetória que tem de pertencer ao torus (IP) 

satisfaz o teorema de Slater (e.g., máximo 3 Ts distintos). 

Particularmente útil quando:
- Grande número de parâmetros (ε,ω) tem de ser varridos.

- Sistema de tempos contínuo (difícil integração/sessão de Poincaré)
- Parâmetros (ε,ω) próximos ao rompimento são escolhidos. Nesse 

caso ilhas (“stickiness”) fazem demais métodos muito lentos

Limitação:

-N=4, i.e., mapas bi-dimensionais





Rompimento do torus



Exemplo: mapa bi-dimensional

Simetrias:Jacobiano:



Exemplo: mapa bi-dimensional



mapa linear por partes
espaço de fases hierárquico
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space. The violation of the twist condition (2.13) may lead to a different topological structure
(locally) around the shearless torus [HH84, dCNGM96, dCNGM97] and to systems like the web-
map [Zas91] that may have all tori broken for any small perturbation. The KAM theory also fails
completely when the system cannot be written in a near-integrable form (as in Sec. 2.1.2) giving
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the stable and unstable manifold of an hyperbolic point between two intersections. These islands
may also appear hierarchically distributed in the phase space, as emphasized in Ref. [RKZ99],
where the classification of different kinds of islands was proposed. These structures may coexist
in the phase space and typically have different “sticky” properties [Zas02b].

In summary, near-integrable Hamiltonian systems have regions of chaotic motion – created
through the heteroclinic intersection of manifolds – and regions of quasi-periodic motion – KAM
tori similar to the integrable one and KAM islands. These regions coexist and build a mixed
phase space, i.e., they exist for the same control parameter for different initial conditions. The
hierarchical picture of near-integrable systems is expected to appear in generic Hamiltonian
systems with mixed phase space near the border of regular regions and is the relevant scenario
for stickiness. Nevertheless, islands with different properties may exist (or even coexist) in the
phase-space.

Caso genérico / hierárquico
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Figure 2.2: Illustration of the stickiness phenomenon that leads to an intermittent behavior of the chaotic
trajectories. (a) The distance of one chaotic trajectory to the border of the regular island is plotted as a
function of time for the area-preserving map discussed in Sec. 5.1. One stickiness event of size T = 335 is
emphasized; and (b) the distribution of the sticking times T greater than τ (see Sec. 3.1.2) for the standard
map (2.14) with K = 0.52 and 1011 iterations of a single trajectory. The main plot is in log-log scale while
the inset is in linear-log scale, emphasizing the short-time exponential followed by a power-law like decay for
long times.

the reasons for the stickiness is that the instability of chaotic trajectories (e.g., the local diffu-
sion coefficient or the finite-time Lyapunov exponent) must approach continuously zero when
approaching the boundary circle y0 from outside: D ∼ (y − y0)δ. This idea will be further
developed in Sec. (4.2) for a particular case.

Sometimes stickiness does not appear as a fundamental property on its own, but is studied
in the context of transport properties in general [Wig91]. Another approach was to define
properties of weak-mixing [Zas05] or pseudo-ergodicity [Zas02b] to deal with systems displaying
stickiness. A description through fractional Fokker-Planck equation was also proposed for what
was called Strange Kinetics [SZK93, Zas02a]. In this Thesis the perspective of stickiness as a
fundamental property of individual chaotic trajectories is assumed. The main reason for this
choice is that it preserves the intuitive aspect of the phenomenon. This is similar as describing
chaos as Lyapunov instability of individual trajectories instead of speaking about properties of
invariant sets. Moreover, pure ergodic theoretical arguments may be misleading since even zero
measure sets (e.g., cantori and MUPOs) in contact with the chaotic component have strongly
influence on the dynamics. Based on the topological properties of the phase space discussed
in the previous section, different theories described below attempt to describe quantitatively
the stickiness. A short chronological review of the main results is given next. The discussion
is restricted to area-preserving maps (Hamiltonian flows with one and a half or two degrees
of freedom) of the cylinder T (x, y) → (x, y) (x periodic) satisfying the twist condition (2.13).
The higher-dimensional case will be investigated explicitely in Chap. 7, where the few references
dealing with it will be mentioned.

The phenomenon denoted stickiness [Kar83, CS84] in this Thesis appears in the literature
under different names such as: clinging [KG87a], dynamical trapping [Zas05, Zas02a], and stag-



18 Chapter 2. Dynamics in Hamiltonian systems

Figure 2.3: (Color online) Sticking
time distribution ρ(τ) for 100 differ-
ent standard maps (2.14) with a con-
stant K† added to the y equation: K ∈
[0.5, 0.6],K† ∈ [0, 0.2]. The central
green (gray) curve is the average [for
fixed ρ(τ)] over all curves, and the red
curve (axis on the right) corresponds
to the standard deviation of the curves
(for fixed ρ(τ) projected to the x-axis).
The further parameters are equivalent
to those of Fig. 6.1b below.

a very robust power-law decay. Moreover, the standard deviation around this mean increases
for small times and seems to stabilizes for larger times, indicating that the deviations from the
power-law behavior are bounded oscillations and not due to different power-law exponents. The
scaling exponent obtained for the fitting is γ = 1.60± 0.05 and is thus expected to be universal
also for each individual system for sufficiently long time. These results are in agreement with
similar simulations performed by Cristadoro and Ketzmerick in different area-preserving maps
where the exponent was estimated to be γ = 1.57.

From the very first studies of stickiness the aim was to determine the existence of an uni-
versal exponent for the stickiness in area-preserving maps. Considering the different numerical
experiments mentioned above as well as the different structures that may be present in the
phase space (mentioned at the end of Sec. 2.1.4) one cannot even be sure whether a well defined
power-law arises for long times. Inspired in Ref. [WHK02a], a re-stating of the problem in a
general terms could be:

The stickiness problem is to determine how the properties of the different structures in the
phase space (Sec. 2.1) are connected to the dynamical properties of chaotic trajectories (Sec. 2.2),
considering specifically their effect on the distribution (2.15).

This is a fundamental question of Hamiltonian dynamics, for which this Thesis provides
answers in specific but relevant cases.
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Qual o problema?
(do ponto de vista de Mec. Estatística)



Violate the hypothesis of strong chaos:

1. Ergodicity, i.e., negligible measure of regular components

2. Strong mixing, i.e., fast decay of correlations

Qual o problema?
(do ponto de vista de Mec. Estatística)



Violate the hypothesis of strong chaos:

1. Ergodicity, i.e., negligible measure of regular components

2. Strong mixing, i.e., fast decay of correlations

What happens for increasing phase 
space dimension?

Qual o problema?
(do ponto de vista de Mec. Estatística)
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Coupled symplectic maps model



Map                              is symplectic iff:

Coupled symplectic maps model



Coupled standard maps:

2.1 Motivation / model
2.2 Noise perturbation
2.3 High dimensional



2.2 Noise perturbation



2.2 Noise perturbation



2.2 Noise perturbation



2.2 Noise perturbation



2.2 Noise perturbation



2.2 Noise perturbation



2.2 Noise perturbationRW theory



2.2 Noise perturbationRW theory



2.2 Noise perturbation

RW theory
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Ergodicity?
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Ergodicity?
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Coupled symplectic maps model

Ergodicity?



N=2-5 show power-law behavior [Kantz, Grassberger (1987), Ding, Bountis, Ott (1990)]

1. Ergodicity, i.e., negligible measure of regular components

2. Strong mixing, i.e., fast decay of correlations

✘

✔

e.g., zero measure sets on Bunimovich 
stadium Billiards 

?
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Strong mixing?

N=2,3
,4,

5 N=2,3
,...
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ξ = 0.05

ξ = 0.05



Coupled symplectic maps model

Strong mixing?



1. Ergodicity, i.e., negligible measure of regular components

2. Strong mixing, i.e., fast decay of correlations

Coupled symplectic maps

✔

✔

Non-exponential decay, but sufficiently fast power-law



fluído incompressível

Apresentação V:



I- Connection to fluid dynamics

Passive scalar field θ("x, t) (contaminant), advected by a flow with velocity field given

by "v(x, t) [Aref,1984]
∂θ
∂t

+ ∇.("vθ) = Dm∇2θ, (1)

where Dm is the molecular diffusion coefficient. The motion of fluid elements

(Lagrangian description) is written as

d"x
dt

= "v("x, t) + η(t), (2)

where 〈ηi(t)ηj(t
′)〉 = 2Dmδi,jδ(t − t′).

Consider an incompressible ∇."v = 0 2-D fluid "x = (x, y).

In this case there exist a stream function ψ(x, y, t) such that

dx
dt

= vx = −
∂ψ
∂y

and
dy
dt

= vy =
∂ψ
∂x

. (3)

Doktorandentag 12/12/2006 – p.3/11



I- One model with generic features

Consider a fluid channel infinite in the x direction having the following two flows:
Laminar regime: ψ1(x, y) = −v1 sin(πy); Vortex regime: ψ2(x, y) = v2cos(2x)(1 − y2)2
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I- One model with generic features

Consider a fluid channel infinite in the x direction having the following two flows:
Laminar regime: ψ1(x, y) = −v1 sin(πy); Vortex regime: ψ2(x, y) = v2cos(2x)(1 − y2)2
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I- One model with generic features

Alternating periodically between the two regimes in a period t0 and
mapping the evolution from nt0 → (n + 1)t0 one gets

xn = xn+1 + λ sin(πyn) − 2ρ
π yn(1 − y2

n) cos[2π(xn + 1)] + ξδn,
yn+1 = yn − ρ(1 − y2

n)2 sin[2πxn+1] + ξδ′n.

ρ = πv2t0/2 – intensity of the vortex regime;
λ = v1t0/2 – intensity of the laminar regime;
ξ – intensity of the white noise variable δ (ξ ∼

√
Dm);

The value ρ = 0.6 will be fixed and initially the deterministic case ξ = 0
is considered for two values of λ
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Espaço misto para dois parâmetros de controle



II- Transport

Transport is measured as the temporal evolution of the mean squared displacement

〈∆x2〉 = Dνtν .
ν = 1: normal diffusion; 0 < ν < 1: subdiffusion; 1 < ν < 2 superdiffusion;
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Transporte super-difusivo



II- Transport
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II- Transport

Statistics of flights and traps:
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Estatísitca de aprisionamento e voo



III - Effect of molecular diffusion
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Efeito da difusão molecular no aprisionamento

Tempo final do regime de
 super-aprisionamento t~ 1/ξ2



III - Effect of molecular diffusion
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Coeficiente de difusão como função do tempo

λ=1
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Figure 6.12: Stirring of a line (x = 0,−0.5 < y < 0.5) for the channel model (6.22) with ρ = 0.5,λ = 0.25
and ξ = 0 and opened in the x direction. Each panel shows the position of the marked points at a time n.

Figure 6.13: (Color Online) Transport of contaminant along the x component of the channel model (6.22)
with different noise intensities (molecular diffusivities) xi ∝

√
Dm, reduced from bottom to top (see legends).

105 initial conditions were chosen inside the chaotic sea. The thick black curve corresponds to the unperturbed
case ξ = 0, showing anomalous transport. When the curves become constant (for t→∞) transport is normal.
Control parameters: (a) ρ = 0.6 and λ = 1; (b) ρ = 0.6 and λ = 1.

what is shown in the inset of Fig. 6.6 and consists in a physically and experimentally relevant
diagram [BCVV95]. In the academical case of very large molecular diffusion (left of the figure)
the trivial relation D = Dm is observed. The opposite limit, of very small molecular diffusion

λ=0.25

Coeficiente de difusão como função do tempo
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(right of the figure), is the physically relevant one and shows the asymptotic D ∼ 1/Dm ∼ 1/ξ2

regime predicted in Eq. (6.14) and already discussed by Taylor [Tay53]. For intermediate values
of the molecular diffusion strength another power-law like dependence of D on Dm is observed,
similar to what is predicted in Eq. (6.14). While the transport in the case λ = 1 is completely
analogous to the standard map with ballistic islands, discussed in Sec. 6.2.3 and illustrated in
Fig. 6.6, the case λ = 0.25 is more complicated. This is due to the existence, together with the
steady flow near the borders (ballistic tori), of localized KAM islands where the trajectories may
stick or, through molecular diffusivity, even penetrate. In this case the CTRW models with both
algebraic trapping and flight distributions has to be considered, as presented in Sec. 6.2.2. Since,
as argued in Sec.6.1.1 the molecular diffusion leads to a large intermediate regime of enhanced
stickiness with γ = 0.5 the stickiness to localized islands might be relevant for intermediate
times.

Figure 6.14: (Color online) Asymptotic diffusion coefficient DA as a function of the noise intensity (molecular
diffusivity) ξ ∼

√
Dm for the two parameters of Fig. 6.13. The asymptotic DA = 1/Dm is observed for small

ξ.

Difusão total (advecção+molecular) como 
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