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Introduction

This book has its origins in the lecture notes prepared in 1989 for a
new Discrete Mathematics section of the First Year Mathematics
course at the University of Sydney. In 1989 this part of the
course comprised 19 lectures and in the original notes each chapter
covered the material required for a single lecture. In rewriting
the material for book form we have added a few new topics and
many more examples but at the same time we have endeavoured
to retain the original flavour of one chapter per lecture.

Discrete mathematics covers such a wide range of topics that
it is difficult to give a simple definition of the subject. Whereas
calculus deals with continuous or even smooth objects, discrete
mathematics deals with things that come in “chunks” that can be
counted. We will be a lot more precise about just what sort of
“chunks” we are dealing with in the later chapters.

If your mathematical background is only high school calculus
you could well believe that mathematics is only about numbers,
functions and formulas for solving problems. If this is the case, the
topics in this book may be quite a surprise because for mathemati-
cians, computer scientists and engineers, Discrete Mathematics
includes logic, set theory, enumeration, networks, automata, for-
mal languages and many other discrete structures. That is what
this book is about.

On the other hand, in 19 lectures we can only present an intro-
duction to the subject and we must leave other important topics
such as graph theory, error-correcting codes, discrete probability
theory and applications to theoretical computer science to a sec-
ond or third course.

The topics covered are set theory, logic, Boolean algebra, count-
ing, generating functions, recurrence relations, finite automata
and formal languages with a lot of emphasis on counting.

The set theory and logic is basic material which will be useful in
many courses besides Discrete Mathematics. Counting problems
which look quite hard when stated in ordinary English can often
be solved easily when translated into the language of set theory.
We give many examples that reduce to counting the number of
functions of various types between sets, or counting the number
of subsets of a set.

viii



acknowledgements ix

Boolean algebras provide a connection between set theory and
logic and we give a brief treatment of this in the book. We
also explore various ways of representing logical expressions using
physical devices such as switching circuits and logic gates (used
in computer chips).

A powerful method for solving certain counting problems is the
theory of generating functions and the related theory of recurrence
relations. This is covered in Chapters 14 and 15.

The last part of the course is an introduction to finite automata
and formal languages. This relies on some of the set theory and
logic covered earlier in the course. We also take the opportunity to
look back at examples related to our favourite counting problem
— the Catalan numbers.

Some advice
about the
exercises

Many exercises are stated in ordinary English and must be trans-
lated into symbols before a solution can be found. This process is
inherently ambiguous. Often there is no unique “correct answer”
to the problem: it all depends on how you interpret the words.
What is important is to be clear about what you think the words
mean, find a solution, and be prepared to defend it with a reasoned
argument.

If you are unsure about the meaning of an exercise, discuss
it with others. You may find that different people have quite
different interpretations. A critical attitude towards this material
will improve your ability to think clearly about mathematics in
general.

Wherever possible draw diagrams. If the problem depends on
a parameter n, work out the solution for some small values of n
before tackling the general case.

The more challenging exercises are marked with an asterisk.
Chapter 20 contains hints and answers for most exercises.
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1

Catalan Numbers

We begin with the following problem, which we return to many
times (and in many disguises) throughout the book. Firstly we
state it informally.

Problem 1.1 How many sequences of brackets are there in whichThe Bracket Problem
each left bracket has a matching right bracket?

We call such a sequence of brackets a balanced string of brackets.

A useful strategy to adopt when tackling problems like this is
to look at some small special cases and then generalize whateverA ‘string’ is just a list

of symbols written
one after the other.

insights we gain from them. So we start by looking at the shortest
possible balanced strings.

Example 1.2 There is only 1 balanced string of 1 left and 1 right
bracket: (). There are 2 balanced strings of 2 left and 2 right
brackets: (()) and ()(). And here are the balanced strings of 3 left
and 3 right brackets — there are 5 of them:

((())), (())(), ()(()), (()()), ()()().The symbol
signals the end of a

proof or an example. Now that you’ve seen a few examples, how could you solve the
following very special case of Problem 1.1?

Problem 1.3 How many balanced strings of 4 left and 4 right
brackets are there? What are they?

You will probably find that it helps to be systematic about this.Hint: there are
14 of them. After all, you don’t want to miss any strings and you must be sure

you haven’t listed any twice.
One approach is to list the strings in “alphabetical order”. We

don’t usually think of “(” and “)” as being part of the alphabet, so
what does alphabetical order actually mean? Well, we just extend
the alphabet to include “(” and “)” and suppose that “(” comes
before “)”. (Alternatively, you could replace “(” by the letter “L”
and “)” by the letter “R” and regard the strings as words in “L”
and “R”.)

1



2 catalan numbers

Now try writing the balanced strings in alphabetical order. As
a warm-up, begin with the 5 strings listed in Example 1.2.

The idea of systematically listing the strings of brackets in
some sort of order is a very useful one. The effort of making the
list should encourage you to think quite hard about the precise
structure of the balanced strings themselves.

Using 1, 2, 3 or 4 pairs of brackets there are 1, 2, 5 or 14
balanced strings that can be made from them. The sequence
continues

1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .These numbers
are known as the
Catalan numbers. and it is clear that making a list can become very tedious indeed.

Rather than make a list we would like a formula for the number
of balanced strings. In order to do this we must make Problem 1.1
a little more precise by introducing a symbol n for the number of
brackets. Then it becomes

Problem 1.4 How many balanced strings of n left and n right
brackets are there?

Let cn be the number of balanced strings with n pairs of
brackets. (We define c0 to be 1.) It turns out that there arecn is the n-th

Catalan number. many things that can be said about cn. Here are some of them.

(i) cn+1 =

n∑
k=0

ckcn−k.

(ii) cn ∼ 22n/n
√
πn.

(iii) if C(z) =

∞∑
n=0

cnz
n, then zC(z)2 = C(z)− 1.

(iv) ∀n, cn =
1

n+ 1

(
2n

n

)
.

In order to understand these statements we need to be able
to read the notation. In order to prove them we need to explore
some ideas from logic and set theory. That is what the rest of this
book is about. For the moment we’ll just define a few terms. Full
explanations will have to wait until later chapters.

The sigma
notation

Equation (i) is an example of the
∑

-notation (called the sigma
notation). That is, we use

n∑
i=m

ai

as an abbreviation for am + am+1 + · · ·+ an.
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Recurrence
relations

Thus equation (i) (a recurrence relation) can be written in the
form

(i)′ cn+1 = c0cn + c1cn−1 + · · ·+ cn−1c1 + cnc0.

Recurrence relations will be dealt with in Chapter 15.

Generating
functions

The power series C(z) in (iii) is called the generating function
of the numbers c0, c1, c2, . . . . This is explored further in Chap-
ters 14 and 19.

Binomial
coefficients

The symbol
(
2n
n

)
which appears in (iv) is a binomial coefficient. In

Chapter 6 we shall see that
(
m
n

)
is the number of ways of choosing

n things from m things.

Asymptotic
formulae

The symbol ∼ in (ii) means that the ratio of cn to 22n/n
√
πn ap-

proaches 1 as n becomes large. This is a consequence of Stirling’s
approximation: n! ∼

√
2π nn+ 1

2 e−n. Nothing more will be said
about this, but it is a fascinating topic and well worth exploring
further after you’ve covered the material in this book.

Logic The symbol ∀ which appears in (iv) is an abbreviation for the
words “for all” or “for every”. We shall study this in more detail
in Chapter 11.

Three more problems

The three problems which follow are all in some way related to
the Catalan numbers. The precise connections will be given later
in the book, but for now you might find it worthwhile to discover
the connections for yourself.

Problem 1.5 There are n railway wagons at A on the track
below. The wagons are moved from A to B. It is assumed thatThe Railway

Wagon Problem the central track can accommodate all n of them and that they
travel only from left to right (i.e., they may not be moved from C
back to A). How many arrangements are possible at B?

%%&&
A B

C

If the wagons are numbered 1, 2, . . . , n, the new arrangement at
B is called a permutation of 1, 2, . . . , n. We study permutations
in Chapter 3.
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Example 1.6 Suppose that there are five wagons at A, labelled
1, 2, 3, 4, 5. Is it possible to produce the arrangement 5, 2, 3, 1,
4 at B? What about 5, 3, 2, 1, 4?

In fact it is impossible to produce the arrangement 5, 2, 3, 1,
4 at B. Here is an explanation.

In order to move 4 to B we need to move 5 to the central track
first. After that has been done, 4 is free to move to B (via C).
Next we must move 1 to B but to be able to do this 2 and 3 must
be moved to C (below 5, which is still there). Now we have 1 and
4 at B and 2, 3 and 5 at C. According to our rule that the wagons
travel only from left to right, we cannot move 2 back to A and
so the only possibility is to move 2 to B and then 3 and 5 to B.
Thus the only arrangement at B which ends in 1, 4 is 5, 3, 2, 1,
4. This explains why 5, 2, 3, 1, 4 is impossible.

In the course of the explanation just given, we have shown how
to produce the arrangement 5, 3, 2, 1, 4 at B.

Try counting the arrangements when there are 1, 2, 3, or 4
railway wagons. Do these numbers look familiar? What do theyThis is closely related

to Problem 1.1. suggest?

The second problem is another type of bracketing problem, but
this time we have symbols inside the brackets.

Problem 1.7 Suppose you have numbers x0, x1, x2, . . . , xn

and you want to multiply them together. In how many ways can
you insert brackets into the string x0x1x2 · · ·xn so that the orderAnother

Bracket Problem of multiplication is completely specified? Each pair of brackets
should contain just two terms.

As was done for the bracketing problem, first look at some small
cases. That is, try counting the arrangements when n is 1, 2, 3 or
4. For example, when n = 2, there are two ways to bracket the
expression: (x0(x1x2)) and ((x0x1)x2).

This problem is closely related to Problem 1.1 but the connec-
tion is not quite as straightforward as you might think. Simply
erasing the symbols x0, x1, . . . , and so on from their bracketed ex-
pression will produce a balanced string of brackets but this doesn’t
show that the number of bracketed expressions is the same as theFor the answer,

see Chapter 19. number of balanced strings of brackets. Why not?

The third and final problem of this section is a first taste of
formal languages and grammars.

Problem 1.8 What are the strings produced by the followingA String
Production

Problem
two rules and how many strings are there of length 2n?

(1) S → ε

(2) S → S(S)
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An explanation is in order. The symbol ε stands for an empty
string. That is, a string with nothing in it. To produce a string we
begin with the start symbol S and then use (1) or (2) to replace
S by the right hand side of the arrows, stopping when no S’s are
in the string. For example:We have put a 1

or 2 beneath the
symbol which is to be

replaced. The number
indicates which

rule is to be used.

S → S
2
(S)

→ S(S
2
)(S)

→ S(S(S
1
))(S)

→ S
1
(S())(S)

→ (S
1
())(S)

→ (())(S
1
)

→ (())()

Perhaps you can see that this produces exactly the same strings
that were considered in Problem 1.1. This sort of thing will be
looked at again in Chapter 18 on Grammars.

There are many variants of these problems and others will be
given in the problem set.

The numbers cn are called the Catalan Numbers. E. CatalanEugène Catalan
(1814–1894) wrote an article about them in 1838 but they had been studied by

J. von Segner and L. Euler 100 years earlier. They also occur in
the work of the Chinese-Mongolian mathematician An Tu Ming.An Tu Ming

(1692–1763)

Problem Set 1

1. Which of the following strings of brackets are balanced? In
each case, explain carefully why the string is, or is not, bal-
anced:

(i) ((()() (ii) (())() (iii) ())(()

2. Refer to the diagram for Problem 1.5 and suppose that there
are n railway wagons at A. The wagons can move from A to
B. It is assumed that the central track can accommodate all
n of them and that they travel only from left to right.

(i) How many arrangements are possible at B, for n = 1,
2, 3, and 4?

(ii) Suppose that there are five wagons at A, labelled 1, 2,
3, 4, 5. Is it possible to produce the arrangement 5, 1,
4, 2, 3 at B? What about 3, 2, 4, 1, 5?
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3. Repeat the previous question but this time allow the wagons
to move from C to A if necessary.

4. Consider a river system with n sources which eventually
merge to form a single stream. Assuming that no more than
two streams merge at any point, we are interested in the
number of ways that the mergers can take place.

(i) Compile a table of values for n = 1, 2, 3, and 4 and
then find (or guess) a general formula.

(ii) If possible, find a connection with Problem 1.7.

5. In how many ways can a convex polygon with n + 1 sides
(labelled 0, 1, 2, . . . , n) be divided into triangles by non-
intersecting diagonals?

6. For n ≥ 0, evenly distribute 2n points on the circumference
of a circle. Let an be the number of ways in which these
2n points can be paired off as n chords where no two chords
intersect.

(i) Find an for n = 2, 3 and then find (or guess) a general
formula.

(ii) If possible, find a connection with Problem 1.1.

7. Given two rows of boxes with n boxes in each row:

. . .

. . .

In how many ways can you place the numbers 1, 2, . . . , 2n
in the boxes so that the numbers increase from left to right
and so that each number in the bottom row is larger than the
number in the box above it? Write down all the arrangements
for n = 1, 2, 3 and 4. Any conjectures?

*8. Given a strip of n stamps, in how many ways can you fold
them (at the perforations) into a stack? Do not distinguish
between the front and back. For example, with n = 2 there is
only one way to fold them, but for n = 3, there are two ways.
Find the number of foldings for n = 4 and n = 5. You may
find a strip of paper a useful tool. Any conjectures? (Now
try n = 6.)



2

Sets

Set theory is an essential ingredient of discrete mathematics and
the language of set theory will be used throughout the rest of this
book. You will see that it gives us a systematic and precise way
to describe and solve many counting problems. In this chapter we
review the fundamental notation and in later chapters we describe
the connections between set theory and counting problems.

We shall take a set to be any collection of objects and we call
these objects the elements of the set.

Membership Let A be a set. We write

x ∈ A

to mean that x is an element of A and we write

x /∈ A

to mean that x is not an element of A (or, more simply, that x is
not in A).

Example 2.1 We use R to denote the set of all real numbers,
Z to denote the set of all integers and N to denote the set of all
natural numbers (including 0). Then x ∈ R means that x is a real
number, x ∈ Z means that x is an integer and x ∈ N means that
x is a natural number. Thus

√
2 ∈ R, but

√
2 /∈ Z and −1 ∈ Z,

but −1 /∈ N.

Set specification There are two useful ways to specify a set.

1. One way is simply to enclose the elements of the set in braces.
For example

{((())), (())(), ()(()), (()()), ()()()}
is the set of all balanced strings of 3 left and 3 right brackets,
considered in Example 1.2.

2. A second way to specify a set is to give a condition that the
elements of the set must satisfy. For example, the set above
can be described as

{x | x is a balanced string of 3 pairs of brackets }.

7



8 sets

Example 2.2 The set of the first 10 natural numbers can be
expressed as

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} or {x ∈ N | x ≤ 9 } or {0, 1, . . . , 9}.

The set E of all positive even integers can be written as

E = {2, 4, 6, . . . } or E = { 2k | k ∈ N and k > 0 }.

The empty set The set with no elements at all is called the empty set and we
denote it by ∅ or { }.

Example 2.3 The set

A = {x | x ∈ R and x2 + 1 = 0 }

is the empty set.

Subsets Let A and B be two sets. Then B is said to be a subset of A if
every element of B is also an element of A and we write this as
B ⊆ A. We read B ⊈ A as “B is not a subset of A” — it meansNote that the

empty set is a
subset of every set.

that there is an element of B which does not belong to A.

Example 2.4 Let

A = {a, b, c, d}, B = {b, c} and C = {b, c, e}.

Then B ⊆ A, but C ⊈ A (because e ∈ C but e /∈ A).

Sets themselves may be elements of another set.

Example 2.5 Consider the set

A = {a, b, c, {a, b}, {b, c}, 1, 2, {3} }.

Then {a, b} ∈ A and also {a, b} ⊆ A. On the other hand 3 ̸∈ A,
{3} ∈ A, but {3} ⊈ A. Also {a, {a, b} } ⊆ A. The set A has 8
elements.
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The power set The set of all subsets of a set A is called the power set of A.

Example 2.6 If A = {a, b}, then the subsets of A are

∅, {a}, {b}, {a, b},

and there are 22 = 4 of them. Therefore, the power set of A is

{∅, {a}, {b}, {a, b}}.

If A = {a, b, c}, then the power set of A is

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},

and so A has 23 = 8 subsets.

In Chapter 6 we shall see that if A has n elements, then there
are 2n subsets of A.

Here is a systematic way to list the subsets of a set. For example,
to list the 16 subsets of {a, b, c, d}, proceed as follows:

Begin with 16 empty pairs of braces { }.
Put a into the first 8 of these sets.

Put b into the first 4, skip 4, then put b into the next 4.

Put c into the first 2, skip 2, put c into the next 2, and so
on.

Put d into the first set, skip 1, put d into the next set, and
so on.

This process produces the 16 subsets of {a, b, c, d}. The last
subset in the list is the empty set.

Equality Two sets A and B are equal if they have the same elements.

Example 2.7 We have {2, 3, 4} = {4, 2, 3}. Also {1, 1, 2} =
{1, 2} because the only elements in the set {1, 1, 2} are 1 and 2.

The best way to show that two sets A and B are equal is to
show that A ⊆ B and B ⊆ A. That is, show that every element
of A is an element of B and show that every element of B is an
element of A. For an application, look ahead to Theorem 2.13.
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Union Let A and B be sets. The union of A and B, denoted by A ∪B,
is the set of elements that are in either A or B. That is,

A ∪B = {x | x ∈ A or x ∈ B }.

If A1, A2, . . . , An are sets, then the union of these sets is
defined by

n∪
k=1

Ak = {x | x ∈ Ak for some k, 1 ≤ k ≤ n }.

Example 2.8 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4, a, b}.
Then

A ∪B = {a, b, c, d, e, 1, 2, 3, 4}.

Intersection Let A and B be sets. The intersection of A and B, denoted by
A ∩B, is the set of elements that are in both A and B. That is,

A ∩B = {x | x ∈ A and x ∈ B }.

If A1, A2, . . . , An are sets, then the intersection of these sets
is defined by

n∩
k=1

Ak = {x | x ∈ Ak for all k, 1 ≤ k ≤ n }.

Example 2.9 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4, a, b}.
Then

A ∩B = {a, b}.

Complement Let A and B be sets. The set A \B, called the complement of B
in A, is defined to be the set of elements that are in A but not in
B. That is,

A \B = {x | x ∈ A and x /∈ B }.

Example 2.10 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4, a, b}.
Then

A \B = {c, d, e}, and

B \A = {1, 2, 3, 4}.

Cardinality The number of different elements in the set A is called the cardi-
nality (or size) of A and written |A|.

Example 2.11 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4, a, b}.
Then

|A| = 5,

|A ∪B| = 9,

|A \B| = 3,

|B| = 6,

|A ∩B| = 2,

|B \A| = 4.
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The algebra of set theory

Ordinary algebra begins with the laws satisfied by numbers. For
example, the commutative laws: x+ y = y + x and xy = yx; and
the associative laws: x+ (y+ z) = (x+ y) + z and x(yz) = (xy)z.
Similar laws hold for the operations of union and intersection of
sets and because sets are different from numbers there are other
laws which have no counterpart in the algebra of numbers. A
sample of the laws of set theory is given by the following list of
identities which hold for all sets A, B, C and X.

(i) A ∪A = A, A ∩A = A

(ii) A ∪ ∅ = A, A ∩ ∅ = ∅
(iii) A ∪B = B ∪A, A ∩B = B ∩A

(iv) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C

(v) A∪(B∩C) = (A∪B)∩(A∪C), A∩(B∪C) = (A∩B)∪(A∩C)

(vi) A ∪B ⊆ X if and only if A ⊆ X and B ⊆ X

(vii) X ⊆ A ∩B if and only if X ⊆ A and X ⊆ B.

How do we know these identities are true? The answer is that we
can prove them. Proof is central to mathematics and it is a good
idea to get some practice as soon as possible. So we shall begin by
proving (vi). As is customary in mathematics we set this out byFor more information

about the logic
used in proofs,

see Chapter 11.

stating what we wish to prove as a theorem followed by a proof.
In the following proof we shall use ideas from logic which will be

dealt with in more detail in later chapters. Nevertheless, try to
follow the reasoning as best you can. Later, after you’ve read
Chapter 11 you can come back to this proof and see if your
understanding has improved.

Theorem 2.12 A ∪B ⊆ X if and only if A ⊆ X and B ⊆ X.

Proof. Suppose at first that A ∪ B ⊆ X. We must show both
that A ⊆ X and that B ⊆ X. Now, if x ∈ A, then it is also
the case that x ∈ A ∪ B and then x ∈ X because A ∪ B ⊆ X by
hypothesis. This means that every element of A is also an element
of X. Therefore, from the definition of subset, we have A ⊆ X.

Now we repeat the argument to show that B ⊆ X. That is, ifTry drawing a
diagram to aid

your understanding.
x ∈ B, then it is also the case that x ∈ A ∪B and then from our
hypothesis we deduce that x ∈ X. This means that every element
of B is also an element of X, i.e., B ⊆ X. Thus we have shown
that if A ∪B ⊆ X, then A ⊆ X and B ⊆ X.

To complete the proof we must show that the converse holds.
That is, we suppose that A ⊆ X and B ⊆ X and then show
A ∪ B ⊆ X. Thus our hypothesis in this case is A ⊆ X and
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B ⊆ X. If x ∈ A ∪ B, then from the definition of A ∪ B there
are two possibilities: either x ∈ A or x ∈ B. If x ∈ A, then by
hypothesis, x ∈ X. Similarly, if x ∈ B, then x ∈ X. Thus in both
cases we have x ∈ X and this shows that every element of A ∪B
is in X. Thus A ∪B ⊆ X. This completes the proof.

When you first encounter this proof you may think that it is
overly complicated. In a sense you would be right. After all,
as soon as you begin to draw a diagram depicting the situation
(as described in the next section) you will surely see that the
result is true. Moreover, you may be able to shorten some of the
arguments. For example, we have A ⊆ A ∪ B ⊆ X and therefore
A ⊆ X, and so on. But the point of it all is to get you used to very
precise arguments working directly from the given definitions.

Here is another example. This time we want to prove that two
sets are equal. We do this by proving that each is contained in the
other. The theorem is called the distributive law for union over
intersection.

Theorem 2.13 A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. By the definition of equality, we must show that

(2.14) A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C)

and

(2.15) (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

To prove (2.14), we suppose that x ∈ A ∪ (B ∩ C) and show
that x ∈ (A ∪ B) ∩ (A ∪ C). If x ∈ A ∪ (B ∩ C), then there are
two cases: either x ∈ A or else x ∈ B ∩ C.

In the first case, i.e., x ∈ A, it is certainly true that x ∈ A ∪B
and that x ∈ A ∪ C because both A ∪ B and A ∪ C contain A.
Thus in this case x ∈ (A ∪B) ∩ (A ∪ C), as required.

In the second case we have x ∈ B and x ∈ C. Thus again
x ∈ A∪B and x ∈ A∪C. Therefore, in this case as well, we have
x ∈ (A∪B)∩ (A∪C). Putting the two cases together we see that
we have proved (2.14).

Conversely, to establish (2.15), we suppose that

x ∈ (A ∪B) ∩ (A ∪ C)

and show that from this it follows that x ∈ A ∪ (B ∩ C).
Now, if x ∈ (A∪B)∩ (A∪C), then x ∈ A∪B and x ∈ A∪C.

Thus we know that (i) x ∈ A or x ∈ B, and that (ii) x ∈ A or
x ∈ C.
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One possibility is that x ∈ A; in this case nothing more needs
to be said. The other possibility is that x /∈ A. In this case we
see from (i) that x ∈ B and we see from (ii) that x ∈ C; that
is, x ∈ B ∩ C. We conclude that either x ∈ A or x ∈ B ∩ C and
hence x ∈ A ∪ (B ∩ C). This is true for all x and so (2.15) has
been established, as required.

This completes the proof.

A careful look at this proof shows that it reduces the distribu-
tive law for ∩ and ∪ to the distributive law for the logical con-
nectives “and” and “or”. At this stage we take this property of
“and” and “or” for granted, but after you have read Chapter 11
you will be able to verify it using a truth table.

Venn diagrams

A Venn diagram is a pictorial representation of sets in the plane.
In a Venn diagram, ovals (or other suitable shapes) are used toJohn Venn

(1834–1923) represent sets. In the following diagram, the shading represents
A ∩B, A \B, and A ∪B, respectively.

Figure 2.1
Basic Venn diagrams A

B

A

B

A B

A ∩B A \B A ∪B

Venn diagrams are most useful when dealing with a small num-
ber of sets. Here are some other examples involving three sets.

Figure 2.2
Venn diagrams
with three sets

A

B C

A

B

C

A

B
C

A ∩B ∩ C B \ (A ∪ C) (A ∩ C) \B



14 sets

De Morgan’s laws

De Morgan introduced his laws in connection with the “algebra ofAugustus De Morgan
(1806–1871) logic” — a subject which we shall study in Chapter 9. However,

there is a close connection between logic and set theory and so his
laws also apply to sets. We state the laws as a theorem, but leave
the proof to you.

Theorem 2.16 If A and B are subsets of a set X, then

(i) X \ (A ∪B) = (X \A) ∩ (X \B)

(ii) X \ (A ∩B) = (X \A) ∪ (X \B).

As you can see, these laws deal with the complement operation
for sets. Another, somewhat simpler law for the complement is
the following.

Theorem 2.17 If A is a subset of the setX, thenX\(X\A) = A.

This is illustrated by the following Venn diagram.

Figure 2.3
The complement

of A in X

A

X \A

Summary

After reading this chapter you should know the meaning of

set membership: x ∈ A;

the empty set;

subsets of a set;

the power set of a set;

union, intersection and complement of sets;

the cardinality of a set;

proof;This is very important! →
Venn diagrams.
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Problem Set 2

1. Use the notation of set theory to describe:

(i) The set of all odd integers between 2 and 10.

(ii) The set of all odd integers between 2 and 200.

(iii) The set of all odd integers.

(iv) The set of integers divisible by 4.

2. Which of the following statements are true?

(i) {2, 4} ⊆ {1, 2, 3, 4, 5, 6}.
(ii) {2} ⊆ {1, 2, 3, 4, 5, 6}.
(iii) 2 ⊆ {1, 2, 3, 4, 5, 6}.
(iv) 2 ∈ {1, 2, 3, 4, 5, 6}.
(v) {2} ∈ {1, 2, 3, 4, 5, 6}.
Give reasons for your answers.

3. Write out the following sets, where A = {a, b, c, {a, d}}:
(i) A ∪ {b, d, e}. (ii) A ∩ {b, d, e}.
(iii) A \ {a, b}. (iv) A \ {c, d}.
Then write down the sizes of each of the sets.

4. Write out a careful proof that A ∩ B = A implies A ⊆ B.
Is the converse true? (First write down the converse of the
implication.)

5. In Theorem 2.12 and Theorem 2.13 we proved two of the laws
of set theory. Now prove the remaining laws of that section.

6. Prove both De Morgan’s laws and draw diagrams to illustrate
them. (Remember, a diagram can be an excellent guide to a
proof, but it is not in itself a proof.)

7. Let A be a set. Prove that {a} ⊆ A if and only if a ∈ A.

*8. Consider Venn diagrams in which sets are represented by
circles. Such a diagram divides the plane into a number of
regions. How many regions can be obtained using three sets?
How many for four sets? Is this enough to depict all possible
relations between the sets?
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Functions

This chapter provides an essential link between the set theory
discussed in Chapter 2 and the techniques of counting to be dealt
with in the following chapters.

What is a
function?

A function can be thought of as a process. This process, when
applied to an element of a set, transforms it into an element of
another set. That is, if A and B are sets, then a function or
mapping f : A→ B is a rule which assigns to each element x in AA function is a process.
a unique element in B, denoted by f(x). We say that f is defined
on A or that A is the domain of f . The image of f is the set
{ f(x) | x ∈ A}.

Example 3.1 The process which transforms each element x ∈ Z
to its square is a function f : Z → N which we can write as
f(x) = x2. Sometimes it is convenient to write this function inA function is a formula.
the form

f : Z→ N : x 7→ x2.

Not all functions can be described by such simple formulas.
Indeed, in this book this is not always the most fruitful way to
think of a function. Instead we can use some of the ideas of set
theory to find other representations.

A case that comes up quite often in later chapters is that of a
function f defined on the set {1, 2, . . . , n} of the first n positive
integers. In this case the function is completely determined byA function is a list.
the list of its values:

(f(1), f(2), . . . , f(n)).

In other words, a function of this type is nothing but an n-tuple,
i.e., a sequence of values separated by commas and surrounded
by a pair of brackets. We could also write this as (x1, x2, . . . , xn),
where xi = f(i) for i = 1, 2, . . . , n.

16



functions 17

Example 3.2 If f : {1, 2, 3, 4, 5} → {a, b, c} is the function de-
fined by f(1) = f(3) = f(4) = b and f(2) = f(5) = a, then f is
completely described by the 5-tuple (b, a, b, b, a).

Example 3.3 A balanced string of brackets, such as ()(()), can
be thought of as a function from {1, 2, . . . , 6} to { (, ) }. If f is the
function corresponding to ()(()), then f(1) = f(3) = f(4) = ( and
f(2) = f(5) = f(6) = ). This could get rather confusing because
we are using brackets in two ways: as abstract symbols and also
in the conventional mathematical way. However, now we see how
to define a string of n symbols: it is just the list of values of a
function defined on the first n positive integers.

In practice not all functions will be defined on such convenient
sets of integers. But taking our cue from these examples we seeA function is a set

of ordered pairs. that all we really need to do to specify a function f : A → B
completely is to give the set of all ordered pairs

{ (x, f(x)) | x ∈ A }.

This way of defining a function leads to a very convenient pic-
torial description: the arrow diagram. We construct the diagramA function is an

arrow diagram. for f : A→ B by drawing an arrow from x to f(x) for all x in A.

Example 3.4 Here is the arrow diagram for the function defined
in Example 3.2.

Figure 3.1
An arrow diagram.

1
2

3

4

5

a

b

c

In summary, a function can be thought of as a process, as a
sequence, or as a set of ordered pairs. For f to be a function
from A to B, the arrow diagram of f must have exactly one arrow
starting at each element of A.

One-to-one
functions

A function f : A → B is said to be injective or one-to-one if
whenever x 6= y in A, then f(x) 6= f(y) in B. Equivalently, if
whenever f(x) = f(y) in B, then x = y in A. This means that f
is one-to-one provided that, in its arrow diagram, no two arrows
have the same end point.
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Example 3.5 The function f : {1, 2, 3} → {a, b, c, d} correspond-
ing to the 3-tuple (d, c, a) is one-to-one.

Onto functions A function f : A → B is said to be surjective or onto if for any
element y ∈ B, there is some element x ∈ A such that f(x) = y.
Equivalently, f : A → B is onto if and only if the image of f
equals B. Thus for f to be onto, every element of B in the arrow
diagram of f must be the end point of at least one arrow.

Example 3.6 The following diagrams illustrate various types of
functions.

Figure 3.2
Examples of functions.

(i) one-to-one, (ii) onto, not (iii) not onto, not
not onto one-to-one one-to-one

(iv) one-to-one, onto (v) not a function (vi) not a function

The
pigeonhole

principle
Let A and B be finite sets. The examples above suggest the
following facts:

(i) If there is a one-to-one function f : A→ B, then |A| ≤ |B|.
(ii) If there is an onto function f : A→ B, then |A| ≥ |B|.
(iii) If there is a one-to-one and onto function f : A → B, then

|A| = |B|.

Another way of stating (i) is the following

Pigeonhole Principle. If m objects are placed in n boxes and
if m > n, then at least one box contains two or more objects.

If O is the set of objects and if B is the set of boxes, then
assigning an object to a box describes a function f : O → B. In
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this case, f(x) is the box which contains x. If m > n, then this
function cannot be one-to-one and therefore there exist objects x
and y such that f(x) = f(y). That is, x and y are in the same
box.

Problem 3.7 If 5 numbers are chosen from {1, 2, 3, 4, 5, 6, 7, 8},
show that at least two of them sum to 9.

Solution. To see this, we apply the pigeonhole principle by tak-
ing b1 = {1, 8}, b2 = {2, 7}, b3 = {3, 6} and b4 = {4, 5} to be the
“boxes”. If we choose 5 numbers, then some box must contain 2
of them and therefore those numbers sum to 9.

Remark
Here is a more refined version of the pigeonhole principle:
If m objects are placed in n boxes and if m > kn, then at least one box
contains k + 1 objects.

Proof. Suppose not. That is, suppose every box contains at most k
objects. Then the total number of objects is at most kn. This contradicts
the assumption that there are more than kn objects. Therefore, if there
are more than kn objects, at least one of the boxes contains at least k+1
of them.

Bijections
If there is a one-to-one function f from A onto B, then we say
that A and B are in one-to-one correspondence, or that there is
a one-to-one correspondence between A and B. The function f is
also called a bijection or a bijective function.

Suppose that A and B are finite sets. Then there is a one-to-
one correspondence between A and B if and only if |A| = |B|. If
|A| = |B|, then a function f : A → B is one-to-one if and only if
it is onto. This is not true if A and B are infinite.

Example 3.8 The function f : N → N defined by f(x) = 2x is
one-to-one but not onto. (Why?)

Permutations When A and B are the same set, a one-to-one correspondence
f : B → B is called a permutation of B.

Think of B as a set of boxes and suppose that each box contains
a single object. A permutation f : B → B describes how the
contents of the boxes are rearranged. For box x, the object in x
is moved to the box f(x).

A permutation f of the set {1, 2, . . . , n} can also be pictured
as an array with two rows:

1 2 3 . . . n

f(1) f(2) f(3) . . . f(n)
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Join each number i in the top row to the corresponding number i
in the bottom row. This produces a diagram such as

1 2 3 4 5

3 1 5 2 4

Odd and even
permutations

The number of crossings depends on how the diagram is drawn but
whether this number is even or odd does not. (The lines should
go from top to bottom without doubling back and at most two
lines should cross at any point.)

If the number of crossings is even, the permutation is said toThis property of
a permutation is
called its parity.

be even; if it is odd, the permutation is said to be odd.

Example 3.9 The permutation above has 4 crossings and there-
fore it is even.

Composition
of functions Given functions f : A → B and g : B → C it is possible to

construct a new function h : A→ C by first applying f and then
applying g. More precisely, for all a ∈ A, we define h(a) by

h(a) = g(f(a)).

We write h = g ◦ f and call h the composition of f and g. The
arrow diagram for g◦f is obtained by merging the arrow diagrams
of f and g. That is, the head of the arrow from a to f(a) joins
the tail of the arrow from f(a) to g(f(a)) and we think of the
combination as a single arrow from a to g(f(a)).

Example 3.10 In this example, A = {a, b, c}, B = {1, 2, 3, 4}
and C = {x, y, z}. The functions f , g and g ◦ f are defined by
their arrow diagrams:

Figure 3.3
Composition
of functions

a

b

c

1

2
3

4

x

y

zf g

g ◦ f

a

b

c

x

y

z
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Brackets and railway wagons

We conclude this chapter by showing the connection between the
bracketing and railway wagon problems of Chapter 1.

Example 3.11 Let A be the set of all arrangements of four rail-
way wagons that can be achieved beginning with the four wagons
numbered 1 to 4 according to the scheme outlined in Problem 1.5.
There are 14 arrangements; that is |A| = 14.

Let B be the set of balanced strings of four pairs of brackets.
In this case there are 14 ways to arrange the brackets (see Prob-
lem 1.3) and so |B| = 14.

Since the sets A and B have the same size, we know that there
must be a one-to-one correspondence between them.

Our aim is to construct a one-to-one correspondence between
the set A of arrangements of n railway wagons and the set B of
balanced strings of n pairs of brackets.

This construction will make sense for any number of wagons,
not just four, and it explains why the number of ways of arranging
the railway wagons is always the same as the number of balanced
strings of brackets.

%%&&
A B

C

Let “(” be regarded as an instruction to move a wagon from A to
C in the diagram above and let “)” be regarded as an instructionHere is the

construction. to move a wagon from C to B. We read the string of brackets from
left to right when interpreting it as a set of instructions. Then,
for example, beginning with 1234 at A, the instruction (()(()))
produces the arrangement 4213 at B.

Applying a balanced string of brackets to the standard arrange-
ment 1, 2, . . . , n of wagons at A produces an arrangement at B.
In other words, we have a function f from the set B of balanced
strings of brackets to the set A of arrangements of railway wagons.
For this to be a one-to-one correspondence we must check three
things:

(i) That this makes sense. (That is, the function f is well-
defined.)
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(ii) That different bracketings produce different arrangements at
B. (That is, the function f is one-to-one.)

(iii) That every arrangement at B can be obtained by applying
a balanced string of brackets to the standard arrangement
at A. (That is, the function f is onto.)

Notice that in any balanced string of brackets there must be
at least as many left brackets as right brackets in any initialf is well-defined
segment of the string when reading from left to right. Thus, when
interpreting brackets as instructions, whenever you come to a “)”
there will always be a wagon at C to move. This takes care of
point (i) above.

Now for (ii). Suppose that S1 and S2 are two balanced strings
of brackets which agree in their first k positions but differ at thef is one-to-one
(k + 1)-st position. In fact we may suppose that the (k + 1)-st
bracket of S1 is “(” whereas the (k + 1)-st bracket of S2 is “)”.
(If not, we interchange S1 and S2.) If we now interpret S1 and
S2 as instructions for moving wagons from A to C and from C
to B, then after the first k instructions from either S1 or S2 we
have exactly the same arrangements at B and C. For example, if
S1 = (()()()) and S2 = (()())(), then k = 5 and the situation after
5 moves is shown in the following diagram.

%%&&
1 2 3

4

But the (k + 1)-st instruction of S1 is to move a wagon from A
to C whereas the (k + 1)-st instruction of S2 is to move a wagon
from C to B. Thus the arrangements at B and C differ from this
point on. This shows that f(S1) 6= f(S2) and the claim made in
(ii) is true. (In the example f(S1) = 4123 but f(S2) = 1423.)

Finally, suppose that we have an arrangement of n wagons at
B which was produced by moving wagons from A to C and fromf is onto
C to B in some order. This process can be described by a string
S of n left and n right brackets. In fact S must be a balanced
string—the instruction to move wagon n − k + 1 from A to C
corresponds to the k-th left bracket, and the instruction to move
wagon n − k + 1 from C to B corresponds to its matching right
bracket. This shows that every arrangement at B can be obtained
using a balanced string of brackets and hence the function f is
onto.

This proves that f is a one-to-one correspondence.



summary 23

Remarks

1. This example shows that constructing a one-to-one corre-
spondence between two sets is often far from easy!

2. It also illustrates how it is possible to know that two sets
have the same size without knowing what that size is.

3. The full explanation of why the function is onto really re-
quires the notion of mathematical induction. This is dis-
cussed in Chapter 13.

Summary

After reading this chapter you should know about

several ways to describe a function;

arrow diagrams;

one-to-one functions;

onto functions;

bijections;

permutations;

composition of functions.

Problem Set 3

1. Define f : N → N by f(x) = x + 1. Determine whether or
not f is

(a) one-to-one; (b) onto.

2. Each of the following sets of pairs may or may not represent
a function from {1, 2, 3} to {a, b, c, d}.

{(1, d), (2, b), (3, d)} {(1, c), (2, a), (3, b)} {(1, a), (3, b)}
{(1, a), (1, c), (3, d)} {(2, b), (3, c), (1, d)}

(i) Identify the sets which represent functions and deter-
mine which of these are one-to-one.

(ii) Explain clearly why each of the sets does or does not
represent a function.

(iii) Explain clearly why each of the sets does or does not
represent a one-to-one function.
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3. (i) Let A = {−1, 2, 3, 5, 7, 11} and let B = {1, 2, . . . , 200}.
Is the function f : A → B given by f(x) = x2 one-to-
one?

(ii) Now suppose that A = {−2,−1, 2, 3, 5, 7, 11} and B =
{1, 2, . . . }. Is the function f : A → B given by f(x) =
x2 one-to-one?

4. Let A = {1, 2, 3, 4}, B = {a, b, c, d} and C = {x, y, z, t}. Let
f : A → B be defined by f(1) = b, f(2) = c, f(3) = b and
f(4) = a. Let g : B → C be defined by g(a) = t, g(b) = x,
g(c) = y and g(d) = t. Let h : B → A be defined by h(a) = 2,
h(b) = 1, h(c) = 1 and h(d) = 4.

(i) Find the composition g ◦ f of f and g.

(ii) Describe the functions h ◦ f and f ◦ h.

5. (i) Let A = {1, 2} and B = {a, b}. Write down all the
one-to-one correspondences between A and B.

(ii) Let A = {1, 2, 3} and B = {a, b, c}. Write down all the
one-to-one correspondences between A and B.

6. Given permutations f and g of {1, 2, . . . , n}.
(i) Show that g ◦ f is also a permutation of {1, 2, . . . , n}.
*(ii) Find out how the parity of g ◦ f depends on the parity

of f and g. Can you prove your conjectures?

7. Let A be the set of all ways of bracketing x0x1x2x3 so that
each pair of brackets contains two terms and let B be the set
of all balanced strings of 3 left and 3 right brackets.

(i) Write out the elements of A and B.
(ii) What are the cardinalities of A and B?
(iii) Define a function f : A → B by erasing all the xi’s.

For example, f assigns ((x0x1)(x2x3)) to (()()). Is f
one-to-one?

*8. Let Fn be the set of functions f : {1, 2, . . . , n} → {1, 2, . . . , n}
such that

(i) f is increasing, i.e., if i ≤ j, then f(i) ≤ f(j), and

(ii) for all i, f(i) ≤ i.

Write down the sets Fn for n = 1, 2, 3, 4. Can you make any
conjectures about |Fn|?
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Counting Principles

In this chapter we introduce two simple but basic rules of count-
ing: the Addition Principle and the Multiplication Principle.
These principles give set theoretic interpretations to the funda-
mental operations of arithmetic (addition and multiplication).

The Addition
Principle

The first principle relates addition to union of sets. The easiest
case is when the sets have no elements in common.

Disjoint union If the sets A and B have no elements in common, we say that they
are disjoint and we write A∩B = ∅. If A and B are disjoint sets,
then

|A ∪B| = |A|+ |B|.

More generally, if the sets A1, A2, . . . , An are pairwise disjoint ,
i.e., Ai ∩Aj = ∅ whenever i ̸= j, then

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.

Remarks

1. When A and B are disjoint, an element of A ∪B is in A or
B but not both. When we use “or” to mean “in A or in B,exclusive or
but not in both”, it is called the exclusive or.

2. If A and B overlap, then an element of A∪B could be in A
and B. We still say that the elements of A∪B are those thatinclusive or
are in A or B. This is the way the word “or” is generally
used in mathematics— it is called the inclusive or.

The combinatorial interpretation of disjoint union is:

The Addition Principle. If one thing can be selected in a ways
and another thing can be selected in b ways, then the number of
different ways of selecting the first thing or the second thing is
a+ b.

25
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Example 4.1 Suppose that there are 18 mathematics books and
11 physics books. Then the number of different ways of choosing
just one book is 18 + 11 = 29.

Union and
intersection

If the sets A and B are not disjoint, then we have:

|A ∪B| = |A|+ |B| − |A ∩B|.

The reason is, in counting the sum |A|+ |B|, we have counted
the elements common to A and B twice and so we need to subtract
|A ∩B| from this sum to yield |A ∪B|.

Example 4.2 Let A = {♠, ♡, ♢, ♣, 1, 2, } and B = {1, 2, 3, 4}.
Then

A ∪B = {♠, ♡, ♢, ♣, 1, 2, 3, 4} and B ∩A = {1, 2},

and so

|A| = 6, |B| = 4, |A ∩B| = 2, and

|A ∪B| = |A|+ |B| − |A ∩B| = 8.

We deal with the generalization to more than two sets in
Chapter 7.

Remark
If |A1 ∪A2 ∪ · · · ∪An| > m, then at least one of the sets A1, A2, . . . , An

has more than ⌊m/n⌋ elements.
For if not, every one of the sets would have at most ⌊m/n⌋ elements and
as there are n sets, their union would contain at most m elements, which
is not enough.
This is a form of the Pigeonhole Principle discussed in Chapter 3. The
symbol ⌊m/n⌋ means the largest integer k such that k ≤ m/n. For
example, ⌊7/3⌋ = 2.

The
Multiplication

Principle
Even though this principle is quite simple it is the basis for most
of the counting techniques in the next few chapters. We introduce
it via the following problem.

Problem 4.3 If 4 roads lead from A to B and 3 roads lead from
B to C, how many ways can you go from A to C via B?

Solution. Suppose that the roads from A to B are labelled 1, 2,
3 and 4 and that the roads from B to C are labelled a, b and c.
Then a journey from A to C can be described by a pair such as
(3, b). This means that road 3 is taken from A to B, then road
b is taken from B to C. Thus the number of ways from A to C
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is the number of ordered pairs (x, y), where x ∈ {1, 2, 3, 4} and
y ∈ {a, b, c}. In this case the number is easily seen to be 12. To
confirm this you might list all the possibilities.

A B C

1

2

3

4

a

b

c

Cartesian
product

In general, given sets A and B, their product (also called their
Cartesian product) is the set A × B of all ordered pairs (x, y),
where x is an element of A and y is an element of B. We can
write this as

A×B = { z | z = (x, y), where x ∈ A and y ∈ B }.

The size of A×B is |A| × |B|. This can be written

|A×B| = |A| × |B|.

Example 4.4 Let A = {♠, ♡, ♢, ♣} and B = {1, 2}. Then
A×B is the set

{(♠, 1), (♡, 1), (♢, 1), (♣, 1), (♠, 2), (♡, 2), (♢, 2), (♣, 2)},

and B ×A is the set

{(1,♠), (1,♡), (1,♢), (1,♣), (2,♠), (2,♡), (2,♢), (2,♣)}.

Notice that if A and B are distinct and non-empty, then A×B ̸=
B ×A but |A×B| = |B ×A|.

Example 4.5 Let A be the set of letters from a to z and let B
be the set of digits 0 to 9. Then A × B is the set of all possible
pairs of a letter followed by a digit. We can write

A×B = { (x, y) | x is a letter and y is a digit }.

In this case |A| = 26 and |B| = 10, and so there are 260 pairs,
i.e., |A×B| = 260.

The formula for |A×B| suggests the following rule.
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The Multiplication Principle. If one thing can be selected in
a ways and another thing can be selected in b ways, then the
number of different ways of selecting the first and the second
thing is ab.

This principle actually goes beyond the formula for |A × B|
because the set from which the second choice is made could depend
on the first choice.

Example 4.6 The number of ways of choosing a string of two
different lower case letters is 26× 25 = 650.

There are 26 ways of choosing the first letter of the required
string. After choosing the first letter there are only 25 choices
remaining for the second letter. (Note that the set from which
these choices is made depends on the first letter.)

It is also clear how to extend the principle to count selections
of more than two things.

Example 4.7 There are 9000 strings of four digits not beginning
with 0.

Since the strings do not begin with 0, there are 9 ways to choose
the first digit. For the second, third and fourth digit, there are
10 ways of choosing each of them. Hence the number of strings of
four digits not beginning with 0, is 9× 10× 10× 10 = 9000.

Remarks

1. The definition of Cartesian product is easily extended from
pairs to triples and so on. For example, let A1, A2 and A3

be any 3 sets. Then

A1 ×A2 ×A3 = { (a1, a2, a3) | a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 }

is the set of all triples from A1, A2 and A3, in that order.
Moreover, we have

|A1 ×A2 ×A3| = |A1| |A2| |A3|.

2. More generally, A1 ×A2 × · · · ×An is the set of all n-tuples
(a1, a2, . . . , an), where ai ∈ Ai, i.e.,

A1 ×A2 × · · · ×An = { (a1, a2, . . . , an) | ai ∈ Ai, i = 1, 2, . . . , n }.

Its cardinality is

|A1 ×A2 × · · · ×An| = |A1| |A2| . . . |An|.
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Example 4.8 The number of ways of choosing a string of 3 digits
from the 10 digits {0, 1, 2, . . . , 9} is 10× 10× 10 = 1000.

Example 4.9 The number of ways of choosing a string of 3 dif-
ferent digits from the 10 digits is 10× 9× 8 = 720.

Notice that in the two principles given in this chapter, addition
corresponds to exclusive or and multiplication corresponds to and
then.

Example 4.10 The number of strings of at most three different
lower case letters is

1 + 26 + 26× 25 + 26× 25× 24 = 16277.

You can either choose no letters or you can choose one letterThis example uses
both the Addition and

the Multiplication
Principles.

or you can choose one letter and then a different letter or you
can choose one letter and then a different letter and then a letter
different from the first two.

Remark
Using Cartesian products we can give the precise definition of a function.
That is, a function f : A → B is a subset of A × B with the propertyThe formal definition

of a function. that for every element x ∈ A there is exactly one element y ∈ B such that
(x, y) ∈ f . Actually, we’ve seen this before—the pairs (x, y) correspond to
the arrows in the arrow diagram for f (as in Example 3.4).

Theory of the Multiplication Principle

In this section we explain how the Multiplication Principle can
be described in the language of set theory. What is perhaps
surprising is that this apparently more general principle can be
obtained from the Addition Principle.

To see this, suppose that we have a set A and that for each
element x ∈ A we have a set Bx which depends on x. We want to
find the size of the set of ordered pairs

X = { (x, y) | x ∈ A and y ∈ Bx }.

Notice that the sets Bx can depend on x ∈ A and therefore X
is generally not a Cartesian product (unless there is a set B such
that Bx = B for all x ∈ A.)

On the other hand, for fixed x ∈ A, the ordered pairs (x, y),
where y ∈ Bx form the Cartesian product {x} ×Bx. Therefore

X =
∪
x∈A

({x} ×Bx)
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and furthermore, the sets {x} × Bx are disjoint. There is also
a one-to-one correspondence between {x} × Bx and Bx in which
(x, y) corresponds to y. Thus |{x} × Bx| = |Bx| and, from the
Addition Principle, we have

(4.11) |X| =
∑
x∈A

|Bx|.

In a great many of the examples that we deal with in this book
the sets Bx turn out to have the same size, say b. When this
happens, we can write |Bx| = b, for all x ∈ A. If |A| = a, then
formula (4.11) becomes

|X| = ab.

In fact, this is just the Multiplication Principle. The special case
when all the Bx are the same set corresponds to the formula for
the size of a Cartesian product.

Example 4.12 If A = {a, b, c, . . . , z} is the set of lower case
letters, then to count the strings of two different lower case letters
(as in Example 4.6) we may take Ba = A\{a}, Bb = A\{b}, . . . ,
and Bz = A \ {z}. Then

|A| = 26 and |Ba| = |Bb| = · · · = |Bz| = 25.

Therefore, in agreement with Example 4.6, there are 26×25 = 650
strings of two different lower case letters.

Summary

In this chapter you have learned the two basic rules of counting:

the Addition Principle;

the Multiplication Principle.

Problem Set 4

1. (i) If A = {1, 2} and B = {a, b, c}, write down the set
A×B.

(ii) For A = {1, 2, 3, 4}, write down the subset of A × A
consisting of all those ordered pairs (x, y) such that
x ≤ y.

(iii) For A as above, let D be the subset of A×A consisting
of all ordered pairs (x, y) such that x = y. What is |D|?
Find a one-to-one correspondence between D and A.
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2. How many ways are there to form a string of 2 lower case
letters?

3. How many strings of four digits are there if 0 is never used?

4. (i) How many strings of three upper case letters are there?

(ii) How many strings of three upper case letters and digits
are there?

(iii) How many strings of three upper case letters and digits
are there in which the first character is a letter?

5. If A = {a, b, c, d} and B = {e, f}, write down the set A×B.
Then write down a one-to-one correspondence between the
set A×B and the set S of all subsets of {1, 2, 3}.

6. The number plates of a certain state consist of either three
letters followed by three digits or else three digits followed by
three letters. How many plates can be produced?

7. Given an alphabet of 20 consonants and 6 vowels.

(i) In how many ways can we select a consonant and then
a vowel?

(ii) In how many ways can we make a two-letter string
consisting of one consonant and one vowel?

8. In a town of 18,000 people everyone has three initials. Must
there be two people with the same initials?

*9. Given finite sets A and B, let E be a subset of A × B. For
a ∈ A, let

E(a) = { b ∈ B | (a, b) ∈ E }

and for b ∈ B, let

E∨(b) = { a ∈ A | (a, b) ∈ E }.

Prove that ∑
a∈A

|E(a)| =
∑
b∈B

|E∨(b)|.
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Ordered Selections

In this chapter we use the Multiplication Principle to count the
number of ways of arranging objects subject to various conditions.

Arrangements
with repetition Let us consider the following problems:

Problem 5.1 How many ways are there to place three apples in
four boxes?

Problem 5.2 How many ways are there to park three cars in
four parking stations?

Problem 5.3 How many strings of three symbols can be formed
from the four symbols ♠, ♡, ♢, and ♣?

Problem 5.4 How many functions are there from a set of size 3
to a set of size 4?

Each of the above problems reduces to working out the number
of ways to place the first object, and then the second object, etc.
We use the Multiplication Principle to obtain the required number
of ways of arranging all the objects.

For example, in Problem 5.1, there are 3 apples to be placed
and for each apple there are 4 choices of a box in which to place
it. Hence by the Multiplication Principle, there are 4× 4× 4 = 43

arrangements.
All four problems are essentially the same and so the argument

just given shows that in each case there are 43 arrangements. In
these arrangements, the order of the objects is important and
repetition is allowed.

The number of
functions

Let A be a set of apples and let B be a set of boxes. A particular
arrangement of apples in boxes can be thought of as a function f
from A to B. We write f : A → B and if x ∈ A is an apple, we
interpret f(x) as the box containing it.

32
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Now suppose we have m apples and n boxes. Suppose that the
apples are labelled 1, 2, . . . , m and that the boxes are labelled
1, 2, . . . , n. Then an arrangement of apples in boxes corresponds
to a function f : {1, 2, . . . ,m} → {1, 2, . . . , n}. This arrangement
is completely described by the m-tuple of numbers(

f(1), f(2), . . . , f(m)
)
.

That is, apple i is placed in box f(i). In constructing such an
arrangement we have n choices of box for each apple. Thus the
Multiplication Principle tells us that there are

n× n× · · · × n︸ ︷︷ ︸
m factors

= nm

ways to place m apples in n boxes.
We can rephrase this in terms of set theory:

There are nm functions from a set of size m to a set of size n.

Remark
There is exactly one function from the empty set to any other set; it isNote that the empty

function is one-to-one! called the empty function. The complete explanation for this requires us to
use the formal definition of a function as a subset of a Cartesian product.

Arrangements
without

repetition
We modify the previous problems by requiring that the objects
are selected without repetition:

Problem 5.5 How many arrangements of three apples in four
boxes are there if we make the restriction that each box can have
at most one apple in it?

Problem 5.6 How many ways are there to park three cars in
four parking spaces in a parking station?

Problem 5.7 How many strings of three distinct symbols can be
formed from the four symbols ♠, ♡, ♢, and ♣?

Problem 5.8 How many one-to-one functions are there from a
set of size 3 to a set of size 4? (Recall from Chapter 3 that a
function f : A → B is one-to-one if whenever x ̸= y in A, then
f(x) ̸= f(y) in B.)

Again we use the Multiplication Principle. For example, in the
apple problem, there are 4 ways to choose the first apple, but
for the second apple there are only 3 choices and for the third
apple only 2 choices. Thus the total number of arrangements is
4× 3× 2 = 24.

The same argument applies to the other problems.
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The number of
one-to-one

functions

Returning to the interpretation of these problems in terms of sets
and functions we see that these ordered arrangements without
repetition correspond to one-to-one functions.

Let us count the number of one-to-one functions f : A → B
when A = {1, 2, . . . ,m} and |B| = n.

There are n choices for f(1) but then only n − 1 choices for
f(2) because we are not permitted to have f(1) = f(2). Similarly,
there are n − 2 choices for f(3) and so on until at last we have
n − (m − 1) choices for f(m). The Multiplication Principle tells
us that the number of ways to choose f is

(5.9) n(n− 1)(n− 2) . . . (n−m+ 1).

For m ̸= 0 we define the falling factorial n(m) to be this number.
That is,Some books use

nPm instead of n(m). n(m) = n(n− 1)(n− 2) . . . (n−m+ 1).

Ifm = 0, we have n(0) = 1 because, whenm = 0, the only function
from A to B is the empty function and it is one-to-one.

We have shown that:

There are n(m) one-to-one functions from a set of size
m to a set of size n.

If |A| = m, a one-to-one function f : A → B can be thought
of as an ordered arrangement of m distinct objects selected from
the set B. Hence the total number of ordered arrangements of m
elements selected from n elements, without repetition, is n(m).

Example 5.10 The number of ways of choosing 5 students from
10 students and seating them in a row of 5 chairs is

10(5) = 10× 9× 8× 7× 6 = 30240.

The number of
bijective

functions

If A = {1, 2, . . . ,m} and B also has m elements, then a bijection
f : A→ B corresponds to an ordered arrangement

(f(1), f(2), . . . , f(m))

of the elements of B. As A and B are finite and have the same
size, a function f : A→ B is a bijection if and only if it is a one-
to-one function. Therefore the formula (5.9) above shows that the
number of bijections from A to B is

m(m) = m(m− 1) · · · 3 · 2 · 1.This number is called
m factorial and written
m!. Note that 0! = 1. For example, if B = {⋆, ⋄, •}, then the 3! = 6 arrangements are

(⋆, ⋄, •), (⋆, •, ⋄), (⋄, ⋆, •), (⋄, •, ⋆), (•, ⋆, ⋄) and (•, ⋄, ⋆).
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The number of
permutations

If the sets A and B are the same, a one-to-one and onto function
(i.e., a bijection) f : B → B is called a permutation of B. Hence:

There are n! permutations of a set of size n.

A combinatorial proof

In the last exercise of Problem Set 4 you were asked to prove a
general counting formula. One way of proving it is to count a
certain set “in two ways”. Here we shall illustrate the method by
giving a combinatorial proof of

Theorem 5.11This theorem can also
be proved directly

from the definitions
of n! and n(m).

n(m) =
n!

(n−m)!
.

Proof. We shall count the number of ways to place n apples in n
boxes, with one apple in each box. We have just seen that there
are n! ways to do this. On the other hand each arrangement could
be obtained by placing the first m apples in the boxes (there are
n(m) ways to do this) and then placing the remaining n−m apples
in the remaining n−m boxes (there are (n−m)! ways to do this).
From the Multiplication Principle we must have n! = n(m) (n−m)!
and the given formula follows from this.

Summary

After reading this chapter you should know the formulas for

the number of functions from a set of m elements to a set of
n elements;

the number of one-to-one functions from a set of m elements
to a set of n elements;

the number of permutations of a set of size n.

Problem Set 5

1. (i) The 10 students in a certain tutorial group each hand
in an assignment. These assignments are then given to
3 markers. In how many ways can this be done?

(ii) Express (i) above in terms of sets.
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2. A byte is a string of eight 0’s and 1’s. How many bytes are
there?

3. How many ways are there to seat three students on four chairs
in a row?

4. How many six digit numbers are there which do not repeat a
digit and do not begin with 0?

5. (i) How many strings of length 3 start with 2 digits and
end with one of the 26 capital letters of the alphabet?

(ii) In how many ways can 500 students seat themselves in a
room containing 550 seats? (Give your answer in terms
of factorials.)

6. (i) How many four digit numbers greater than 1000 can be
formed using the digits 0, 1, 2, 3 and 4?

(ii) How many four digit numbers greater than 1000, with
no repeated digit, can be formed using the digits 0, 1,
2, 3 and 4?

7. Four people are about to have a snack and there are eleven
types of cake available. Each person chooses just one cake.

(i) How many possibilities are there?

(ii) How many possibilities are there if everyone has a dif-
ferent type of cake?

8. A restaurant has five entrées, seven main courses and ten
desserts. In how many ways can you select two dishes on the
condition that they must not both be from the same part of
the menu?

9. (i) How many strings of 8 distinct letters can be made from
the letters {a, b, c, d, e, f, g, h}?

(ii) How many of the strings you found in (i) do not have
any of the elements of {a, b, c} next to each other?

*10. Let Cn = {±1,±2, . . . ,±n}. How many permutations f :
Cn → Cn are there such that f(−x) = −f(x) for all x ∈ Cn?
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Unordered Selections

Up until now we have considered ordered selections and we have
found formulae for the number of selections when repetition is
allowed and when it is not allowed. But this is only half the story.
We also want to know how many ways there are to select things
when order does not matter.

Selections without repetition

Suppose we have 6 apples and we wish to choose 2 of them without
regard to order. We can choose the first apple in 6 ways and the
second apple in 5 ways. But each pair will have been chosen twice.
So there are 30/2 = 15 ways to choose a pair of apples without
regard to order.

Binomial
coefficients

We use the symbol (
m

k

)
to represent the number of ways of choosing k things, without
repetition, from m things. It is read “m choose k” and called aSome books

use mCk. binomial coefficient (for reasons which will become apparent in a
moment).

Let A be a set of size m and let K = {1, 2, . . . , k}. Then a
one-to-one function f : K → A describes an ordered selection of
k things (without repetition) from A: f(1) is the first, f(2) the
second, and so on. From Chapter 5 we know that the number of
ways of selecting k (ordered) things from A is m(k). We also know
that there are k! ways to arrange k things and each arrangement
corresponds to the same unordered selection. Thus the number
of unordered selections is

m(k)

k!
.

That is, using formula (5.11), the number of ways to choose k
things from m things is

(6.1)

(
m

k

)
=

m(k)

k!
=

m!

k! (m− k)!
.

37
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This is also the number of subsets of A of size k because such
a subset is simply an unordered selection of k elements of A.

Example 6.2 The number of ways to select a committee of 4
from a group of 11 people is

(
11
4

)
= 330.

The binomial
theorem The binomial coefficients are so named because they appear in the

following formula expressing the powers of a + b (a binomial) in
terms of the monomials aibj .

Theorem 6.3 For any non-negative integer m, we have

(a+ b)m =

m∑
k=0

(
m

k

)
akbm−k.

There are several combinatorial proofs of this formula. We shall
give two of them.

First Proof. First observe that

(a+ b)m = (a+ b)(a+ b) . . . (a+ b)︸ ︷︷ ︸
mThe left-hand side of

the binomial identity.
and that when we multiply this out, each term of the expansion
is obtained by choosing either an a or a b from each factor and
then multiplying them together.

The term with exactly k a’s is akbm−k. The number of times
this occurs in the expansion is just the number of ways to choose
k of the m factors. But we know this is

(
m
k

)
. Thus the expansionThe right-hand side of

the binomial identity. is
∑m

k=0

(
m
k

)
akbm−k, as required.

Second Proof. This proof is more complicated than the first one
but it shows how each part of the formula can be interpreted as
counting certain functions.

We begin with disjoint sets A (of size a) and B (of size b) and
we letM be a set of sizem. We first count the number of functions
f : M → A∪B from M to A∪B. Since the size of A∪B is a+ b
and the size of M is m, there are (a+ b)m such functions.The left-hand side of

the binomial identity. On the other hand we can count these functions by another
method. Namely, we choose a subset K of M of size k, a function

g : K → A

and a function
h : M \K → B.
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These two functions g and h can be combined to produce a func-
tion

f : M → A ∪B

by defining

f(x) =

{
g(x), if x ∈ K,

h(x), if x ∈M \K.

This produces all the functions from M to A ∪ B which send
exactly k elements of M to A. The set K can be chosen in

(
m
k

)
ways, g can be chosen in ak ways, and h can be chosen in bm−k

ways and so by the Multiplication Principle there are(
m

k

)
akbm−k

choices for these functions. Then, by the Addition Principle, to
get all the functions f : M → A ∪B, we must take the sum fromThe reason that we

begin the summation
from k = 0 is that

there is exactly
one function from
the empty set to

any other set: the
empty function.

k = 0 to k = m. That is, the number of functions f : M → A∪B
is

m∑
k=0

(
m

k

)
akbm−k.

By equating this summation with the number of functions cal-
culated above, we obtain the binomial theorem.

Example 6.4 Putting a = 1, b = 2x and m = 6, we have

(1 + 2x)6 =

6∑
k=0

(
6

k

)
1k (2x)6−k

= 64x6 + 192x5 + 240x4 + 160x3 + 60x2 + 12x+ 1.

Binomial identities

When we put a = b = 1 in the binomial theorem, we get the
identity

(6.5) 2m =

m∑
k=0

(
m

k

)
.

Note that the right-hand side of (6.5) is the number of sub-
sets of a set of size m. On the other hand, to choose a subset
we consider each element in turn and decide whether or not
to include it in the subset. Thus for each element there are
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2 choices and so, by the Multiplication Principle, there are
2m ways to choose a subset. This is another way to see that
identity (6.5) is true.

Putting a = −1 and b = 1 in Theorem 6.3, we obtain

An alternating sum.

(6.6) 0 =

m∑
k=0

(−1)k
(
m

k

)
,

provided m ̸= 0. We shall see an application (and an inter-
pretation) for this identity in Chapter 7.

There is no way to choose n things from m things if n > m
and therefore (

m

n

)
= 0, if n > m.

A set of size m has just one subset of size 0, namely the
empty set, and therefore(

m

0

)
= 1.

Notice that choosing a subset of size k is equivalent to choos-
ing its complement (of size m− k), and therefore we have

(6.7)

(
m

k

)
=

(
m

m− k

)
.

A fundamental identity is(
m+ 1

k

)
=

(
m

k

)
+

(
m

k − 1

)
.

This is the basis of “Pascal’s triangle”. That is, the binomialBlaise Pascal
(1623–1662) coefficients can be displayed in a triangular array such that

each entry is the sum of the two numbers immediately above:
Known in China

as Yang Hui’s
triangle (ca. 1250).

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
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1
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Proof. We count the subsets of size k in the set {1, 2, . . . ,m+1}
in two ways. On the one hand, there are

(
m+1
k

)
of these subsets.

On the other hand, there are
(
m
k

)
sets of size k which do not

contain m + 1 (these are the subsets of size k in {1, 2, . . . ,m}),
and

(
m

k−1

)
sets of size k which do contain m+1 (first choose m+1,

then choose a subset of size k− 1 from {1, 2, . . . ,m}). Thus thereAddition Principle!
are

(
m
k

)
+
(

m
k−1

)
of these subsets altogether. Equating the results

of these calculations establishes the identity.

The Vandermonde identity isA. Vandermonde
(1735–1796) (

w +m

n

)
=

n∑
k=0

(
w

k

)(
m

n− k

)
.

Proof. To see this, count the number of ways of choosing n peopleThe identity was
known to Zhu

Shi-Jie (ca. 1303)
from a group of w women and m men. On the one hand there
are

(
w+m

n

)
such subsets. This is the left hand side of the formula.

On the other hand we could first choose k women (in
(
w
k

)
ways)

and then complete the set of n people by choosing n− k men (in(
m

n−k

)
ways). Thus there are

(
w
k

)(
m

n−k

)
ways to choose k womenMultiplication

Principle! and n − k men. To get all possible subsets we must add these
values for k = 0, 1, . . . , n. This gives the right hand side of the
formula.

Selections with repetition

The binomial coefficient
(
n
m

)
gives the number of ways to select

m things from n things without repetition. What is the number
of selections if repetition is allowed?

Instead of going directly to the answer to this question we begin
with a slightly different problem.

Problem 6.8 We have a supply of flowers of four different col-
ours: red, white, yellow and blue. How many ways are there to
choose six flowers, provided we choose at least one flower of each
colour?

In tackling this problem we shall suppose that there are at least
three flowers available of each colour. Also, we do not distinguish
between individual flowers — all we care about are the colours.
For example, we could choose 3 red and 3 white, or 2 red, 2 white,
a yellow and a blue, etc.
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Solution. We begin with a row of six vases. Then, given a
selection of flowers, we place them in the vases, with the red ones
first, followed by the white, followed by the yellow, followed by
the blue. Next we draw a vertical line between the vases where
the colours change. There are five spaces between the vases and
only three places where the colours change. Thus we will have
drawn a line in three of the five places.

Conversely, each selection of flowers corresponds to a selection
of three places in which to draw the separating lines: the red
flowers placed to the left of the first line, the white flowers between
the first and second line, and so on.

Therefore the number of ways to choose six flowers, allowing
repetition of colours and choosing at least one flower of each colour
is the number of ways to choose 3 things from 5 things, namely(
5
3

)
= 10.

The method just outlined applies in general. That is, suppose
we want to choose m things from n things, allowing repetition,
but insist on choosing at least one of each thing. To obtain such
a selection we begin with a row of m boxes. We then choose n−1
of the m− 1 spaces between the boxes and put a divider at each
chosen place. We put a copy of the first thing in each of the boxes
to the left of the first divider, then a copy of the second thing in
the boxes between the first and second dividers, and so on. We
see from this that the total number of selections is the number of
ways to choose dividers, namelyThis is the number

of ways to choose m
things from n things,

with at least one thing
of each kind, and

allowing repetition.

(
m− 1

n− 1

)
.

Now we can return to our original question:

Problem 6.9 In how many ways can we select m things from n
things if repetition is allowed?

Solution. To answer this question we use a common mathemat-
ical device—we reduce it to a previously solved problem. In this
case, we see that we can obtain our selections by first choosing
m + n things from n things (allowing repetition and choosing at
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least one thing of each type) and then throwing away one thing
of each type. This leaves us with a selection of m of the n things.

We have just seen that the number of ways to selectm+n things
from n things (allowing repetition and choosing at least one thing
of each type), is

(
m+n−1
n−1

)
and so this must be the answer to our

original question.

From identity (6.7) above we see that
(
m+n−1
n−1

)
=
(
m+n−1

m

)
and

therefore:

The number of ways to select m things from n things,

allowing repetition, but without regard for order, is(
m+ n− 1

m

)
Example 6.10 From the formula just given, the number of ways
to choose 6 flowers from a supply of flowers of 4 different colours
is
(
6+4−1

6

)
= 84.

We can also solve this directly as follows. First we draw 6
crosses to represent a choice of 6 flowers.

× × × × × ×

We can show which crosses represent flowers of different coloursThis method applies
in general and is

another way to think
about selections

with repetition.

by using 3 vertical lines to divide the crosses into 4 groups. Then,
we replace each cross to the left of the first vertical line by flowers
of the first colour, each cross between the first and second line
by flowers of the second colour and so on until the crosses to the
right of the last line are replaced by flowers of the fourth colour.
(Note that there may be no crosses between some of the lines.)
For example, the following is a possible way to add 3 vertical lines

× × × | | × | × ×

The question now reduces to finding the number of ways to
add the 3 vertical lines. This can be done as follows. We add 3
more crosses to the 6 crosses above to get 9 crosses. Then to get a
possible arrangement, we change 3 of these 9 crosses into vertical
lines. Thus the number of possible outcomes is the number of
ways of choosing 3 crosses from 9 crosses and it is given by(

9

3

)
= 84,

as before.
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Example 6.11 The number of ways to choose four letters from
the set {A,B,C}, allowing repetition, but without regard for
order, is

(
4+3−1

4

)
= 15. The arrangements are:

AAAA AAAB AAAC AABB AABC

BBBB ABBB BBBC AACC ABBC

CCCC ACCC BCCC BBCC ABCC

Balls
in boxes

There is also an interpretation of “unordered selection with repe-
tition” in terms of placing balls in boxes:

Problem 6.12 Suppose that we have m indistinguishable balls
and n boxes. How many arrangements of balls in boxes are there?

Solution. Placing a ball in a box can be regarded as selecting
that box, and so we are just asking for the number of ways of
selecting m things from n things, allowing repetition. Thus the
number of ways of placing m indistinguishable balls in n boxes is(

m+ n− 1

m

)
.

This is also the number of solutions to

x1 + x2 + · · ·+ xn = m,

where for each i, xi is a non-negative integer. Think of box i
containing xi balls.

Summary

The formulas that you have learnt in this and the previous chapter
can be summarized in the following table showing the number of
ways to select m things from n things.

selection ordered unordered

with
repetition

nm

(
m+ n− 1

m

)
without
repetition

n(m)

(
n

m

)
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Problem Set 6

1. Write down the expansion of

(i) (x+ 2y)5, (ii) (2x− y)6.

2. You have a deck of fifty-two cards.

(i) How many ways are there of choosing a hand of five
cards?

(ii) How many of them contain the queen of hearts?

(iii) In how many ways can four hands of five cards each be
given to four players?

(iv) In how many ways can four hands of five cards be se-
lected from the deck?

3. Consider the set {a, b, c, d, e, f}. How many ways are there of
choosing four letters from this set

(i) if no letter is chosen twice?

(ii) if repetitions are allowed?

4. (i) In how many ways can thirteen cards be chosen from a
deck of fifty-two cards?

(ii) In how many ways can fifty-two cards be divided into
four lots of thirteen?

5. How many different outcomes are possible if seven identical
dice are thrown? (An outcome is the collection of numbers,
with repetition, visible on the top faces of the dice.)

6. Given a large supply of jelly beans of 10 different colours,
how many ways are there to make up a bag of 5 jellybeans?

*7. Find a formula for the number of solutions to

x1 + x2 + · · ·+ xn < m,Try some small
examples first.

where for each i, xi is a non-negative integer.

*8. Given n, how many sequences (k1, k2, . . . , kr) of positive in-
tegers are there whose sum is n? For example, when n is 4,
the sequences are (1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2),
(1, 3), (3, 1) and (4).
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The Inclusion-Exclusion Principle

The main result of this chapter is a formula for the size of the
union of sets. We first review the situation for unions of two and
three sets before moving on to the general formula.

The union
of two sets Recall that in Chapter 4, we gave the formula

|A ∪B| = |A|+ |B| − |A ∩B|,

for the size of the union of the sets A and B.
This came about as follows. If we count A ∪ B by adding the

size of A to the size of B, each of the elements of A∩B has been
counted twice. To compensate for this we must subtract |A ∩ B|
from |A|+ |B| to get |A ∪B|.

Next, if A is a subset of X, then

|X \A| = |X| − |A|.

If B is also a subset of X, then

|X \ (A ∪B)| = |X| − |A| − |B|+ |A ∩B|.

Example 7.1 In a class of 320, there are 198 computer science
students and 130 mathematics students and 108 of these people
are taking both computer science and mathematics.

(i) How many students are taking either computer science or
mathematics?

(ii) How many are taking neither computer science nor mathe-
matics?

Solution. Let X be the set of all people in the class, A the set of
all students taking computer science and B the set of all students
taking mathematics. Then

|A| = 198, |B| = 130 and |A ∩B| = 108,

46
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so that |A ∪ B| = |A| + |B| − |A ∩ B| = 198 + 130 − 108 = 220.
Hence there are 220 students taking either computer science or
mathematics.

Moreover |X| = 320 and therefore

|X \ (A ∪B)| = 320− 220 = 100.

Thus there are 100 students taking neither computer science nor
mathematics.

The union
of three sets Now we extend the formula for the size of a union to three sets

A, B and C.
If we try to count A∪B∪C by adding (i.e., including) |A|, |B|

and |C| we will have counted the elements in A ∩ B, A ∩ C and
B ∩C twice. Therefore we should exclude these elements, that is,
subtract |A ∩ B|, |A ∩ C| and |B ∩ C| to compensate. But then
the elements of A∩B ∩C will have been excluded once too often
and so we must include them again.

This means that for three sets, we have the Inclusion-Exclusion
Principle:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Example 7.2 Suppose in a tutorial of 10 people 3 have prepared
solutions, 5 have read the text book, 5 have read the lecture notes,
2 have prepared solutions and read the book, 2 have prepared
solutions and read the notes, 2 have read the book and read the
notes and 1 has done all three. How many have done none of these
things?

Solution. Let A be the set of those people who have prepared
solutions, B the set of those who have read the text book and C
the set of those who have read the lecture notes. Then

|A| = 3, |B| = 5, |C| = 5, |A ∩B| = |A ∩ C| = |B ∩ C| = 2

and |A ∩B ∩ C| = 1.

Now count how many have done at least one of the things. By
the Inclusion-Exclusion Principle this is equal to

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

= 3 + 5 + 5− 2− 2− 2 + 1 = 8.

Therefore only 2 have done none of the things.
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Example 7.3 In each case below we shall attempt to compute
|A ∪B ∪ C| from the given information.

(i) |A| = 5, |B| = 12, |C| = 7, |A ∩ B| = 2, |A ∩ C| = 4,
|B ∩ C| = 3 and |A ∩B ∩ C| = 2.

(ii) |A| = 21, |B| = 31, |C| = 7, |A ∩ B| = 3, |A ∩ C| = 4,
|B ∩ C| = 13 and |A ∩B ∩ C| = 2.

Solution. Here is a complete Venn diagram for (i):

A
B

C

1

0

2

2

2

1

9

In this case it is possible to compute |A∪B ∪C| directly from
the diagram or from the formula

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

= 5 + 12 + 7− 2− 4− 3 + 2 = 17.

In (ii), since |C| = 7, |B∩C| is at most equal to 7. But |B∩C|
is given to be 13. This contradiction shows that the sets A,B,C
as described in (ii) cannot exist. Thus it does not make sense to
compute |A ∪B ∪ C|.

Example 7.4 How many numbers between 1 and 200 (inclusive)
are divisible by at least one of the numbers 5, 7 or 11?

Solution. Let A be the set of all numbers between 1 and 200 that
are divisible by 5, let B be the set of all numbers between 1 and
200 that are divisible by 7, and let C be the set of all numbers
between 1 and 200 that are divisible by 11. Then

|A| = 40, |B| = 28 and |C| = 18.

Now |A∩B| is the set of all numbers between 1 and 200 that are
divisible by 5 and 7, i.e., by 35, and so

|A ∩B| = 5.

Similarly |A∩C| is the set of all numbers between 1 and 200 that
are divisible by 5 and 11, i.e., by 55, and so

|A ∩ C| = 3.
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And |B ∩C| is the set of all numbers between 1 and 200 that are
divisible by 7 and 11, i.e., by 77, and so

|B ∩ C| = 2.

Finally |A ∩ B ∩ C| is the set of all numbers between 1 and 200
that are divisible by 5, 7 and 11, i.e., by 385, and so

|A ∩B ∩ C| = 0.

There are |A∪B∪C| numbers between 1 and 200 that are divisible
by at least one of 5, 7 or 11 and by the Inclusion-Exclusion
Principle, |A ∪B ∪ C| equals

|A|+ |B|+ |C| − |A ∩B| − |A ∩C| − |B ∩C|+ |A ∩B ∩C| = 76.

The general inclusion-exclusion principle

Let A1, A2, . . . , An be n sets. Then

|A1 ∪A2 ∪ · · · ∪An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+ . . .

+ (−1)n−1|A1 ∩A2 ∩ · · · ∩An|.

Here is a sketch of why this is true.
Suppose that x ∈ A1∪A2∪· · ·∪An is in exactly m of the sets A1,

A2, . . . , An. How many of the sets of the form Ai1∩Ai2∩· · ·∩Aik

is x in? The answer is
(
m
k

)
because it is just the number of ways

of choosing k of the sets which contain x.
This means that on the right hand side of the formula x will

be counted (
m

1

)
−
(
m

2

)
+ · · ·+ (−1)m−1

(
m

m

)
times.

However, from equation (6.6) of the previous chapter, we know
that for m ̸= 0,(

m

0

)
−
(
m

1

)
+ · · ·+ (−1)m

(
m

m

)
= 0,

and so (
m

1

)
−
(
m

2

)
+ · · ·+ (−1)m−1

(
m

m

)
=

(
m

0

)
= 1.

Therefore the right hand side of the formula actually counts x
exactly once.
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Example 7.5 You have 5 different apples and 4 different boxes.
In how many ways can you arrange the apples in the boxes so that
each box contains at least one apple?The perceptive

reader will see that
we are counting

onto functions!
Solution. Let X be the set of all possible arrangements of the
apples in the boxes and let Ai be the set of arrangements for which
the i-th box is empty. Then

|X| = 45 = 1024,

|Ai| = 35 = 243, (i = 1, 2, 3, 4)

|Ai ∩Aj | = 25 = 32, (i, j = 1, 2, 3, 4), i ̸= j

|Ai ∩Aj ∩Ak| = 1, (i, j, k = 1, 2, 3, 4), i, j, k all different

|A1 ∩A2 ∩A3 ∩A4| = 0.

Thus the total number of arrangements with at least one box
empty is

|A1 ∪A2 ∪A3 ∪A4|

=

4∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj |

+
∑

i<j<k

|Ai ∩Aj ∩Ak| − |A1 ∩A2 ∩A3 ∩A4|

= 4× 243− 6× 32 + 4× 1− 0 = 784.

The number of sets of the form Ai ∩Aj is
(
4
2

)
and the number of

sets of the form Ai ∩Aj ∩Ak is
(
4
3

)
, therefore the number of ways

to arrange the apples in the boxes so that each box contains at
least one apple is 1024− 784 = 240.

If all the sets Ai are subsets of a set X, the number of elements
of X not in any of the Ai is

|X \ (A1 ∪A2 ∪ · · · ∪An)| = |X| −
∑
i

|Ai|+
∑
i<j

|Ai ∩Aj | − . . .

− (−1)n−1|A1 ∩A2 ∩ · · · ∩An|.

Example 7.6 An Engineering student is given 5 glasses, each
containing a different type of beer. He is told the names of the
beers but not which glasses they are in. After drinking each beerQuite a diffi-

cult problem! he names it. In how many ways can he get every answer wrong?

Solution. Let X be the set of all possible guesses. A guess is just
a permutation of the 5 names and so |X| = 5! = 120.
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Let A1 be the set of guesses in which glass 1 is correctly named,
let A2 be the set of guesses in which glass 2 is correctly named,
and so on. Then for the sets A1, . . . , A5 we have

|Ai| = 4! = 24 for every i,

|Ai ∩Aj | = 3! = 6 for i < j,

|Ai ∩Aj ∩Ak| = 2! = 2 for i < j < k,

|Ai ∩Aj ∩Ak ∩Aℓ| = 1 for i < j < k < ℓ,

|A1 ∩A2 ∩A3 ∩A4 ∩A5| = 1.

Therefore, the number of guesses which have no beer correctly
named is

120− 5× 24 + 10× 6− 10× 2 + 5× 1− 1 = 44.

Summary

After reading this chapter you should be able to use the Inclusion-
Exclusion Principle to

calculate the size of the union of several sets;

calculate the size of the complement of the union of several
sets.

Problem Set 7

1. If possible, compute |A ∪B ∪C| from the given information.
If it is not possible, explain why.

(i) |A| = 12, |B| = 13, |C| = 7, |A ∩ B| = 5, |A ∩ C| = 4,
|B ∩ C| = 3 and |A ∩B ∩ C| = 2.

(ii) |A| = 12, |B| = 13, |C| = 7, |A ∩ B| = 10, |A ∩ C| = 7,
|B ∩ C| = 13 and |A ∩B ∩ C| = 2.

(iii) |A| = 12, |B| = 13, |C| = 7, |A ∩ B| = 10, |A ∩ C| = 4,
|B ∩ C| = 6 and |A ∩B ∩ C| = 2.

2. You have 6 different apples and 3 different boxes. In how
many ways can you arrange the apples in the boxes so that
each box contains at least one apple?
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3. In a group of 400 students, 300 are doing mathematics, 250
are doing physics and 200 are doing chemistry. Furthermore,
210 are doing mathematics and physics, 120 are doing mathe-
matics and chemistry and 80 are doing physics and chemistry.
Only 40 are doing all three subjects. How many students are
not doing any of these subjects?

4. In a group of 50 participants at a recent international meeting

30 speak English
18 speak German
26 speak French
9 speak both English and German

16 speak both English and French
8 speak both French and German

47 speak at least one of English, French or German

(i) How many people in the group cannot speak English,
French or German?

(ii) How many people in the group can speak all three lan-
guages?

5. How many numbers between 1 and 100 (inclusive) are divis-
ible by at least one of the numbers 3, 5 or 7?

6. Let X be the set of all 5-element subsets of {1, 2, . . . , 50}.
How many elements of X contain at least one element of
{1, 2, 3, 4, 5}?

7. (i) Given A = {1, 2, 3, 4}. How many permutations f :
A→ A have the property that f(i) = i for at least one
value of i?

(ii) Repeat (i) for A = {1, 2, 3, 4, 5}.

8. How many ways can you place 6 indistinguishable apples in
4 boxes with at most 3 apples in each box?

*9. How many permutations f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}
have the property that f(i) = i for at least two values of i?

*10. Use the Inclusion-Exclusion Principle to find a formula for
the number of onto functions from a set of size m to a set of
size n. (cf. Example 7.5.)
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Multinomial Coefficients

In this chapter we study a simple extension of the binomial the-
orem which will enable us to count permutations involving indis-
tinguishable objects.

Permutations
with repetition To illustrate the main idea, we begin with the following

Problem 8.1 How many ways can we permute the letters of

WOOLLOOMOOLOO

to form different “words”? (The “words” don’t have to make
sense.)

The answer is not 13! because, for example, simply permuting
the O’s among themselves will not change the word.

Solution. Observe that there are 3 L’s, 1 M , 8 O’s and 1 W .
To count the number of arrangements imagine that we have 13
boxes:

We shall place the letters of WOOLLOOMOOLOO in the
boxes, one to a box. To place the L’s we must choose 3 boxes
from the 13. This can be done in

(
13
3

)
ways. Now there are 10

boxes remaining and we choose one for the M . This can be done
in
(
10
1

)
ways. Out of the 9 remaining boxes we must choose 8 for

the O’s and this can be done in
(
9
8

)
ways. Then the W is placed

in the last box.
Thus the total number of arrangements is(

13

3

)(
10

1

)(
9

8

)(
1

1

)
=

13!

3! 10!

10!

1! 9!

9!

8! 1!

=
13!

3! 1! 8! 1!
.

53



54 multinomial coefficients

Another way
to think about

this calculation

Suppose that we first distinguish the letters by placing subscripts
on them. Then we have 13 different symbols:

W , O1, O2, L1, L2, O3, O4, M , O5, O6, L3, O7 and O8.

Now there are 13! arrangements of these symbols. But many
different permutations of the symbols correspond to the same
arrangement of the underlying letters. In fact, there are 3! ways
to permute the L’s and 8! ways to permute the O’s. Thus for
every arrangement of the letters there are 3!× 8! permutations of
the subscripted letters which correspond to it. This means that
the number of arrangements of the letters without subscripts is

13!

3! 8!
,

as we saw before.

Arrangements
involving

indistinguishable
objects

The number of (ordered) arrangements of n objects, in which there
are k1 objects of type 1, k2 objects of type 2, . . . , and km objects
of type m and where k1 + k2 + · · ·+ km = n, is

n!

k1! k2! . . . km!
.

This number is called a multinomial coefficient; it is written(
n

k1, k2, . . . , km

)
,

and pronounced “n choose k1, k2, . . . , km”.

To see why the formula is true, imagine putting the n objects in
n boxes. There are

(
n
k1

)
ways to choose the boxes in which to put

the objects of type 1. This leaves n− k1 boxes for the remaining
objects and so there are

(
n−k1

k2

)
ways to choose the boxes in which

to put the objects of type 2. This leaves n− k1− k2 boxes and so
there are

(
n−k1−k2

k3

)
ways to choose the boxes for the third type

of object. Continuing in this way, we see that the total number
of arrangements is(

n

k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)
· · ·
(
n− k1 − · · · − km−1

km

)
.

Writing out the binomial coefficients using formula (6.1) and
cancelling, this expression reduces to

n!

k1! k2! . . . km!
,

as required.
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Example 8.2 The total number of 10 digit numbers which can
be formed from two 1’s, two 2’s, two 3’s, two 4’s and two 5’s, is(

10

2, 2, 2, 2, 2

)
=

10!

2! 2! 2! 2! 2!
=

10!

(2!)5
.

Example 8.3 The number of ways to divide 20 people into 4
committees each consisting of 5 people is

20!

5! 5! 5! 5!
.

The binomial coefficient
(
n
k

)
is a special case of a multinomial

coefficient: (
n

k

)
=

(
n

k, n− k

)
.

Example 8.4 Suppose a coin is tossed 24 times. Then the total
number of possible outcomes (i.e., strings of heads and tails) is
224 and the number of possible outcomes with 14 heads and 10
tails is

24!

14! 10!
=

(
24

14

)
=

(
24

10

)
.

This sort of calculation can be combined with the Multipli-
cation Principle:

Example 8.5 Suppose a coin is tossed 24 times. How many
possible outcomes are there with exactly 6 heads in the first 12
tosses?

The number of ways of having exactly 6 heads in the first 12
tosses is

(
12
6

)
. After the 12 tosses, there are two possibilities for

the 13th toss, two for the 14th toss, . . . , and two for the 24th
toss. Hence the total number of possible outcomes is

(
12
6

)
× 212 =

924× 212.

Multinomial
theorem

A multinomial is an expression of the form

x1 + x2 + · · ·+ xm.

Suppose that we want to find the coefficient of xk1
1 xk2

2 . . . xkm
m in

the expansion of

(x1 + x2 + · · ·+ xm)n.
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We write this expansion as

(x1 + x2 + · · ·+ xm)n = (x1 + x2 + · · ·+ xm)

× (x1 + x2 + · · ·+ xm)

. . .

× (x1 + x2 + · · ·+ xm)

The terms of the expansion are obtained by choosing one sum-
mand from each bracketed expression and multiplying them to-
gether. And so the coefficient of xk1

1 xk2
2 . . . xkm

m is simply the num-
ber of ways of choosing k1 x1’s, k2 x2’s, and so on, from the n
bracketed terms, one from each factor. This is the number of
arrangements of n symbols, k1 of which are equal to x1, k2 of
which are equal to x2, etc. In other words, the coefficient of
xk1
1 xk2

2 . . . xkm
m is (

n

k1, k2, . . . , km

)
.

Thus we have the Multinomial Theorem.

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
xk1
1 xk2

2 . . . xkm
m .

Example 8.6 The coefficient of x3
1x

2
2x

2
3x

5
4 in the expansion of

(x1 + x2 + x3 + x4)
12 is(

12

3, 2, 2, 5

)
=

12!

3! 2! 2! 5!
.

Summary

After reading this chapter you should be able to calculate

the number of permutations of objects, allowing repetitions;

the coefficients in the expansion of (x1 + x2 + · · ·+ xm)n.

Problem Set 8

1. How many distinguishable arrangements are there of the let-
ters in the words

(i) hodmandod,

(ii) imperseverant,

(iii) myristicivorous,

(iv) indistinguishable,

(v) sociological,

(vi) Mississippi?
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2. Suppose 20 people are divided into 6 different committees
(labelled C1 to C6). Suppose that committee C1 is to have 3
people, committee C2 is to have 4 people, committee C3 is to
have 4 people, committee C4 is to have 2 people, committee
C5 is to have 3 people and committee C6 is to have 4 people.
How many arrangements are there?

3. How many ways can the set A = {1, 2, 3, 4} be written as the
union of two disjoint subsets each of size 2? Write down all
possibilities. For example A = {1, 2} ∪ {3, 4} is one of them.

4. In how many ways can 15 distinct balls be placed in 4 boxes
so that the first box contains 5 balls, the second box contains
3 balls, the third box contains 4 balls and the fourth box
contains 3 balls?

5. Suppose a single die is rolled 30 times, and the results are
recorded in order. Suppose that the number 1 appeared 4
times, the number 2 appeared 2 times, the number 3 ap-
peared 8 times, the number 4 appeared 5 times, the number
5 appears 4 times and the number 6 appeared 7 times. How
many possibilities are there for the string of outcomes?

6. What is the coefficient of

(i) x2
1x2x3 in the expansion of (x1 + x2 + x3)

4, and

(ii) x2
1x

3
2x

2
3 in the expansion of (x1 + x2 + x3)

7?

7. Prove that for positive integers m and n

mn =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
.

*8. Show that the number of integer solutions to the equation

x1 + 2x2 + 3x3 = 10,

where 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4 and 0 ≤ x3 ≤ 5 is the
coefficient of x10 in

(1+x+x2+x3)(1+x2+x4+x6+x8)(1+x3+x6+x9+x12+x15)

and thus find this number.

*9. (i) Given a set A of size n. How many sequences of mutu-
ally disjoint subsets A1, A2, . . . , Am are there whose
union is A and such that |Aj | = kj for j = 1, 2, . . . ,m?

(ii) In how many ways can you write {1, 2, . . . , 2n} as a
union of n mutually disjoint subsets of equal size?
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Boolean Expressions

In 1854 George Boole published his book: An Investigation intoGeorge Boole
(1815–1864) the Laws of Thought, on Which are Founded the Mathematical

Theories of Logic and Probability. This was the beginning of the
subject Boolean algebra: the algebra of set theory and logic which
now has applications to switching circuits and digital electronics.

The connection with switching circuits is described in this chap-
ter. Digital logic is the subject of Chapter 12.

The familiar algebra of arithmetic describes the rules obeyed
by addition, multiplication and negation of numbers. In Boolean
algebra we study the rules obeyed by “and”, “or” and “not”. It
turns out that these are the same rules which apply to “intersec-Turn back to the

definitions in Chapter 2
to see how the words

“and”, “or” and “not”
are used.

tion”, “union” and “complement” in set theory. This should come
as no surprise, because in the previous chapters you have already
seen close connections between these ideas.

At the heart of this connection between the set theory studied
in Chapter 2 and the mathematical approach to logic that you will
find in Chapter 11 is the study of functions which take on only
two values. In logic these two values are the symbols TRUE and
FALSE but in other applications different symbols are used such
as ON and OFF, or 1 and 0; all that matters is that there should
be just two symbols.

Example 9.1 The subset B of a set A corresponds to the func-
tion f : A → {0, 1}, where for all x ∈ A, f(x) = 1 if x ∈ B andIn set theory, the two

symbols are 1 and 0. f(x) = 0 if x /∈ B.

Figure 9.1
The function corre-

sponding to a subset.
1
0

A

B

The sentence “x belongs to B” is either true or false depending
on the location of x.

58
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Boolean
functions

One way to obtain a two-valued function is to ask a yes/no ques-
tion. Using “and”, “or” and “not” we can combine simple yes/no
questions into more complex ones. This leads naturally to the
general study of Boolean functions. But rather than using yes
and no as the two values we begin with 1 and 0. That is, we
consider functions f(x1, . . . , xn) which take on only the values 1
and 0 and for which the variables take on only the values 1 and 0.

Let S = {1, 0} and recall that

S2 = S × S = {(1, 1), (1, 0), (0, 1), (0, 0)},
S3 = S × S × S

= {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1),
(0, 1, 0), (0, 0, 1), (0, 0, 0)},

and, in general

Sn = S × S · · · × S︸ ︷︷ ︸
n

.

Then a function f : Sn → S is called a Boolean function of the
n variables x1, x2, . . . , xn.

The set Sn has 2n elements and therefore there are 22
n

possible
Boolean functions of n variables.

Decision
tables

In order to illustrate these ideas we begin with a very simple
situation.

Problem 9.2 At a particular time we ask the following three
questions.

(1) Is it cold?

(2) Am I going out?

(3) Is it raining?

Let x, y and z represent the answers to these questions and
let f(x, y, z) represent the decision whether or not I wear a coat.
Describe the function f .

Solution. We shall represent f by a table. In the table, the
variables x, y and z take on the values y or n according to whether
the answer to the corresponding question is yes or no.

The actual values for f(x, y, z) depend on your personal pref-
erences. Here is our choice.
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Figure 9.2
A decision table

x y z f(x, y, z)

y y y y
y y n y
y n y y
y n n y
n y y y
n y n n
n n y n
n n n n

In this table we have listed all possible combinations of x, y
and z. The values in the last column completely describe theA Boolean function is

completely described
by its decision table.

function. Moreover, if we replace y by 1 and n by 0 we get a
Boolean function.

Figure 9.3
A Boolean function

x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Decision tables can be a great help in clarifying the coding of
decisions in computer programs. In particular, they ensure that
all possible combinations of the conditions are accounted for.

Switching
circuits

Simple electrical circuits constructed only from switches have the
property that current either flows or does not flow according to
whether the various switches are on or off. Viewed in this wayWe could use 1 to

mean the switch
is on and 0 to

mean that it is off.

they are just like Boolean functions which use the values on and
off.

Problem 9.3 Can we build a simple circuit with a light and three
switches labelled x, y and z so that by turning on the appropriate
switch whenever the corresponding question is answered yes, the
light will come on whenever I should wear my coat?

For this to be possible we must allow each switch to open or
close the circuit in several places if necessary. We label the places
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where switch x operates with nx and we use nx′
to denote a

location which is open whenever x is closed and closed whenever
x is open.

The following is the required circuit:

Figure 9.4
Check that the
light comes on

precisely when I
should wear a coat!

����
���� ����

����
x

y z
ℓℓ

We would like to know how to describe Boolean functions in
terms of simple operations. This will help us translate these
functions into switching circuits and vice versa.

First consider the simplest possible circuits. (From now on we
leave out the lamp and the battery from our diagrams.)

����
x′

x x′

1 0
0 1

not

���� ����
x y

x y x ∧ y

1 1 1
1 0 0
0 1 0
0 0 0

and

��������
x

y

x y x ∨ y

1 1 1
1 0 1
0 1 1
0 0 0

or

The above functions correspond to not, and and or. That is,
in the diagram for x′, the current flows if and only if x is not on.
In the diagram for x ∧ y, the current flows if and only if x and yWe usually write xy

instead of x ∧ y. are on. In the diagram for x ∨ y, the current flows if and only if
x or y is on.

Boolean
expressions An expression made up from variables such as x’s, x′’s using ∧,

∨, 0 and 1 is called a Boolean expression.

The same symbols can be used to combine more complicated
Boolean expressions. For example, the circuit for fg is obtained
by putting the circuits for f and g in series and the circuit for
f ∨ g is obtained by putting the circuits for f and g in parallel.
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Example 9.4 We can use Boolean expressions to describe Bool-
ean functions. For example, the circuit (Figure 9.4) for the coat
example corresponds to the Boolean expression

x ∨ yz.

Disjunctive
normal form

Here is how to obtain a Boolean expression from a table describing
a Boolean function.

Suppose we have three variables x, y and z. (The same method
works for any number of variables.) For each line in the table
for which the function has a 1, write down a product expression
obtained by first taking x if a 1 occurs in the x column or by
taking x′ if a 0 occurs in the x column. Multiply this by y if 1
occurs in the y column or by y′ if 0 occurs in the y column. Finally
multiply by z if 1 occurs in the z column or by z′ if 0 occurs in
the z column. Then combine these expressions with ∨.

The Boolean expression thus obtained, is called the disjunctive
normal form of the function.

Example 9.5 The Boolean expression in disjunctive normal form
for the Boolean function of Figure 9.3 is

xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz.

Equivalent
Boolean

expressions Many different Boolean expressions correspond to exactly the
same Boolean function. For example the Boolean expressions

x ∨ yz and xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz

both correspond to the Boolean function given in Figure 9.3 for
the “coat problem”.

Boolean expressions corresponding to the same Boolean func-
tion are said to be equivalent. We shall write f = g if the Boolean
expressions f and g are equivalent.

Example 9.6 The Boolean expressions x ∨ y and (x ∨ y) ∨ x are
equivalent: they have the same decision table.

x y x ∨ y (x ∨ y) ∨ x

1 1 1 1
1 0 1 1
0 1 1 1
0 0 0 0
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Laws of Boolean algebra

It turns out that two Boolean expressions are equivalent if andE. V. Huntington
(1874–1952) only if one can be obtained from the other by applying the follow-

ing laws of Boolean algebra.
For all Boolean expressions f , g and h, we have

(i)

(ii)

(iii)

(iv)

(v)

f ∨ g = g ∨ f,

(f ∨ g) ∨ h = f ∨ (g ∨ h),

f ∨ (gh) = (f ∨ g)(f ∨ h),

f ∨ 0 = f,

f ∨ f ′ = 1,

fg = gf,

(fg)h = f(gh),

f(g ∨ h) = (fg) ∨ (fh),

f · 1 = f,

ff ′ = 0.

Actually, (ii) can
be derived from
the other laws.

An important consequence of these laws is the Boolean algebra
version of de Morgan’s laws:These laws can also

be checked directly
using decision tables. (f ∨ g)′ = f ′g′,

(fg)′ = f ′ ∨ g′.

From these laws many others can be derived but, as you will
see from the example, the derivations are not always obvious.

Example 9.7 Here is how to prove that ff = f .

Proof. First use (iv) and (v) to write

f = f · 1 = f(f ∨ f ′).

Next use the distributive law (iii) to obtain

f(f ∨ f ′) = ff ∨ ff ′.

But from (v) we have ff ′ = 0 and from (iv) we have ff ∨0 = ff .
Therefore

f(f ∨ f ′) = ff,

and it follows that ff = f .

A similar proof shows that f ∨ f = f .
We leave the derivation of other laws such as

f ∨ 1 = 1, and f ∨ (fg) = f.

as a challenging exercise.

Another use for these laws is to reduce complicated Boolean
expressions to simpler, more manageable forms.
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Example 9.8 Consider the Boolean expression

xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz

representing the Boolean function of Figure 9.3. Using the rules
of Boolean algebra, we have

xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz

= xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ xyz ∨ x′yz

= xy(z ∨ z′) ∨ xy′(z ∨ z′) ∨ (x ∨ x′)yz

= xy ∨ xy′ ∨ yz

= x(y ∨ y′) ∨ yz

= x ∨ yz,

so that

xy′z′ ∨ x′yz ∨ xy′z ∨ xyz′ ∨ xyz and x ∨ yz

are equivalent.

This method of reducing a Boolean expression to a simpler one
can be quite tedious. In the next chapter, we shall discuss a sys-
tematic procedure which produces a simpler expression equivalent
to the given one.

Yet another approach makes use of the fact that the laws of
Boolean algebra have nice interpretations in terms of switching
circuits. Therefore instead of using the rules of Boolean algebra
to reduce an expression you can draw the corresponding circuit
and simplify it directly.

Example 9.9 The expression xyz∨xy′z is equivalent to xz. This
can be seen directly from the circuit. In the following illustration,
all three circuits have the same effect.

x

x

y

y′

z

z

x

y

y′
z

x z

An unsolved
problem Given a Boolean expression in variables x1, x2, . . . , xn, how

quickly can we determine whether the expression ever takes the
value 1? At first sight the time appears to be proportional to 2n

(i.e., try every possible combination). We would like to find a
method whose running time depends on a power of n or else prove
that this is not possible. This is an important unsolved problem.
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Summary

After reading this chapter you should be able

write Boolean expressions in disjunctive normal form;

design switching circuits for Boolean functions.

Problem Set 9

1. Write a Boolean expression and the Boolean function for each
of the following switching circuits.

y z′

x

y′

z

y

x y′

z

x′ z′

y

y x

2. Write down a Boolean expression in disjunctive normal form
which represents the following Boolean function and then find
its corresponding switching circuit.

x y z f(x, y, z)

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1
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3. Find a switching circuit corresponding to the following Bool-
ean function

x y z f(x, y, z)

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

4. Use the laws of Boolean algebra to prove that the Boolean
expressions

xyz ∨ xyz′ ∨ xy′z ∨ x′yz ∨ x′y′z′ ∨ x′y′z

and
z ∨ xy ∨ x′y′

are equivalent.

*5. Using the rules of Boolean algebra, prove the following iden-
tities for all Boolean expressions f and g:

(i) f ∨ f = f , (ii) ff = f .

(iii) If f ∨ g = f for all f , then g = 0.

(iv) If fg = f for all f , then g = 1.

(v) If f ∨ g = 1 and fg = 0, then g = f ′.

(vi) f ′′ = f , (vii) 0′ = 1, (viii) 1′ = 0.

(ix ) f ∨ 1 = 1, (x ) f · 0 = 0.

(xi) f ∨ (fg) = f , (xii) f(f ∨ g) = f .

(xiii) If f ∨ g = f ∨ h and f ′ ∨ g = f ′ ∨ h, then g = h.

(xiv) f(gh) = (fg)h, (xv) f ∨ (g ∨ h) = (f ∨ g) ∨ h.

(xvi) (f ∨ g)′ = f ′g′, (xvii) (fg)′ = f ′ ∨ g′.

*6. For subsets A and B of a set U , interpret AB to mean A∩B,
A∨B to mean A∪B, and A′ to mean U \A. Show that the
laws of Boolean algebra hold for the subsets of U . (You will
have to give suitable interpretations to 0 and 1 — what are
they?)
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Karnaugh Maps

If we use the method described in the last chapter to produce
a Boolean expression from a Boolean function, we obtain a list
of product terms combined by ∨. This is called the disjunctive
normal form of the function. Usually we would like a simpler
expression which does the same job. That is, we want to min-
imize the number of switches in the corresponding circuit. One
way we can attempt to do this is to use the laws of Boolean al-
gebra to transform our expression into equivalent ones. But what
we really need is a systematic procedure which produces simpler
expressions. The method of Karnaugh maps is such a procedure.

The
Karnaugh

map The Karnaugh map of a Boolean function of x, y and z is a table
with two rows and four columns. The rows are labelled x and x′

and the columns are labelled yz, yz′, y′z′ and y′z. We put a 1Notice that in moving
from a column to

an adjacent column,
only one of the

factors changes.

in a square of the table if the product of the row label and the
column label occurs in the disjunctive normal form of the function.
Elsewhere we put a 0. (Some books just leave these entries blank.)

Example 10.1 In Example 9.5 the Boolean expression is

xyz ∨ xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz.

and the Karnaugh map (of the corresponding Boolean function)
is

yz yz′ y′z′ y′z

x 1 1 1 1
x′ 1 0 0 0

If we have four variables, say w, x, y and z, then the Karnaugh
map has four rows, labelled wx, wx′, w′x′ and w′x, and has four
columns, labelled yz, yz′, y′z′ and y′z.

67
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Example 10.2 For the Boolean expression

wxyz ∨ w′x′yz ∨ w′x′yz′ ∨ w′x′y′z′ ∨ w′x′y′z ∨ w′xyz′ ∨ w′xy′z′ ∨ w′xy′z,

the Karnaugh map is

yz yz′ y′z′ y′z

wx 1 0 0 0
wx′ 0 0 0 0
w′x′ 1 1 1 1
w′x 0 1 1 1

The Karnaugh
map method Here is the method which constructs a simple Boolean expression

from the table. In the following description a block is a rectangular
region of the Karnaugh map in which every entry is 1. We think
of the top row of the table being adjacent to the bottom row and
the right hand column being adjacent to the left hand column.
That is, the table should really be drawn on a torus (i.e., on a
doughnut). So a block can wrap around from left to right, or
from top to bottom.

(i) Circle all blocks of eight 1’s.

(ii) Circle all blocks of four 1’s not wholly contained in blocks
already marked.

(iii) Circle all blocks of two 1’s not wholly contained in blocks
already marked.

(iv) Circle all blocks of one 1’s not wholly contained in blocks
already marked.

(v) Select as few of the outlined blocks as possible such that the
selected blocks include every square which has a 1 in it.

(vi) For each block, write down the corresponding product term.

(vii) Combine the product terms with ∨.

A variable, such as x occurs in the product term for a block
only if it is “constant on the block”. That is, it occurs in the
label of each row (or column) of the block and x′ does not occur.
Conversely, x′ will be part of the product term if x does not appear
in the label of any row (or column) of the block. See Example 10.3
on the next page.

The essential point to note is that the product terms chosen
in (vi) have a very simple form. On the other hand, there may
be several different ways to choose the blocks in (v). That is, the
Karnaugh map method does not always produce a unique sim-
plest expression. Nevertheless, it usually produces an expression
considerably simpler than the disjunctive normal form.
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Example 10.3 The block in the following Karnaugh map corre-
sponds to the product term x′y′.

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

wx

wx′

w′x′

w′x

yz yz′ y′z′ y′z

We can see that x′y′ is the product term, because only x′ and
y′ are “constant on the block”. Alternatively, we can calculate
this directly using the laws of Boolean algebra:

wx′y′z ∨ w′x′y′z ∨ wx′y′z′ ∨ w′x′y′z′

= (w ∨ w′)x′y′z ∨ (w ∨ w′)x′y′z′

= x′y′z ∨ x′y′z′

= x′y′(z ∨ z′)

= x′y′

Problem 10.4 Find a simple switching circuit corresponding to
the Boolean function

x y z f(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 1

Solution. Working directly from the table, a corresponding Bool-
ean expression is

xyz ∨ xyz′ ∨ xy′z ∨ x′yz′ ∨ x′y′z′.

Thus a switching circuit (not the best one) corresponding to
the given Boolean function is
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x y z

x y z′

x y′ z

x′ y z′

x′ y′ z′

However we can obtain a simpler Boolean expression by using
the Karnaugh map method as follows. We look for rectangular
blocks of two, four or eight 1’s. There are four such blocks (each
with two 1’s) but only three of them are necessary. The “split”
block corresponds to xz, and the other two blocks that we haveWe could have chosen

yz′ instead of xy. marked correspond to xy and x′z′, respectively.

1

0

1

1

0

1

1

0

x

x′

yz yz′ y′z′ y′z

Therefore a simpler Boolean expression is

x′z′ ∨ xz ∨ xy.

Hence a switching circuit (a better one!) corresponding to the
given Boolean function is

x′ z′

x z

x y

Even though the Karnaugh map method produces simple ex-
pressions, it does not always produce a circuit with the smallest
number of switches. For example, the circuit just found can be
simplified further:Even better than

the Karnaugh
map solution.

x′ z′

x z

y
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Example 10.5 Consider the Karnaugh map of the Boolean ex-
pression of the “coat” problem (Example 10.1). Using the Kar-
naugh map method, we see that a simpler Boolean expression
which represents the same function is x ∨ yz (cf. Example 9.4).

1

1

1

0

1

0

1

0

x

x′

yz yz′ y′z′ y′z

Example 10.6 The Boolean expression in disjunctive normal
form for the Karnaugh map

yz yz′ y′z′ y′z

x 1 1 0 1
x′ 1 0 1 1

is
xyz ∨ xyz′ ∨ xy′z ∨ x′yz ∨ x′y′z′ ∨ x′y′z.

However we can obtain a simpler Boolean expression by using the
Karnaugh map method. We look for rectangular blocks of four
1’s, two 1’s, etc. There is one “split” block of four (giving z), and
two blocks of two (giving xy and x′y′).

1

1

1

0

0

1

1

1

x

x′

yz yz′ y′z′ y′z

Thus a simpler Boolean expression is

z ∨ xy ∨ x′y′.

Example 10.7 Consider the Karnaugh map of Example 10.2.

1

0

1

0

0

0

1

1

0

0

1

1

0

0

1

1

wx

wx′

w′x′

w′x

yz yz′ y′z′ y′z
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We obtain a simple Boolean expression for this map by search-
ing for rectangular blocks of eight 1’s, four 1’s, etc. There are
three blocks of four and one block of one. The rectangular block
of four gives rise to w′x′, and the other two square blocks of four
give us the terms w′z′ and w′y′. The single “1” gives wxyz.

Hence a simpler Boolean expression is

wxyz ∨ w′x′ ∨ w′y′ ∨ w′z′.

Remember that the Boolean expressions produced by the Kar-Sometimes there
are several ways

to simplify a
Boolean expression.

naugh map method are not necessarily unique. The expression
obtained depends on the selection of circled blocks and often there
is more than one way to make this selection.

Other
methods

The Karnaugh map method is only practical for three or four
variables, although it can be used for five or six. Beyond six vari-
ables it is better to use another (equivalent) method: the Quine-
McClusky algorithm. In the 1950’s and 1960’s Karnaugh maps
and the Quine-McClusky method were used to minimize the num-
ber of electronic gates in digital logic circuits. These techniques
are no longer used so extensively. Instead, circuits are built from
data-selectors, programmable logic arrays or microprocessors. For
example, a data-selector allows you to describe the decision table
you need simply by setting certain inputs high or low.

Summary

After reading this chapter you should be able to use Karnaugh
maps to find simple forms for Boolean expressions and functions
of three and four variables.

Problem Set 10

1. Find a simple switching circuit corresponding to the following
Boolean function

x y z f(x, y, z)

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0
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2. Find a simple switching circuit corresponding to the following
Boolean function

x y z g(x, y, z)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 0

3. For the following Karnaugh maps write down corresponding
(simple) Boolean expressions.

(i)
yz yz′ y′z′ y′z

x 1 1 1 1
x′ 1 0 0 1

(ii)
yz yz′ y′z′ y′z

wx 1 1 1 0
wx′ 0 1 1 1
w′x′ 1 1 1 1
w′x 1 1 1 0

(iii)
yz yz′ y′z′ y′z

x 1 0 1 1
x′ 1 1 0 1

(iv)
yz yz′ y′z′ y′z

wx 0 1 0 0
wx′ 0 1 1 1
w′x′ 1 1 1 0
w′x 0 1 1 0
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Logic

An important part of mathematics is establishing the truth or fal-
sity of mathematical assertions such as “there are infinitely many
prime numbers”, or “every quadratic equation has two real roots”.
We shall see that we can think of these mathematical statements
as Boolean expressions or Boolean functions defined using TRUE

and FALSE instead of 1 and 0. This application of Boolean algebra
is called the logic of propositions or the propositional calculus.

Propositions

By proposition we mean a sentence that is either TRUE or FALSE.
It is often the case that the truth or falsity of a sentence, such

as “It is raining.”, depends on time. In order to regard these as
propositions we implicitly assume that the time is the present.

Example 11.1 The following are propositions:

(a) It is cold.

(b) Pigs have wings.

(c) Sydney is in Australia.

(d) It is always cold in Melbourne.

(e) 1 + 1 = 3.

(f) 123 + 1 = 103 + 93.

(g) The moon is a cube.

Example 11.2 The following are not propositions.

(i) x = 3.

(ii) How are you?

(iii) Have a cup of coffee.

If p and q are propositions, we are interested in the way that the
truth or falsity of propositions constructed from p and q depend
on the truth or falsity of p and q.

74
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Compound
propositions Compound propositions can be formed by combining p and q with

and, or, not, implies, if and only if and other similar words.

Example 11.3 The following are compound propositions:

(a) It is always cold in Sydney and 1 + 1 = 3.

(b) It is cold or I am going out.

(c) It is not raining.

(d) The moon is a cube if and only if the sun rises in the west.Note that
“if p, then q”

has the same
meaning as

“p implies q”.

(e) If I am going out, then I shall wear a coat.

(f) The moon is a cube implies 1 + 1 = 3.

Basic
connectives Instead of using words to connect propositions we shall use the

following symbols:

p ∧ q means p and q
p ∨ q means p or q
∼p means not p
p⇒ q means p implies q (or if p, then q)
p⇔ q means p if and only if q

Using these symbols (called connectives) we can build com-
pound propositions. In Chapter 9, we used the term Boolean
expression instead of compound proposition.

Truth
tables We use truth tables to show the truth values of the five basic

compound propositions. We use T for TRUE and F for FALSE.

Figure 11.1
Five basic

truth tables

p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

(a) p ∧ q (b) p ∨ q

p ∼p
T F
F T

(c) ∼p
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p q p⇒ q

T T T
T F F
F T T
F F T

p q p⇔ q

T T T
T F F
F T F
F F T

(d) p⇒ q (e) p⇔ q

Notice that p∨q is the inclusive or. That is, p∨q is TRUE when
both p and q are TRUE.

A truth table is nothing other than the table of a Boolean
function in which the values 1 and 0 have been replaced by T andIn Chapter 9 we used

p′ instead of ∼p and
pq instead of p ∧ q.

F . In fact, the tables for ∼p, p∨q and p∧q have already occurred
in Chapter 9 in connection with the simplest possible switching
circuits.

We know from Chapter 9 that there are 16 different Boolean
functions of two variables and therefore there are more truth
tables than those listed above. We shall see some of the others in
Chapter 12 when we study digital logic.

Example 11.4 The truth table for ∼(p⇒ q) is

p q p⇒ q ∼(p⇒ q)

T T T F
T F F T
F T T F
F F T F

Example 11.5 The truth table for p ∧ ∼q is

p q ∼q p ∧ ∼q
T T F F
T F T T
F T F F
F F T F
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Example 11.6 The truth table for (p⇒ q) ∧ (q ⇒ r) is

p q r p⇒ q q ⇒ r (p⇒ q) ∧ (q ⇒ r)

T T T T T T
T T F T F F
T F T F T F
T F F F T F
F T T T T T
F T F T F F
F F T T T T
F F F T T T

Equivalent
compound

propositions
Two compound propositions are said to be equivalent if they have
the same truth table.

Example 11.7 The propositions of Examples 11.4 and 11.5 have
the same truth table and therefore ∼(p ⇒ q) and p ∧ ∼q are
equivalent.

Example 11.8 By comparing the following truth table for the
proposition (p⇒ q)∧(q ⇒ p) with the truth table for p⇔ q given
in Figure 11.1 (e) we see that these propositions are equivalent.

p q p⇒ q q ⇒ p (p⇒ q) ∧ (q ⇒ p)

T T T T T
T F F T F
F T T F F
F F T T T

Tautology
A compound proposition that is always TRUE is called a tautology
or a theorem.

Example 11.9 The following propositions are tautologies:

(i) p ∨ ∼p.
(ii) [(p⇒ q) ∧ (q ⇒ r)]⇒ (p⇒ r).
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It is easy to see that (i) is always true, but (ii) requires further
explanation. We shall use a truth table. Let s be the proposition
(p⇒ q)∧ (q ⇒ r). The truth table for s appears in Example 11.6
and we use this to obtain the truth table for s⇒ (p⇒ r):

p q r s p⇒ r s⇒ (p⇒ r)

T T T T T T
T T F F F T
T F T F T T
T F F F F T
F T T T T T
F T F F T T
F F T T T T
F F F T T T

Since every entry in the last column is T , the proposition in (ii)
is a tautology.

Contradiction
A compound proposition that is always FALSE is called a contra-
diction.

Example 11.10 The following propositions are contradictions:

(i) p ∧ ∼p.
(ii) (p ∧ q) ∧ (∼p).

Again (i) is obvious and (ii) follows from the truth table:

p q p ∧ q ∼p (p ∧ q) ∧ (∼p)
T T T F F
T F F F F
F T F T F
F F F T F

Quantifiers

At this point it is good idea to introduce two new abbreviations.
We read the symbol ∀ as “for all”, and the symbol ∃ as “there
exists” or as “for some”.

The symbols ∀ and ∃ are called quantifiers and we can use them
to turn statements involving a variable x into propositions.
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Example 11.11 The statement “x is an integer and x is odd”
is not a proposition because we don’t know what x is. But, the
statement “(∀x ∈ R) x is an integer and x is odd” is a proposition
(and FALSE). Similarly, the statement “(∃x ∈ R) x is an integer
and x is odd” is a proposition (and TRUE).

The study of propositions built up from simple statements in-
volving quantifiers, variables and the connectives of the propo-
sitional calculus is called predicate calculus. It is at the heart
of mathematics. At the very least it provides a convenient and
precise language for the expression of mathematical ideas. For
example, the definition of B ⊆ A, where A and B are sets, can be
written as

(∀x) (x ∈ B)⇒ (x ∈ A).

Universal
Sets

We use the notation p(x) to represent a statement that involves
the variable x. In order to work with statements of this type we
need to know something about the possible values of x. We take
the point of view that in any particular problem there is some set
U , called the universal set , and we consider only those statements
p(x) for which x ∈ U . That is, we interpret ∀x to mean ∀x ∈ U
and ∃x to mean ∃x ∈ U .

Example 11.12 Let U be the set of integers and p(x) the state-
ment “x is odd”. The statements

(∀x)p(x) and (∃x)p(x)

are propositions: the first one is FALSE and the second one is TRUE.

The truth or falsity of a statement involving quantifiers depends
on the choice of universal set.

Example 11.13 Let p(x) be the statement x2 + 1 = 0. If the
universal set U is taken to be the set of integers, then the propo-
sition (∃x)p(x) is false. On the other hand, if U is taken to be the
set of complex numbers, then (∃x)p(x) is true.

More about
implication The proposition p ⇒ q is read “p implies q” or “if p, then q”.

It is important to understand when this proposition is true and
when it is false. Remember that propositions must be either TRUE
or FALSE. Take the example:

“If it is raining, then I shall wear my coat.”
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Suppose I make this statement. Under what circumstances have
I lied to you? There is only one case, namely, when it is raining
but I am not wearing my coat. Looking at the truth table 11.1(d)
for ⇒, we see that this is what we would expect.

The truth table for ⇒ describes how implication is used in
mathematics. One of the most common causes of error in un-
dergraduate mathematics is the misuse of ⇒. It is important to
realize that p need not have anything to do with q.

Example 11.14 Consider the following four propositions.

(a) If 1 + 1 = 2, then
d

dx
sinx = cosx.

(b) If pigs have wings, then I shall pass the examination.

(c) If pigs have wings, then I shall fail the examination.

(d) If the moon is a cube, then the sun rises in the west.

We note that in each of the given compound propositions p⇒ q,
p has nothing to do with q. In the first example, since both p and
q are TRUE, the proposition is TRUE. For the remaining three, p is
always FALSE and therefore each one of these propositions is TRUE.

Of course, in the examples that arise in practice the proposi-
tions p and q usually refer to related ideas.

Example 11.15 The proposition

(∀x ∈ Z)(x = 5⇒ x2 = 25)

is TRUE. This is because when x = 5 is FALSE it doesn’t matter
whether or not x2 = 25 is TRUE or FALSE; the compound proposi-
tion is TRUE in both cases. On the other hand, if x = 5 is TRUE,
then it so happens that x2 = 25 is also TRUE, and so the compound
proposition is again TRUE.

On the other hand, the proposition

(∀x ∈ Z)(x = 5 implies x2 = 36)

is FALSE. This is because if x = 5 is TRUE then x2 must be equal
to 25 which shows that x2 = 36 is FALSE, and so the compound
proposition is FALSE.
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More about
negation

As indicated above, we use ∼p to mean the negation of p. For
example, if p is the sentence “It is cold”, then ∼p is the sentenceSome books use

¬p instead of ∼p. “It is not cold”. (When dealing with Boolean expressions we
usually write p′ instead of ∼p.)

Negating compound statements requires some care. Using
truth tables we can easily verify the following equivalences, where
we use “≡” to indicate that the propositions have the same truth
table. The first two are known as de Morgan’s rules.

(i) ∼(p ∨ q) ≡ (∼p) ∧ (∼q),
(ii) ∼(p ∧ q) ≡ (∼p) ∨ (∼q),
(iii) ∼(p⇒ q) ≡ p ∧ ∼q,

Further care is needed with sentences involving ∀ and ∃. The
rules are

(iv) ∼(∀x)p(x) ≡ (∃x)(∼p(x)),
(v) ∼(∃x)p(x) ≡ (∀x)(∼p(x)).

Example 11.16 The negation of

“All diligent students are successful”,

is

“Some diligent student is not successful”.

Logical
argument

If we know that p ⇒ q is TRUE and if we also know that p is
TRUE, then we can conclude that q is TRUE. This sort of reasoning
occurs quite often in mathematics. In this situation we call p the
hypothesis and q the conclusion.

It is often the case that we must prove that a proposition of
the form p⇒ q is TRUE.

By looking at the truth table for ⇒ we see that there is only
one way that p⇒ q can be FALSE. This is when p is TRUE, but q
is FALSE.

So to show that p ⇒ q is always TRUE we must show that
whenever p is TRUE, then q must be TRUE as well.

Example 11.17 In Exercise 4 of Problem Set 2, you were asked
to prove that for any sets A and B,

A ∩B = A⇒ A ⊆ B.



82 logic

This can be done by considering the case when A∩B = A is TRUE
and then showing that A ⊆ B is TRUE. Note that the fact that
A ⊆ B is TRUE is equivalent to another implication, namely:

(∀x)((x ∈ A)⇒ (x ∈ B)).

Contrapositive

Using truth tables we can check that the propositions

p⇒ q and ∼q ⇒ ∼p

are equivalent.

The proposition ∼q ⇒ ∼p is called the contrapositive of p⇒ q.
Instead of proving p ⇒ q is TRUE, sometimes it is easier to prove
the contrapositive. This is usually called “arguing by contradic-
tion”. That is, if we assume that q is FALSE and then show that
p is FALSE, we can conclude that p⇒ q is TRUE.

Example 11.18 Take the universal set to be the set Z of integers.
To prove that

(∀x)((x2 is even)⇒ (x is even))

it is easier to prove the contrapositive:

(∀x)((x is odd)⇒ (x2 is odd)).

Converse Note carefully that p ⇒ q is not the same as q ⇒ p. The
proposition q ⇒ p is the converse of p ⇒ q and the converse
of (∀x)(p(x)⇒ q(x)) is (∀x)(q(x)⇒ p(x)).

Example 11.19 Taking the universal set U to be the set of all
integers, if p(x) is “x = 1” and q(x) is “x2 = 1”, then the
statement

(∀x)(p(x)⇒ q(x))

is TRUE but its converse

(∀x)(q(x)⇒ p(x))

is FALSE.
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Logical puzzles

The principles described in this section can often be used to solve
logical puzzles. Lewis Carroll invented many of these and the
following example is due to him.

Example 11.20
Babies are illogical. Nobody who can manage a crocodile is
despised. Illogical persons are despised. Therefore babies
cannot manage crocodiles.

In this example the universal set U is the set of all people.
Suppose

B(x) means “x is a baby”,
M(x) means “x can manage crocodiles”,
D(x) means “x is despised”,
I(x) means “x is illogical”,

then the above argument can be written as

(∀x)((B(x)⇒ I(x)) ∧ (I(x)⇒ D(x)) ∧ (M(x)⇒ ∼D(x)))

⇒ (∀x)(B(x)⇒ ∼M(x))).

The contrapositive of (M(x) ⇒ ∼D(x)) is (D(x) ⇒ ∼M(x))
and using the fact that (p ⇒ q) ∧ (q ⇒ r) implies p ⇒ r, it isSee Example 11.9 (ii).
not too hard to see that the argument is correct. Alternatively, a
truth table could be used.

Summary

After reading this chapter you should know about

connectives and quantifiers;

truth tables;The truth table for
⇒ is very important. logical argument and the converse and contrapositive of an

implication;

the rules for negation of propositions.Including ∀ and ∃.

Problem Set 11

1. Draw truth tables for the following propositions.

(i) ∼(p ∨ q). (ii) ∼p ∧ ∼q.
(iii) p ∨ p. (iv) (∼(p ∨ q)) ∨ (∼p ∧ q) ∨ p.

(v) p ∧ q ∧ r. (vi) p ∧ (p⇒ q).
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2. Decide whether the following propositions are true or false:

(i) If 1 + 1 = 2, then 2 + 2 = 5.

(ii) If 1 + 1 ̸= 2, then pigs might fly.

(iii) If 1 + 1 = 2, then 2 + 3 = 5.

3. Show that the following pairs of propositions are equivalent:

(i) (p ∨ q)⇒ r; (∼p ∧ ∼q) ∨ r.

(ii) p⇒ ∼q; q ⇒ ∼p.
(iii) p ∨ (q ∧ r); (p ∨ q) ∧ (p ∨ r).

(iv) p⇒ (q ∨ r); (p⇒ q) ∨ (p⇒ r).

4. Show that each of the following propositions is a tautology:

(i) ∼(p∨q)∨(∼p∧q)∨p. (ii) ((p ∨ q) ∧ ∼q)⇒ p.

5. Show that each of the following propositions is a contradic-
tion:

(i) (p ∧ q) ∧ ∼(p ∨ q). (ii) (p ∨ q) ∧ (∼p ∧ ∼q).

6. Write down the truth table for the proposition

(p ∧ ∼q)⇒ ∼(p⇒ q)

and determine whether or not it is a tautology or a contra-
diction.

7. Write the following propositions in symbolic form:

(i) All hungry crocodiles are not amiable.

(ii) Some crocodiles, if not hungry, are amiable.

8. Taking the universal set to be the set R of all real numbers,
determine the truth or falsity of the following sentences.

(i) (∀x)
(
(x ∈ Z)⇒ (x2 − x− 1 > 0)

)
.

(ii) (∃x)
(
(x ∈ Z) ∧ (x2 − x− 1 > 0)

)
.

(iii) (∀x)
(
(x2 = 1)⇒ (x = 1)

)
.

(iv) (∃x)
(
(x2 = 1) ∧ (x = 1)

)
.

*9. (i) Write down all 16 truth tables of two variables p and q.

(ii) For each truth table found in (i) find a compound
proposition formed from p, q, ∧, ∨ and ∼ which has
the same table.
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Digital Logic

So far we have seen how Boolean functions occur in connection
with decision tables, switching circuits, Karnaugh maps and the
logic of propositions. In this section we study circuits that can be
used to compute truth tables. Equivalently, we want to compute
the value of a Boolean expression, given the values of the variables.

Logic gates

The building blocks of digital circuits are called logic gates. In this
book a gate is a simple circuit that in general has two inputs and aThe gates used in

practice can have
more than two inputs.

single output. The circuit corresponding to a Boolean expression
in n variables will have n inputs and a single output. We go back
to our earlier notation, using 1 instead of T and 0 instead of F .
The seven most common logic gates are shown in Figure 12.2.
These logic gates are readily available digital electronic devices
(called chips or integrated circuits).

From
expressions

to circuits Example 12.1 Here is how to build a circuit to represent the
Boolean expression x ∨ x′y.

We have input lines labelled x and y. We obtain x′ by passing
the x-input through an inverter and then we obtain x′y by usingAn inverter is another

name for a NOT gate. an AND gate. Finally, we combine the output from the AND

gate with x using an OR gate. The final output represents the
expression x ∨ x′y.

Figure 12.1

x

y

x′

x′y

x∨x′y

85
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Figure 12.2
Seven digital

logic gates

Name Logic Gate Truth table

AND
x
y z=xy

x y z

1 1 1
1 0 0
0 1 0
0 0 0

OR
x
y z=x∨y

x y z

1 1 1
1 0 1
0 1 1
0 0 0

NOT x z=x′

x z

1 0
0 1

A NOT gate is
an inverter.

NAND
x
y z=(xy)′

x y z

1 1 0
1 0 1
0 1 1
0 0 1

NOR
x
y z=(x∨y)′

x y z

1 1 0
1 0 0
0 1 0
0 0 1

XOR
x
y z=x′y∨xy′

x y z

1 1 0
1 0 1
0 1 1
0 0 0

Exclusive OR

XNOR
x
y z=xy∨x′y′

x y z

1 1 1
1 0 0
0 1 0
0 0 1

Exclusive NOR
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Example 12.2 Figure 12.3 is the digital logic circuit (using AND

and OR gates and inverters) for the Boolean expression x′y ∨ xy′

Figure 12.3 x

y
y′

x′

xy′

x′y

x′y∨xy′

Note that the Boolean expression x′y ∨ xy′ can be represented
just by the XOR (exclusive OR) gate.

Example 12.3 The following circuit represents the Boolean ex-
pression (x ∨ y)′ ∨ y′z.

Figure 12.4 x

y

z

x∨y

y′

(x∨y)′

y′z

(x∨y)′∨y′z

From circuits
to expressions Example 12.4 Given a logic circuit, such as the one below, we

can write down the Boolean expression which it represents by
tracing the input lines through the gates.

Figure 12.5 x

y

z

A

B

a

b

c

The output of gate A is a = xy and the output of gate B is
b = y ∨ z. The final output is the exclusive or a ⊕ b of a and b.We use ⊕ as

the symbol for
the exclusive or.

Thus the expression represented by the circuit is

xy ⊕ (y ∨ z).
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Example 12.5 The Boolean expression corresponding to the fol-
lowing digital logic circuit is xy′z′ ∨ z. As demonstrated in the
previous example, we can see this simply be tracing the effect of
the gates on the input lines (as indicated by the labels on the
diagram).

x

y

z

y′

z′
y′z′

xy′z′

xy′z′∨z

Summary

After reading this chapter you should be able to

construct digital circuits from Boolean expressions and vice
versa.

Problem Set 12

1. Draw the digital logic circuits, using AND and OR gates and
inverters for the following Boolean expressions:

(i) xy ∨ x′ (ii) xyz′ ∨ z (iii) (x′∨y)(x∨y′).

2. Write down the Boolean expression corresponding to the fol-
lowing logic circuit:

x

y

z

3. Construct a digital logic circuit which corresponds to the
truth table for “implies”.

*4. (i) Using only NOR gates, construct digital logic circuitsThis shows that every
Boolean function can
be constructed using

only NOR gates.

which represent

(a) NOT (b) AND (c) OR.

(ii) Repeat (i) using only NAND gates.
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Mathematical Induction

Mathematical induction is a general way of proving that a
statement about the integer n is true for all integers n ≥ k, where
k is some fixed integer. The statement about n is often deduced
from observations of special cases. But no matter how many
special cases we observe we cannot be sure that the statement
is true in general , unless we prove it.

The
Principle of

Mathematical
Induction.

Let S(n) be a statement about the integer n. Suppose that we
know that for some integer k

(a) S(k) is true, and

(b) (∀n ≥ k)(S(n)⇒ S(n+ 1)) is true.Generally k is a small
integer such as 0 or 1. Then we may conclude that S(n) is true for all integers n ≥ k.

This principle can be expressed as a statement about subsets
of the set N of natural numbers:

Let A ⊆ N. If 0 ∈ A and if n ∈ A⇒ n+ 1 ∈ A, then A = N.

To see the connection between this form of the principle of
induction and the one above, take A to be the set of all natural
numbers n for which S(n+ k) is true.

Examples

The remainder of this chapter consists of examples of proofs using
induction. In each case we have propositions S(n) indexed by n
and we must show that S(n) ⇒ S(n + 1) is true. Look back to
the truth table for “implies” (Figure 11.1 (d)) and you will see
that the only way S(n)⇒ S(n+ 1) can be false is for S(n) to be
true but S(n+ 1) to be false. We must show that this possibility
never occurs. That is why in part (b) of each example we begin by
saying “Suppose that S(n) is true” and then deduce that S(n+1)
must be true also.

89
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Example 13.1 Use induction to prove that the following state-Identity
ment is true for all integers n ≥ 1 :

1 + 2 + 22 + 23 + · · ·+ 2n = 2n+1 − 1.

Proof. Let S(n) be the given proposition. Then

(a) S(1) is the proposition 1 + 21 = 21+1 − 1, which is clearly
true.

(b) Suppose that S(n) is true, i.e.

1 + 2 + 22 + 23 + · · ·+ 2n = 2n+1 − 1.

To prove that S(n+ 1) is true, we proceed as follows:

1 + 2 + 22+23 + · · ·+ 2n + 2n+1

= [1 + 2 + 22 + 23 + · · ·+ 2n] + 2n+1

= 2n+1 − 1 + 2n+1 (hypothesis)

= 2 · 2n+1 − 1 = 2(n+1)+1 − 1.

Thus S(n + 1) is true and so we have shown that S(n) ⇒
S(n+ 1) is true.

Hence S(n) is true for all positive integers n.

Example 13.2 Use induction to show that n3−4n+6 is divisibleDivisibility

by 3, for all positive integers n.

Proof. Let S(n) be the proposition

n3 − 4n+ 6 is divisible by 3.

(a) When n = 1,

n3 − 4n+ 6 = 1− 4 + 6 = 3,

which is clearly divisible by 3. Hence S(1) is true.

(b) Suppose that S(n) is true, i.e.

n3 − 4n+ 6 = 3ℓ, for some integer ℓ .

To prove that S(n+1) is true, the following are the required
steps:

(n+ 1)3 − 4(n+ 1) + 6

= n3 + 3n2 + 3n+ 1− 4n− 4 + 6

= n3 + 3n2 − n+ 3

= (n3 − 4n+ 6) + (3n2 + 3n− 3)

= 3ℓ+ 3(n2 + n− 1) (hypothesis).

and clearly the right-hand side is divisible by 3. Therefore
(n+1)3− 4(n+1)+6 is divisible by 3, i.e. S(n+1) is true.
Thus we have shown that S(n)⇒ S(n+ 1) is true.

Hence S(n) is true for all positive integers n.
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Example 13.3 Use induction to show that 2n < n! for all inte-Inequality

gers n > 3.

Proof. Let S(n) be the proposition “2n < n!”.

(a) An interesting point here is that the proposition S(n) is false
for n = 1, 2, 3. However, when n = 4, we see that 24 = 16
and 4! = 24 and so 24 < 4! . Thus S(4) is true.

(b) Suppose that S(n) is true for some integer n ≥ 4, i.e.,

2n < n!.

To prove that S(n+ 1) is true, we proceed as follows:

2n+1 = 2n · 2
< 2 · n! (hypothesis)

< (n+ 1)n! (since n ≥ 4)

= (n+ 1)!.

Therefore S(n+1) is true and so we have shown that S(n)⇒
S(n+ 1) is true.

Hence S(n) is true for all n > 3.

Example 13.4 Use induction to prove thatIdentity

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
,

for all positive integers n.

Proof. Let S(n) be the given proposition. Then

(a) S(1) is the proposition

13 =
12(1 + 1)2

4
,

which is clearly true.

(b) Suppose that S(n) is true, i.e.

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.
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To prove that S(n+ 1) is true, we proceed as follows.

13 + 23+33 + · · ·+ n3 + (n+ 1)3

=
[
13 + 23 + 33 + · · ·+ n3

]
+ (n+ 1)3

=
n2(n+ 1)2

4
+ (n+ 1)3 (hypothesis)

=
n2(n+ 1)2 + 4(n+ 1)3

4

=
(n+ 1)2(n2 + 4n+ 4)

4

=
(n+ 1)2(n+ 2)2

4

=
(n+ 1)2

(
(n+ 1) + 1

)2
4

.

Thus S(n + 1) is true and so we have shown that S(n) ⇒
S(n+ 1) is true. Hence S(n) is true for all positive integers
n.

Example 13.5 What is the maximum number of regions in theGeometry
plane defined by n lines?

Let this number be Ln. By experiment we find that

L0 = 1, L1 = 2, L2 = 4.

We are tempted to guess that Ln = 2n. Using induction we can
prove that Ln ≤ 2n, by observing that when we add a line it
divides each region into at most two pieces. But L3 = 7. In fact
the n-th line splits k old regions into two pieces if and only if
it meets the previous lines in k − 1 distinct points. So adding
the n-th line to the picture can produce at most n new regions.
Thus Ln ≤ Ln−1+n. But we guarantee that n regions are split by
making sure that the n-th line is not parallel to any of the previous
lines and does not pass through any existing intersection. Then
we can conclude that Ln = Ln−1 + n. Now we see that the first
few values of Ln are 1, 2, 4, 7, 11, 16, . . . . Subtracting 1 from
these numbers produces the series 0, 1, 3, 6, 10, 15, . . . and if we
are lucky we can recognize these numbers as binomial coefficients.
Thus we conjecture that Ln = 1+

(
n+1
2

)
= 1

2 (n
2+n+2). Indeed,

this can be proved by induction. The formula Ln = Ln−1 + n is
an example of a recurrence relation. In Chapter 14 we shall use
the method of generating functions to solve it.
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Example 13.6 We shall attempt to prove by induction that “allAmusement
horses are black”.

Let S(n) be the proposition that “any set of n horses all have
the same colour”. Then S(1) is certainly true. Now suppose that
S(n) is true. We will show that S(n+ 1) is true.

Consider a paddock containing n+1 horses. Choose one of the
horses and lead it away. This leaves n horses and because S(n)
is true they all have the same colour. Now bring back the horse
that was led away and choose another horse. Again because S(n)
is true the remaining n horses all have the same colour. But thisWhere is the error

in this argument? means that the horse that was chosen first has the same colour
as the others. Thus S(n+ 1) is true. It follows by induction that
S(n) is true for all n ≥ 1.

The other day I saw a black horse, therefore all horses are black!

Summary

After reading this chapter you should be able to use the Principle
of Mathematical Induction to prove simple algebraic identities and
inequalities.

Problem Set 13

Use induction to prove the following propositions:

1. 6 divides n(n2 + 5) for all positive integers n.

2. 2n ≥ n+ 10, for all integers n ≥ 4.

3. 1 + 3 + 5 + · · ·+ (2n− 1) = n2, for all positive integers n.

4. The sum of the first n positive even integers is n2 + n.

5. 2+5+8+· · ·+(3n−1) = n(3n+ 1)

2
, for all positive integers n.

6. 3 divides n3 + 5n for all n ≥ 1.

7. n! ≥ 2n−1 for all positive integers n.

8. 11n − 4n is divisible by 7 for all positive integers n.

9. The sum of the cubes of any three consecutive positive inte-
gers is divisible by 9.

10. Prove that 5n − 4n − 1 is divisible by 16 for all positive
integers n.

11. In Example 13.5, prove that Ln = 1 + (1 + 2 + · · ·+ n).
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Generating Functions

When faced with a difficult counting problem, such as finding a
formula for the n-th Catalan number cn, it is often advisable to
consider the numbers c0, c1, c2, . . . simultaneously and to bundle
them up into a single mathematical object. The object that we use
is called a generating function and this way of tackling counting
problems turns out to be the most powerful technique known.

Unfortunately “generating functions” are not functions at all
and the use of the word “function” in this context is an historical
accident. It would be much better to call them “formal power
series”, and some books do. We continue to call them “generating
functions” because that is what you will find in most other books
at this level.

In this chapter we describe the basic properties of generating
functions and use them to solve some typical recurrence relations.
In the next chapter we use the insights gained through these
examples to give a more direct method of solving linear recurrence
relations.

The algebra of
generating

functions
Given a sequence

(14.1) a0, a1, a2, a3, . . . ,

its generating function is the power series

(14.2) G(z) = a0 + a1z + a2z
2 + a3z

3 + · · · .

In Σ-notation we write this as

G(z) =

∞∑
k=0

akz
k.

Example 14.3 The generating function of the Catalan numbers
is

C(z) =

∞∑
n=0

cnz
n = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · ·

94
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Addition and
multiplication

Generating functions can be added and multiplied just like poly-
nomials. That is, if

G1(z) = a0 + a1z + a2z
2 + a3z

3 + · · ·

and
G2(z) = b0 + b1z + b2z

2 + b3z
3 + · · ·

then

G1(z)+G2(z) = (a0+b0)+(a1+b1)z+(a2+b2)z
2+(a3+b3)z

3+· · ·

and
G1(z)G2(z) = c0 + c1z + c2z

2 + c3z
3 + · · · ,

where
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Closed
forms

Generating functions are power series which usually involve in-
finitely many terms. We would like to find simpler expressions
for these series, using only a finite number of mathematical oper-
ations. These simpler expressions are called closed forms.

If the terms of the sequence (14.1) are 0 from some point on,
the generating function (14.2) is really an ordinary polynomial
and it is already a closed form.

Example 14.4 The generating function of the sequence

1, 6, 15, 20, 15, 6, 1, 0, 0, 0, . . .

is
1 + 6z + 15z2 + 20z3 + 15z4 + 6z5 + z6 = (1 + z)6.

For many of the sequences (14.1), even those with infinitely
many non-zero terms, we can still find closed forms.

Example 14.5 The generating function of 1, 1, 1, 1, 1, 1, . . . is

G(z) = 1 + z + z2 + · · · .

Multiplying by 1− z we find that G(z)(1− z) = 1 and this allows
us to write

G(z) =
1

1− z
.

This is a closed form for G(z).
Another way to see this is to observe that

G(z)− 1 = z + z2 + z3 + · · · = z(1 + z + z2 + · · · ) = zG(z).
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Then (1 − z)G(z) = 1 and again we find that G(z) = (1 − z)−1.

Negative
powers of

1− z
Later in this chapter it will be useful to know the coefficient of
zm in (1− z)−n. One way to find a formula for these coefficients
is to raise the generating function of the previous example to the
power n and then to use some counting techniques from Chapter 6
to complete the calculation.

From Example 14.5 we have

(1− z)−1 = 1 + z + z2 + z3 + · · ·

and therefore, for n ≥ 1,

(1− z)−n = (1 + z + z2 + z3 + · · · ) . . . (1 + z + z2 + z3 + · · · ).︸ ︷︷ ︸
n factors

The coefficient of zm in this product is equal to the number of
ways one can form zm by multiplying together n terms, one from
each factor. That is, it is the number of choices of d1, d2, . . . , dn
such that

zd1zd2 . . . zdn = zm.

This is the number of solutions to the equation

d1 + d2 + · · ·+ dn = m,

where each di is a non-negative integer. We know from Prob-
lem 6.12 of Chapter 6 that this number is(

m+ n− 1

m

)
.

Putting these observations together gives the formula

(14.6) (1− z)−n =

∞∑
m=0

(
m+ n− 1

m

)
zm.

Example 14.7 When n = 2 we have(
m+ n− 1

m

)
=

(
m+ 1

m

)
= m+ 1,

and so
(1− z)−2 = 1 + 2z + 3z2 + 4z3 + · · · .
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Recurrence relations

A recurrence relation for a sequence

x0, x1, x2, . . .

is an expression for xn in terms of x0, x1, . . . , xn−1.

Example 14.8 The Catalan numbers cn satisfy the recurrence
relation

(14.9) cn+1 = c0cn + c1cn−1 + · · ·+ cnc0.

This will be proved in Chapter 19. If we know suitable starting
values (in this case c0 = 1) we can use the recurrence relation to
calculate the sequence to as many terms as we please. For the
Catalan numbers we find:

1, 1, 2, 5, 14, 42, . . .

We shall see that it is often the case that a recurrence relation
can be translated into a formula involving the generating function
of the sequence and from this we can obtain a closed form.

Example 14.10 Let Ln be the maximum number of regions in
the plane produced by n lines (Example 13.5). Then the Ln satisfy
the recurrence relation

Ln = Ln−1 + n for n ≥ 1,

with L0 = 1.
The generating function for the sequence L0, L1, L2, . . . is

L(z) = L0 + L1z + L2z
2 + L3z

3 + · · · .
After multiplying this by z we find that

zL(z) = L0z + L1z
2 + L2z

3 + · · · .
Now we can subtract zL(z) from L(z) to obtain

L(z)−zL(z) = L0+(L1−L0)z+(L2−L1)z
2+(L3−L2)z

3+ · · · .
But we know that L0 = 1 and that Ln − Ln−1 = n, therefore

(1− z)L(z) = 1 + z + 2z2 + 3z3 + · · ·
= 1 + z(1 + 2z + 3z2 + · · · ).

Using Example 14.7 we see that

(1− z)L(z) = 1 + z(1− z)−2.

Therefore a closed form for L(z) is

L(z) = (1− z)−1 + z(1− z)−3.

Whenever we have a closed form, we can expand it to find the
coefficients of the generating function.
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Example 14.11 Equation (14.6) allows us to expand the closed
form of L(z) that we found in the previous example. Thus

L(z) =

∞∑
n=0

zn + z

( ∞∑
m=0

(
m+ 2

2

)
zm

)

=

∞∑
n=0

zn +

∞∑
m=0

(
m+ 2

2

)
zm+1

=

∞∑
n=0

zn +

∞∑
n=1

(
n+ 1

2

)
zn,

where we have used the substitution n = m + 1 in the second
summation of the last line. By definition, the coefficient of zn is
Ln and therefore Ln = 1 +

(
n+1
2

)
.

Partial
fraction

expansions
It turns out that a large class of recurrence relations lead to
generating functions that have a closed form which is a rational
function; i.e., one polynomial divided by another.

Example 14.12 The expression

1 + z + 3z3

2 + 5z − 4z2

is a rational function.

The theory of partial fractions allows us to write any rational
function as a sum of a polynomial and simple rational functions
of the form

A

(1− λz)k
.

λ may be a
complex number.

These simple rational functions can be expanded using the formula
(14.6). After adding these expansions, the coefficient of zn gives
the solution to the original recurrence relation.

Example 14.13 Consider the recurrence relation:

xn + 2xn−1 − 15xn−2 = 0,

for n ≥ 2, where x0 = 0 and x1 = 1. Let

G(z) = x0 + x1z + x2z
2 + x3z

3 + · · ·
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be the generating function of the sequence x0, x1, x2, . . . . After
multiplying by z and z2 we find that

zG(z) = x0z + x1z
2 + x2z

3 + · · ·
z2G(z) = x0z

2 + x1z
3 + · · ·

We now form the expression G(z) + 2zG(z)− 15z2G(z). Because
of the recurrence relation most of the terms cancel and so

G(z)(1 + 2z − 15z2) = x0 + (x1 + 2x0)z.

Using the initial values x0 = 0 and x1 = 1 and dividing by
(1 + 2z − 15z2) leads to the closed form

G(z) =
z

1 + 2z − 15z2
.

In order to find a formula for xn we use partial fractions to
simplify the expression just found for G(z).

We have 1 + 2z − 15z2 = (1− 3z)(1 + 5z) and we want to find
numbers A and B such that

z

1 + 2z − 15z2
=

A

1− 3z
+

B

1 + 5z
.

Solving this for A and B we find that A = 1
8 and B = − 1

8 . Thus

G(z) =
1

8

1

1− 3z
− 1

8

1

1 + 5z
.

Using the formula for (1 − z)−1, replacing z by 3z for the first
term, and z by −5z for the second term, we obtain

G(z) =
1

8
(1 + 3z + 32z2 + · · · )− 1

8
(1− 5z + 52z2 − 53z3 + · · · )

The coefficient of zn in G(z) is xn and from the expression for
G(z) just found we have the solution

xn =
1

8
· 3n − 1

8
(−5)n

to our recurrence relation.

Summary

After reading this chapter you should know the meaning of

generating function;

closed form;

recurrence relation.
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Problem Set 14

1. Find the generating functions for the following sequences and
write them in as simple a form as possible.

(i) The binomial coefficients

(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

(ii) 1, a, a2, a3, . . .

2. Find a closed form for the generating function of the sequence
a0, a1, . . . , where a0 = 1, a1 = 1 and

an = 5an−1 − 6an−2.

3. Let a0, a1, a2, . . . , be a sequence of integers satisfying the
recurrence relation

an − 2an−1 − an−2 + 2an−3 = 0,

for n ≥ 4, where a0 = 0, a1 = 0, a2 = 2 and a3 = 5. Find a
closed form for the generating function of this sequence.

4. Solve the following recurrence relations using generating func-
tions:

(i) xn = 4xn−1 − 3xn−2, where x0 = 1 and x1 = 2.

(ii) xn = 3xn−1 − 3xn−2 + xn−3, where x0 = 0, x1 = 1 and
x2 = 3.

(iii) xn = 10xn−1 − 25xn−2, for n ≥ 2, where x0 = −1 and
x1 = 5.

(iv) xn+3 − 6xn+2 + 11xn+1 − 6xn = 0, for n ≥ 0, where
x0 = 1, x1 = 0 and x2 = −1.

5. Consider the recurrence relation

an = an−1 + 4,

for n > 0 and where a0 = 1. Find a closed form for its
generating function and thereby find a formula for an.

*6. Consider the following recurrence relation

an+2 = an+1 + an + n

for n ≥ 0 where a0 = a1 = 1. Write the corresponding
generating function in its closed form.
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Linear Recurrence Relations

In Chapter 14 we introduced recurrence relations and solved some
typical examples using generating functions. In this chapter we
continue to study recurrence relations but concentrate on a simple
but important case which can be solved directly without recourse
to generating functions. Nevertheless, we use generating functions
to guide us to the correct form of the solution.

Homogeneous linear recurrence relations

A k-th order linear recurrence relation for the sequence x0, x1, · · ·
has the form

xn = a1xn−1 + a2xn−2 + · · ·+ akxn−k + fn, for n ≥ k,

where a1, a2, . . . , ak are constants and fk, fk+1, fk+2, . . . is some
given sequence.

We shall restrict our attention to the homogeneous linear re-Recurrence relations
are called difference

equations by
some authors.

currence relations: those for which all the fn are 0. These are the
recurrence relations of the form

(15.1) xn = a1xn−1 + a2xn−2 + · · ·+ akxn−k, for n ≥ k.

or, equivalently,

(15.1∗) xn−a1xn−1−a2xn−2−· · ·−akxn−k = 0, for n ≥ k.

Fibonacci
numbers

The sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

in which each number is the sum of the two preceding numbers
arises in a surprising number of places. This is the sequence
of Fibonacci numbers. The next example describes one way of
obtaining it.

101
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Problem 15.2 Suppose that you can climb a staircase by taking
either one or two steps at a time. Find a recurrence relation for
the number of ways you can get to the n-th step.

Solution. Let Fn be the number of ways to get to the n-th step.
Observe that you can get to the n-th step in two ways: either by
taking a single stride from the (n−1)-st step or a single stride from
the (n− 2)-nd step. There are Fn−1 ways to get to the (n− 1)-st
step and Fn−2 ways to get to the (n − 2)-nd step. Therefore we
obtain the recurrence relation

Fn = Fn−1 + Fn−2.

Because F0 = F1 = 1, this recurrence relation produces the
sequence of Fibonacci numbers.

Similarly, if Tn is the number of ways to get to the n-th step
when you can take up to three steps at a time, then the recurrence
relation would be

Tn = Tn−1 + Tn−2 + Tn−3.

First order
linear

recurrence
relations

The simplest example of (15.1) is xn = λxn−1. (In this case k = 1
and a1 = λ.) You will find that the closed form for its generating
function is x0(1 − λz)−1 and you could use this to find xn. On
the other hand, we can find xn directly as follows.

Putting n equal to 1, 2, 3, . . . we find that

x1 = λx0

x2 = λx1 = λ2x0

x3 = λx2 = λ3x0

. . .

It is easy to see that, in general,

xn = λnx0.

Indeed we can prove this by induction. For n = 1 we have
x1 = λx0 by assumption. On the other hand, if n ≥ 1 and
xn = λnx0, then xn+1 = λxn = λλnx0 = λn+1x0, completing
the induction step.
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Second order
linear

recurrence
relations

The previous example gives us a hint as to how to tackle the
general case. Better understanding can be obtained by studying
the second order recurrence relation

(15.3) xn = axn−1 + bxn−2, for n ≥ 2.

If x′
0, x

′
1, x

′
2, . . . and x′′

0 , x
′′
1 , x

′′
2 , . . . are two sequences which sat-

isfies the recurrence relation (15.3) and if A and B are constants,
then xn = Ax′

n +Bx′′
n also satisfies (15.3). This is because

xn = Ax′
n +Bx′′

n = A(ax′
n−1 + bx′

n−2) +B(ax′′
n−1 + bx′′

n−2)

= a(Ax′
n−1 +Bx′′

n−1) + b(Ax′
n−2 +Bx′′

n−2)

= axn−1 + bxn−2.

Thus the linear combination (Ax′
n + Bx′′

n) of the two solutions
(x′

n) and (x′′
n) of (15.3) is also a solution. This is a very im-

portant property and holds in general for all homogeneous linear
recurrence relations.

Problem 15.4 What is the general solution to the recurrence
relation (15.3)?

Solution. Taking our cue from Example 14.13 we introduce the
generating function G(z) of x0, x1, x2, . . . and observe that

G(z) = x0 + x1z + x2z
2 + x3z

3 + · · ·
zG(z) = x0z + x1z

2 + x2z
3 + · · ·

z2G(z) = x0z
2 + x1z

3 + · · · .

Therefore, using (15.3),

G(z)− azG(z)− bz2G(z) = x0 + (x1 − ax0)z.

From this we obtain the closed form

G(z) =
x0 + (x1 − ax0)z

1− az − bz2
.

The next step is to factorize 1− az − bz2; i.e., write

1− az − bz2 = (1− λ1z)(1− λ2z)

for some numbers λ1 and λ2. We can now find a partial fraction
expansion for G(z). If λ1 ̸= λ2, this will be of the form

G(z) =
A

1− λ1z
+

B

1− λ2z
,
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for some constants A and B; whereas if λ1 = λ2, it will be of the
form

G(z) =
A

1− λ1z
+

B

(1− λ1z)2
.

In the first case, the coefficient of zn in G(z) is

xn = Aλn
1 +Bλn

2

and in the second case (see Example 14.7), the coefficient of zn is

xn = Aλn
1 +B(n+ 1)λn

1 = (A+B)λn
1 +Bnλn

1 .

To find the values of A and B we need to know some initial
conditions such as the values of x0 and x1.

The calculations just completed show that the recurrence rela-
tion (15.3) always has a solution of the form xn = λn for some
λ. Knowing this we can dispense with generating functions and
find λ directly. This is summarised in the following theorem and
is best illustrated by example.

Theorem 15.5 If 1 − az − bz2 = (1 − λ1z)(1 − λ2z), then theλ1 and λ2 are
the roots of the

characteristic equation
λ2 − aλ − b = 0.

general solution to the recurrence relation

xn = axn−1 + bxn−2, for n ≥ 2.

is either xn = Aλn
1 + Bλn

2 or xn = Cλn
1 + Dnλn

1 according to
whether λ1 ̸= λ2 or λ1 = λ2, respectively.

Example 15.6 We shall solve the recurrence relation

(15.7) xn + 2xn−1 − 15xn−2 = 0,

for n ≥ 2, where x0 = 0 and x1 = 1, which we solved in ExampleNow we obtain the
solution without using
generating functions.

14.13 using generating functions.
Substituting xn = λn into (15.7) gives

λn + 2λn−1 − 15λn−2 = 0.

When n = 2 this becomes

λ2 + 2λ− 15 = 0,

and in factorized form this is (λ− 3)(λ+ 5) = 0. Hence λ is 3 or
−5. Therefore, the general solution is

xn = A 3n +B(−5)n.
In order to find A and B we must use the initial conditions x0 = 0
and x1 = 1. Putting n = 0 and n = 1 leads to the equations

A+B = 0

3A− 5B = 1.

From these equations we have A = 1
8 and B = − 1

8 . Hence the
solution is

xn =
1

8
· 3n − 1

8
(−5)n.
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Fibonacci
numbers

again

At the beginning of this chapter we defined the Fibonacci numbers
as the sequence 1, 1, 2, 3, 5, 8, . . . satisfying the recurrence relation

Fn = Fn−1 + Fn−2,

with initial conditions F0 = F1 = 1.
We now look for a solution of the form Fn = λn. That is, we

must have
λn = λn−1 + λn−2.

In particular, for n = 2 we have λ2 = λ + 1 and this quadratic
equation has two solutions:

λ1 = 1
2 (1 +

√
5) and λ2 = 1

2 (1−
√
5).

This leads to two solutions for Fn, namely

Fn =
(
1
2 (1 +

√
5)
)n

and Fn =
(
1
2 (1−

√
5)
)n

.

Neither of the solutions just found satisfies F1 = 1. However, the
general solution

Fn = A

(
1 +
√
5

2

)n

+B

(
1−
√
5

2

)n

will satisfy the initial conditions provided we choose the correct
values for A and B. Putting n = 0 and n = 1 leads to the
equations

A+ B = 1

1
2 (1 +

√
5)A+ 1

2 (1−
√
5)B = 1

Solving these equations yields

A =
1 +
√
5

2
√
5

and B = −1−
√
5

2
√
5

.

Hence the n-th Fibonacci number is

Fn =
1√
5

(1 +
√
5

2

)n+1

−

(
1−
√
5

2

)n+1
 .

The
characteristic

equation
In general, putting xn = λn into the recurrence relation (15.1)
leads to the characteristic equation

(15.8) λk − a1λ
k−1 − a2λ

k−2 − · · · − ak−1λ− ak = 0.

For each solution λ to this equation we find that xn = λn is a
solution to the given recurrence relation.
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Remarks

1. If λ1, λ2, . . . , λk are the roots of (15.8) and they are distinct, then the
general solution to (15.1) is

A1λ
n
1 +A2λ

n
2 + · · ·+Akλ

n
k .

2. If the characteristic equation (15.8) has a repeated root, say λ occurs
with multiplicity m, then we find that

λn, nλn, n2λn, . . . , nm−1λn

are also solutions to the recurrence relation. This is a consequence
of (14.6) applied to the partial fraction expansion of the generating
function.

3. In order to describe the general solution to (15.1) let us suppose that the
roots of (15.8) are λ1, λ2, . . . , λr and that λi occurs with multiplicity
mi. Then the general solution is

r∑
i=1

mi∑
j=1

Aij n
j−1 λn

i ,

where the Aij are arbitrary constants.

Example 15.9 Solve xn = 6xn−1− 12xn−2 +8xn−3, where x0 =
0, x1 = 2 and x2 = 12.

The characteristic equation is

λ3 − 6λ2 + 12λ− 8 = 0.

That is, (λ−2)3 = 0 and therefore λ = 2 is a root of multiplicity 3.
Thus the general solution to the recurrence relation is

xn = A 2n +B n2n + C n22n.

Putting n equal to 0, 1 and 2 we find that

A = 0

2A+ 2B + 2C = 2

4A+ 8B + 16C = 12

Thus A = 0 and B = C = 1
2 . Therefore the solution is

xn =
1

2
(n+ n2)2n.

The same solution can be obtained using the generating func-
tion G(z) of the xn. Its closed form turns out to be

G(z) =
2z

1− 6z + 12z2 − 8z3
=

2z

(1− 2z)3
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and the coefficient of zn can be found using formula (14.6).

Summary

After reading this chapter you should be able to

obtain the characteristic equation of a linear recurrence re-
lation;

use the roots of the characteristic equation to obtain the
general solution of the recurrence relation.

Problem Set 15

1. (i) Show that xn = 6 ·2n−4 is a solution to the recurrence
relation

xn = 3xn−1 − 2xn−2.

(ii) Show that xn = (3n+1 − 1)/2 is a solution to the recur-
rence relation

xn+1 − xn = 3n+1.

(iii) Show that xn = n! is a solution to the recurrence rela-
tion

xn − n(n− 1)xn−2 = 0.

2. Find a recurrence relation for the sum Sn =
∑n

i=1 i
2.

3. Solve the following recurrence relations:

(i) xn = 7xn−1, for n ≥ 1, where x0 = 2.

(ii) xn = 10xn−1 − 25xn−2, for n ≥ 2, where x0 = −1 and
x1 = 5.

(iii) xn+3 − 6xn+2 + 11xn+1 − 6xn = 0, for n ≥ 0, where
x0 = 1, x1 = 0 and x2 = −1.

4. Solve the following recurrence relations:

(i) xn = 4xn−1 − 3xn−2, where x0 = 1 and x1 = 2.

(ii) xn = 3xn−1 − 3xn−2 + xn−3, where x0 = 0, x1 = 1 and
x2 = 3.

5. Solve the following recurrence relations:

(i) xn = 5xn−1 − 6xn−2, where x0 = 1 and x1 = 1.

(ii) xn− 5xn−1 +8xn−2− 4xn−3 = 0, where x0 = 0, x1 = 2
and x2 = 4.
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Formal Languages

For the remainder of the book we are concerned with the pro-
duction, recognition and counting of strings of symbols.

Example 16.1 If Σ = {a, b, c}, then some of the strings obtained
from Σ are abc, aaaaaa, bacaabbca, and bcabcbacc.

Collections of strings of symbols are called formal languages.
More precisely, we begin with a finite set Σ, called the alphabet
and let Σ∗ be the set of all strings that can be made from the
elements of Σ. Any subset of Σ∗ is called a formal language.

The set Σ∗ includes the empty string ε which has no symbolsε has length 0.
in it. We need ε in our theory in the same way that we need 0 in
arithmetic and ∅ in set theory.

Example 16.2 The collection of all balanced strings of brackets
is a language. In this case the alphabet is the set { (, ) }. Here,
and in many other cases, we will be interested in finding out how
many strings there are of length n for each n = 0, 1, 2, . . . .

Example 16.3 In Chapter 11 we considered compound propo-
sitions constructed from the symbols p, q, r, . . . together with
brackets and the connectives ∧, ∨, ∼, ⇒ and ⇔. Although we
didn’t discuss it there, not all strings of these symbols represent
meaningful propositions. For example, ⇒ p ∧ ∧ makes no sense.
So we need some rules to tell us which strings represent compound
propositions. The strings of symbols built up using these rules are
called well-formed formulae (WFF’s). Here are the rules:

(i) Individual variables p, q, r, . . . are WFF’s.

(ii) If x and y are WFF’s, so are

(a) (x ∨ y),

(b) (x ∧ y),

(c) (x⇒ y),

(d) (x⇔ y),

(e) ∼x.

108
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The collection of all WFF’s formed in this way is the language
of propositional calculus.

Operations
on languages There are several important ways to create new languages out of

old ones.

Union If L1 and L2 are languages we can form their union L = L1 ∪L2.
That is L consists of the strings that are either in L1 or in L2.

Concatenation A more interesting operation is concatenation. If u and v are
strings, then the concatenation of u with v is the string uv pro-
duced by writing u followed by v. For example, if u = aabcb and
v = cbbaab, then uv = aabcbcbbaab. We can also say that u and v
are juxtaposed. Note that the concatenation of the empty string
ε with any string produces the same string: εv = vε = v.

The idea of concatenation can be extended to languages in
a natural way. If L1 and L2 are languages, then we define theNote that ∅L = ∅

and ∅ ∪ L = L. concatenation L1L2 of L1 with L2 to be

L1L2 = {uv | u ∈ L1, v ∈ L2 }.

Powers of L are used to denote the concatenation of a language
L with itself. Thus L2 = LL, L3 = LLL, etc. We also set
L0 = {ε} and L1 = L.

Example 16.4 Let Σ = {a, b, c, 0}, and let L1 = {a0, b0, c0} and
L2 = {aa, bb} be two languages. Then the concatenation L1L2 of
L1 and L2 is

L1L2 = {a0aa, b0aa, c0aa, a0bb, b0bb, c0bb},

and the concatenation L2
1 of L1 and L1 is

L2
1 = {a0a0, a0b0, a0c0, b0a0, b0b0, b0c0, c0a0, c0b0, c0c0}.

*-closure Another useful operation on languages is ∗-closure (also called
the Kleene closure). If L is any language, then L∗ is the set ofStephen C. Kleene

(1909– ) all strings (including the empty string ε) that can be formed by
concatenating any number of strings of L. That is,

L∗ =

∞∪
i=0

Li.

Example 16.5 Let Σ = {0, 1} and L = {0, 01}. Then the ∗-
closure L∗ is the collection of all strings of 0’s and 1’s in which
every 1 is preceded by at least one 0.
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Theorem 16.6 If L and M are two languages over the same
alphabet Σ and if L ⊆M , then L∗ ⊆M∗.

Proof. This is clear because if α ∈ L∗, then α = ℓ1ℓ2 . . . ℓm is
constructed by concatenating elements ℓ1, ℓ2, . . . , ℓm of L. As
these are also elements of M (by hypothesis), we have α ∈ M∗.

Regular expressions; regular languages

According to our definition a language can be any collection of
strings whatsoever. This is too general. We now restrict ourselves
to some special types of languages called regular languages.

A regular language will be defined by something called a regular
expression.

A regular expression over an alphabet Σ is a special sort of
string built from the elements of Σ and five additional symbols:

( ) + ∗ ε

A single regular expression r (to be defined below) designates
a regular language L(r) over the alphabet Σ.

Regular expressions are built up from simpler regular expres-
sions as follows.

(i) ∅ is a regular expression which designates the empty lan-
guage and ε is a regular expression which designates the
language {ε}.

(ii) Each element a of Σ is a regular expression and the regular
language that it designates is {a}.

(iii) If r1 is a regular expression that designates L1 and if r2 is
a regular expression that designates L2, then (r1 + r2) is a
regular expression that designates the language L1 ∪ L2.

(iv) If r1 is a regular expression that designates L1 and if r2
is a regular expression that designates L2, then (r1r2) is a
regular expression that designates the language L1L2, the
concatenation of L1 and L2.

(v) If r is a regular expression that designates L, then (r)∗ is
a regular expression that designates the language L∗, the
∗-closure of L.

As in arithmetic, brackets are omitted whenever it is conve-
nient to do so. This is possible because + and concatenation are
associative and we may take ∗ to have higher precedence than con-
catenation and +, and concatenation to have higher precedence
than +. Associativity of concatenation means that (r1(r2r3)) and
((r1r2)r3) designate the same language. To say that concatenation
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has higher precedence than + means that we interpret r1r2 + r3
as ((r1r2) + r3) rather than (r1(r2 + r3)).

Example 16.7 We can write ab∗ + a instead of ((a(b∗))+ a).

Regular expressions give us an easy way to describe many
languages.

Example 16.8 The following table gives some regular expres-
sions over the alphabet {a, b} together with their designated lan-
guages.

Regular expression Designated language

a {a}
a∗ {a}∗ = {ε, a, aa, aaa, . . . }
ab {ab}

a+ b {a, b}
(ab)∗ {ab}∗ = {ε, ab, abab, ababab, . . . }
ab∗ {a}{b}∗ = {a, ab, abb, abbb, . . . }

a∗ + (ab)∗ {a}∗ ∪ {ab}∗ = {ε, a, aa, . . . , ab, abab, . . . }
(ab)∗a {ab}∗{a} = {a, aba, ababa, abababa, . . . }
(ab)∗ab∗ Strings that begin with any number (pos-

sibly zero) of pairs ab followed by a sin-
gle a, followed by any number (possibly
zero) of b’s.

Not all languages are regular. For example, the language whose
strings are all strings of balanced brackets is not regular. We shall
see why in Chapter 17.

Equivalent
expressions It is possible for the same language to be designated by different

regular expressions.

Example 16.9 The regular expressions (a+b+c)∗ and (a∗b∗c∗)∗

designate the same language.
To see this, let Σ = {a, b, c}. Then the language designated by

(a+ b+ c)∗ is Σ∗, which is the set of all possible strings that can
be made from a, b and c. On the other hand, Σ is a subset of the
language designated by a∗b∗c∗ and so by Theorem 16.6 Σ∗ is a
subset of the language designated by (a∗b∗c∗)∗ which in turn is a
subset of Σ∗. It follows that the languages are equal and therefore
both expressions designate the language of all possible strings.
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Example 16.10 Let L be the language consisting of all strings
of 0’s and 1’s in which every string ends in 1 and in which every
1 except the last is followed by a 0. Then L can be designated by
0∗1(00∗1)∗ and by (0 + 10)∗1.

The algebra
of regular

expressions

If we agree to write r = s whenever the regular expressions r and
s designate the same language, then we have:

r + s = s+ r

r + (s+ t) = (r + s) + t

rε = εr = r

r(s+ t) = rs+ rt

(r + s)t = rt+ st

(r + s)∗ = (r∗s)∗r∗

(rs)∗ = ε+ r(sr)∗s

(r∗)∗ = r∗

Connections with counting

We often want to know how many strings of length n there are in
a given language L.

Example 16.11 Let the alphabet Σ = {a, b, c, d}. How many
strings of length 10 are there in the language designated by the
regular expression a∗b∗c∗d∗?

This is equivalent to choosing 10 things from 4 things, allowing
repetition. Therefore the answer is(

10 + 4− 1

4− 1

)
=

(
13

3

)
= 286.

It is sometimes possible to count the number of strings of
length n in a language by using recurrence relations or generating
functions.

Example 16.12 (Fibonacci numbers again) Let L be the lan-
guage designated by (0 + 10)∗1. Then L consists of those strings
which end with a 1 and in which every other 1 is followed by a 0.
The first few strings of L are:

1, 01, 001, 101, 0001, 0101, 1001

Let ℓn be the number of strings in L of length n. If a string of L
begins with 0 it must have the form 0u, where u ∈ L. If it begins
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with 1, it is either 1 itself or it has the form 10v, where v ∈ L.
Thus, for n ≥ 2 we find that

ℓn = ℓn−1 + ℓn−2.

This is the recurrence relation which is satisfied by the Fibonacci
numbers Fn (cf. Problem 15.2) but we have the initial conditions
ℓ1 = 1, ℓ2 = 1. Therefore ℓn = Fn−1. We shall discuss this
example again in Chapter 18.

Summary

After reading this chapter you should know the meaning of

union, concatenation and ∗-closure of languages;

regular languages;

regular expressions;

the language designated by a regular expression.

Problem Set 16

1. Let Σ be the alphabet {a, b, c, d, e}. What is Σ2, Σ3? What
are their sizes? How many strings of length 5 are there in
Σ∗?

2. If Σ = {v, w, x, y, z}, how many strings of length 6 in Σ∗

begin with xy?

3. Let Σ be the alphabet {a, b, c, d, e}. Let L1 = {ab, ac, de} and
L2 = {bc, cd} be two languages. Write down the languages
L1L2 and L2L1.

4. For each of the following regular expressions over the alphabet
Σ = {a, b, c, d}, describe the designated language.

(i) a+ bc+ cd (ii) b+ cd∗

(iii) (ab+ cd)∗ (iv) (dd)∗

(v) (ab)∗(db)∗ (vi) (ddd)∗

5. Show that each of the following languages over Σ = {a, b, c},
is regular by finding a regular expression which designates it.

(i) {ε, a, b, b2, b3, . . . },
(ii) {abc, abcabc, abcabcabc, . . . },
(iii) {b, ab, a2b, a3b, . . . },
(iv) {ε, a, b, c, ab, abab, ababab, . . . }.
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Finite State Machines

In this chapter we consider certain very simple machines which
are capable of recognizing the strings of a regular language. That
is, for each regular language we want to construct a machine that
can somehow read a string (from left to right) and then tell us
whether or not that string is in the language.

These machines have a finite number of states and are calledThe singular
of automata

is automaton.
finite automata or finite state machines.

Deterministic finite automata

We begin with a particularly simple type of machine called a
deterministic finite automaton or DFA for short. We can draw
such a machine using circles to indicate the states and arrows
labelled with letters from some alphabet to indicate transitions
from state to state. Some states, called accepting states, are
represented by double circles. For example, Figure 17.1 is a DFA
with 5 states:

Figure 17.1
A finite state machine

Initial
state

Accepting stateA B

C

D

E

0

1

0

1

0

1

0

1

0

1

There is also an unlabelled arrow indicating the state at which
the machine begins, called the initial state. The idea is that the
machine begins in the initial state and reads a string of 0’s andSee Example 17.4

for more details. 1’s (from its left hand end) and changes state according to its
current state and the symbol just read. If the machine ends up in
an accepting state, it accepts the string, otherwise it rejects it.

114
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The precise definition of a deterministic finite automaton or
DFA is that it consists of:

(i) An alphabet Σ.Also called an
input alphabet. (ii) A finite set S of states.

(iii) An initial state.

(iv) A set A ⊆ S of accepting states.

(v) A transition function f : S × Σ→ S.
We draw the diagram of a DFA by drawing a circle for each

state, and we use double circles to mark the accepting states.
Then for each state A ∈ S and each symbol x ∈ Σ we draw anThere is exactly one

arrow labelled
x leaving A.

arrow labelled x from A to f(A, x). The initial state is marked by
an unlabelled arrow leading to it.

The machine is called deterministic because given any state A
and any symbol x, the next state is completely determined by A
and x.

For our convenience, in drawing diagrams we sometimes label
an arrow with more than one symbol. This is an abbreviation for
several arrows, each with a single symbol.

Dead-end
states

A dead-end state is one from which it is impossible to get to an
accepting state, no matter what the input. Sometimes we omit
dead-end states from our diagrams. In Figure 17.1, C and D are
dead-end states. After we remove dead-end states there is at most
one arrow with a given label leaving each state.

Inaccessible
states

An inaccessible state is one which cannot be reached by following
arrows from the initial state. As with dead-end states, it is often
convenient to omit them from our diagrams. In Figure 17.1, E is
an inaccessible state.

Paths Let M be a DFA. Then a path in the diagram of M is a sequence
of arrows

a0 a1 . . . ak

such that the state that ai−1 leads to is the same state that ai
leaves from, for i = 1, 2, . . . , k. If arrow ai carries the label xi,
then the string x0 x1 . . . xk is the label of the path.

Example 17.1 In Figure 17.1 there is a path from A to D with
label 11100. It goes from A to B, to B, to B, to C, then to D.

Accepted
strings

A string is accepted by M if there is a path beginning at the initial
state and ending at an accepting state whose arrows are labelled
by the symbols in the string.
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Example 17.2 Consider the DFA M consisting of

(i) The alphabet Σ = {a, b, c}.
(ii) The finite set S = {A,B,C,D,E} of states.
(iii) The initial state A.

(iv) The set A = {C, D} ⊆ S of accepting states.

(v) The transition function given by the following table in which
the labels on the rows are the states, the labels on the
columns are the input symbols and the entries indicate the
next state.

a b c

A B E E
B C D E
C E E E
D E D E
E E E E

The DFA M can be drawn as in Figure 17.2.

Figure 17.2

A B

C

DE

a, b, c

a

a

a

a

b b

b

b

c
c

c

c

M

Notice that by omitting the dead-end state E, the diagram can
be drawn more simply as:

A B

C D

a

a b

b

M

The state E can be omitted from the transition function and
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it can be written more compactly as:

a b

A B −
B C D
C − −
D − D

Now the label c no longer appears and this makes it clear that
no string containing c can be accepted by the machine M . It is
easy to see that M accepts only the strings aa, ab, abb, . . . . That
is, either a followed by a single a or by a string of at least one b’s.

The language
of a machine

The strings accepted by a DFA M form a language denoted by
L(M). We call this the language accepted by M .

Example 17.3 For the DFA M of Figure 17.2, the language
L(M) is

L(M) = {aa, ab, abb, abbb, . . . },

which is designated by the regular expression aa+ abb∗.

Example 17.4 In order to find the language accepted by the
DFA of Figure 17.1 we first remove the dead-end and inaccessible
states then redraw the diagram:

Initial
state Accepting stateA B

0

1

1

M

The input alphabet is {0, 1} and it is clear that to get from the
initial state to the accepting state, the arrow from A to B must
be used at some point. Before this you can go around the loop
at A as many times as you like and after you get to B you can
go around the loop there as many times as you like. Thus the
language L(M) accepted by M consists of strings of any number
of 0’s followed by at least one 1. This can be written {0}∗{1}{1}∗,
which is designated by the regular expression 0∗11∗.
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Kleene’s theorem

In the previous two examples we made the observation that the
language L(M) of the DFA could be described by a regular ex-
pression. As shown by the following theorem, this is no accident.

Theorem 17.5

(i) The language L(M) accepted by a DFA is regular. ThatWe sketch a proof
of this below. is, it can be designated by a regular expression in the input

alphabet.

(ii) For every regular language L there is some DFAM such that
L(M) = L.

This says that the regular languages are precisely those lan-
guages which can be recognized by deterministic finite automata.

Example 17.6 Given a DFA, it is sometimes possible to find a
regular expression which describes the language it accepts simplyThis only works for

fairly simple machines. “by inspection”. We do this by first listing a few representative
strings accepted by the machine and then look for a common
pattern.

Figure 17.3
A B

CD

a

a

a

b

b

b

a, b

M

The machine M of Figure 17.3 accepts the strings

Note that D is a
dead-end state.

ab, abab, ababb

aab, aaabababb, abaaababbb.

After making this list we are led to conjecture that the language
accepted by M consists of all strings which begin with a and end
with b. We can check directly that this is true. That is,

L(M) = { aub | u is any string of a’s and b’s }
= {a}{a, b}∗{b},

and so L(M) is designated by the regular expression a(a + b)∗b.
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The regular
expression of

a DFA

We now fulfill our promise to sketch a proof of the first part of Kleene’s
theorem. (The second part is left as a rather challenging exercise.)

Let S be the set of states of a DFA M . For each pair of states A, B and
each subset X of S we let L(A,B,X) be the language consisting of the labels
of all paths which start at A and get to B via states in X. If there are no
arrows from A to itself we define L(A,A, ∅) to be {ε}. Note that we don’t
require A or B to belong to X.

We shall prove by induction on |X| that for all X there exists a regular
expression ρ(A,B,X) which defines L(A,B,X). Suppose at first that |X| = 0,
i.e., X = ∅. If there are no arrows from A to B, then by definition L(A,B, ∅)
is {ε} or ∅ according to whether A = B or A ̸= B. If the arrows from A to B
are labelled x1, x2, . . . , xk, we take ρ(A,B, ∅) to be x1 + x2 + · · ·+ xk.

Now suppose that |X| > 0. Choose C ∈ X and put Y = X \ {C}. By
induction we can find regular expressions ρ(A,B, Y ), ρ(A,C, Y ), ρ(C,C, Y )
and ρ(C,B, Y ) which define the languages L(A,B, Y ), L(A,C, Y ), L(C,C, Y )
and L(C,B, Y ), respectively. We now put

ρ(A,B,X) = ρ(A,B, Y ) + ρ(A,C, Y )ρ(C,C, Y )∗ρ(C,B, Y ).

We claim that this is a regular expression which defines L(A,B,X). It is a
regular expression simply because it is built up from other regular expressions
using the operations of addition, concatenation and ∗-closure. To see that itSee Chapter 16.
defines the language L(A,B,X), note that for any path that goes from A
to B via states in X there are two possibilities: either it goes from A to B
without using C, in which case its label is in L(A,B, Y ); or else it uses C at
least once, in which case its label is in the language

L(A,C, Y )L(C,C, Y )∗L(C,B, Y ).

This completes the induction step.

If I is the initial state, then the regular expression which defines L(M)

is the sum of the regular expressions ρ(I, A, S), where A ranges over the

accepting states.

Non-deterministic finite automata

A DFA is deterministic in the sense that for each state and each
input symbol, the next state is completely determined. We now
consider a generalization of the idea of a deterministic finite au-
tomaton, namely a non-deterministic finite automaton or NFA for
short. The following diagram depicts an NFA. (Dead-end states
have been omitted.) In an NFA, arrows can be labelled with the
empty string ε.

ε

ε

1

1

0 0

0
There can be

several arrows with
the same label

starting at a state.
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More precisely, an NFA consists of

(i) An alphabet Σ.

(ii) A finite set S of states.Some books
allow more than
one initial state.

(iii) An initial state.

(iv) A set A ⊆ S of accepting states.

(v) A transition function f : S × (Σ ∪ {ε})→ P(S).ε is the empty string.

This is almost the same description as for a DFA except that
the transition function takes a state and an input symbol to a
subset of the set of states.Recall that P(X)

denotes the set of
subsets of the set X .

It is perhaps easier to think of an NFA in terms of its diagram.
The diagram is constructed in exactly the same way as for a DFA
except that each state may have more than one arrow leaving it
with the same label. Also, we are allowed to use the empty string
ε to label arrows. Then f(Z, x) is the set of all states W such that
there is an arrow from Z to W labelled x.

The language
of an NFA.

Let M be an NFA. To each path p of arrows in the diagram
of M we associate the string u(p) obtained by concatenating the
symbols along p. We say that a string v is accepted by M if there
is some path p from the initial state to one of the accepting states
such that u(p) = v. The set of all strings accepted by M is the
language L(M) accepted by M .

It turns out that the language accepted by an NFA is regular
and so by Kleene’s theorem there is always a DFA that accepts
the same language. But if the NFA has m states then the DFA
may have 2m states.

On the other hand if we begin with a regular language it is
often much easier to find an NFA that accepts it, rather than a
DFA.

Non-regular languages

Kleene’s theorem states that a language is regular if and only if it
can be recognized by a DFA. We can use this to show that certain
languages are not regular.

Example 17.7 Let L be the language consisting of all strings of
n 0’s followed by n 1’s for n = 0, 1, 2, . . . . We claim that L is
not regular.

Suppose that L could be recognized by a DFAM withm states.
Then consider the string

00 · · · 0︸ ︷︷ ︸
m

11 · · · 1︸ ︷︷ ︸
m

.
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We know that there should be a path from the initial state to an
accepting state which is labelled by this string. But M has only m
states, and therefore the first part of the string (corresponding to
the m 0’s) must go through the same state, say K, at least twice.This uses the

Pigeonhole Principle. Let u be the path from the first to the second visit of K. This
path will be labelled by k 0’s, where k is the number of arrows
in the path (and hence k will be at least 1). But u starts at K
and ends at K, and so we can go around it as many times as we
like and then continue on as before. This means that the machine
must also accept a string beginning with m+ k 0’s followed by m
1’s. But this string is not in L. This contradiction means that we
cannot construct a DFA which recognizes only the strings of L.
Hence L is not regular.

K
0 0 0

0

0

0

0

0

0

u

Example 17.8 There is no DFA which recognizes only balanced
strings of brackets. This is because we can apply the above
argument to the strings of the form

((· · · (︸ ︷︷ ︸
m

)) · · · )︸ ︷︷ ︸
m

.

The argument can be generalized further. If L is the language
accepted by a DFA with m states, then every string of L of length
at least m can be written in the form uvw, where the length of
uv is at most m, v ̸= ε and for i = 0, 1, 2, . . . , the string uviw is
in L.

Summary

After reading this chapter you should know the meaning of

DFA, NFA;

initial state, accepting state;

transition function;

the language of a DFA or NFA;

Kleene’s theorem.
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Problem Set 17

1.

1 1

1

0,1

0

(a) Which of the following strings are accepted by the DFA
which appears above?

(i) 001101 (ii) 0001 (iii) 11

(iv) 110100 (v) 1111 (vi) 00100

(b) For each regular expression below, state whether or not
it designates the language accepted by the finite state
machine.

(i) (0 + 1)∗11(0 + 1)∗

(ii) (01)∗11(0 + 1)∗

(iii) (01)∗11(01)∗

2.

1 1

0,1 0,1

0

(a) Which of the following strings are accepted by the NFA
which appears above?

(i) 001101 (ii) 0001 (iii) 11

(iv) 110100 (v) 1111 (vi) 00100

(b) For each regular expression, state whether or not it des-
ignates the language accepted by the finite state ma-
chine.

(i) 0∗(0 + 1)1(0 + 1)∗

(ii) 0∗1(00∗1)∗(0 + 1)∗

(iii) (0 + 10)∗11(0 + 1)∗
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3. (i) Draw the DFA that corresponds to the following tran-
sition function. The alphabet is {a, b}, the initial state
is A and the only accepting state is B.

a b

A B C
B B C
C B D
D D D

(ii) Which of the following strings are accepted by the DFA
given in (i)?

(a) aaa (b) aaab

(c) bbab (d) baba

(iii) Describe the language accepted by the machine in (i).

(iv) Find a regular expression which designates the language
found in (iii).

4. Construct a DFA that accepts only those strings of lower case
letters which end in “ing”.

*5. Given regular expressions r1 and r2 and NFA’s M1 and M2

which accept the languages L(r1) and L(r2), describe how to
construct new NFA’s (using M1 and M2) which accept the
languages

(i) L(r1 + r2), (ii) L(r1r2), (iii) L(r∗1).
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Grammars

In the last chapter we mentioned that the language accepted by a
deterministic finite automaton is regular. The regular languages
are very special and indeed we have seen that the language of
balanced strings of brackets is not regular. In this chapter we
study a method of describing a broader class of languages. To do
this we introduce the idea of a grammar.

Grammars
To describe a grammar we need two alphabets and a collection of
rules known as productions. We let

(i) T be the alphabet of terminal symbols,

(ii) N be the alphabet of non-terminal symbols, and we assume
that T and N have no symbols in common,

(iii) S ∈ N be the start symbol,

(iv) P be the set of productions of the form α→ β where α and
β are strings constructed from the terminal and nonterminal
symbols. The string α must contain at least one nonterminal
symbol.

Thus a grammar can be thought of as a 4-tuple

G = (N , T , S,P).

The language
of a grammar From the grammar G we can produce strings in the terminal

alphabet T . Then the language, L(G), produced by the grammar
G is the collection of strings that can be produced from the start
symbol by a sequence of productions.

The application of a sequence of productions is called a deriva-
tion.

Problem 18.1 Given a grammar G, find the language L(G) pro-
duced by G.
Solution. The alphabet T of terminal symbols of the grammar
is the alphabet of the language L(G). We produce the strings in

124
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L(G) as follows. We begin by writing down S. At any stage we
may replace a symbol which occurs to the left of the arrow of a
production by the string to the right of that arrow. We keep going
until only terminal symbols remain in the string.

Example 18.2 Consider the grammar G = (N , T , S,P) where
N = {S,A,B}, T = {0, 1} and the productions are

S → ASB

S → AB

A→ 0

B → 1.

We can derive the string 0011 by the following productions:

S → ASB

→ AABB

→ 0ABB

→ 00BB

→ 001B

→ 0011

In fact, the language L(G) generated by G consists all the strings
of the form

00 · · · 0︸ ︷︷ ︸
m

11 · · · 1︸ ︷︷ ︸
m

m ≥ 1

That is,

L(G) = {01, 0011, 000111, . . . }.

This example shows that the language produced by a grammar
need not be regular.

Productions can use the empty string ε and so in Example 18.2
the productions can be written more simply as

S → 0A1

A→ 0A1

A→ ε.

Note that the empty string is not in the language. Compare
this with the next example.
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Example 18.3 Let G1 = (N , T , S,P1) be a grammar, where
N = {S,A,B}, T = {0, 1} and the productions are

S → 0S1

S → ε.

Then it is easy to see that the language produced by G1 is

L(G1) = {ε, 01, 0011, 000111, . . . }.

The only difference between L(G) and L(G1) is that L(G1)
contains the empty string ε.

Example 18.4 Let G = (N , T , S,P) be a grammar, where N =
{S,A,B}, T = {a, b} and the productions are

S → AB

B → bB

A→ a

B → b.

Then we can derive the string abbb as follows:

S → AB

→ AbB

→ abB

→ abbB

→ abbb.

In fact, the language produced by the grammar G is

L(G) = {ab, abb, abbb, . . . } = {ab}{b}∗,

which is designated by the regular expression abb∗.

A grammar
for a language

In general it is a difficult problem to find a grammar that produces
a given language. In some cases, such as natural languages like
English, Chinese, French or German, it is not even clear what
constitutes the language. On the other hand, computer languages
are generally easier to deal with and grammars are routinely used
to construct compilers and interpreters for such languages.

The best we can do at this stage is to consider a simple example.
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Example 18.5 Let L be the language

L = {aaa}{aaa}∗.

We shall find a grammar for L.
The language consists of all strings of a multiple of 3 a’s: aaa,

aaaaaa, . . . . So our aim is to produce the strings aaa, aaaaaa,
aaaaaaaaa, . . . . We could use the start symbol S to produce the
string aaa (S → aaa) and then use the production S → aaaS
to produce any number of aaa’s. Hence a grammar for L is
G = (N , T , S,P), where N = {S}, T = {a} and the productions
are

S → aaa

S → aaaS .

The same language can be produced by many different gram-
mars.

Example 18.6 The language L of Example 18.5 can also be pro-
duced by the grammar G = (N , T , S,P), where N = {S,A,B,C},
T = {a} and the productions are

S → aA

A→ aB

B → aC

C → aA

C → ε.

Remarks

1. It turns out that any regular language can be produced by
a grammar with the following simple structure. The only
productions are of the form α→ aβ or α→ a, where α and
β are single non-terminal symbols and a is either a terminal
symbol or ε. Conversely, the language produced by such a
grammar is regular.

2. The grammars in which all the productions are of the form
α → β, where α is a single non-terminal symbol, are called
context-free grammars.

Fibonacci
numbers

again

Let L be the language designated by the regular expression

(0 + 10)∗1,

and let ℓn be the number of strings of length n in L. We have
shown in Example 16.12 that ℓn is just the Fibonacci number
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Fn−1 and we can see that L is exactly the language accepted by
the DFA:

A B

0

0

1

Recall that the strings in L can be described as follows. Every
string of L that begins with 0 must have the form 0u, where u ∈ L,
and every string of L that begins with 1 is either 1 itself or has
the form 10v, where v ∈ L. The description of the strings of L
just given shows that L is the language produced by the grammar
G = (N , T , S,P), whereN = {S}, T = {0, 1} and the productions
are

S → 0S

S → 10S

S → 1.

Summary

After reading this chapter you should know

the definition of a grammar;

the connection between languages and grammars;

that the language of a grammar need not be regular.

Problem Set 18

1. Describe the language generated by the following grammars.
The start symbol is S.

(i) The non-terminal symbols are S, A and B, the terminal
symbols are 0 and 1 and the productions are

S → ABS

A→ 0

B → 1

S → ε.

(ii) The non-terminal symbol is S, the terminal symbol is a
and the productions are

S → aaaS

S → ε.



problem set 18 129

2. Give a grammar that has the given set of strings as its lan-
guage.

(i) All strings over Σ = {p} consisting of an even number
of p’s

(ii) All strings over Σ = {p, q, r} consisting of n p’s followed
by n q’s, followed by a single r, where n = 1, 2, 3 . . . .

3. Consider the grammar with start symbol S, non-terminal
symbols S, A, B, C, terminal symbols a, b, c and productions

S → Cc

C → ACB

C → AB

A→ a

B → b

Describe the language of this grammar and show that it is
not regular.

4. Consider the grammar with start symbol S, non-terminal
symbols S, A, B, C, terminal symbols a, b, c and productions

S → Sc

S → C

C → ACB

C → ε

A→ a

B → b

Describe the language of this grammar and show that it is
not regular.
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Graphs, Trees and Catalan Numbers

In Chapter 1 the Catalan numbers cn were defined as the number
of balanced strings of n pairs of brackets (Problem 1.1). The
balanced strings of brackets are the strings of the language L
produced by the grammar G = {N , T , S,P} where T = {(, )} is
the alphabet of terminal symbols, N = {S} is the alphabet of
non-terminal symbols, S is the start symbol and the productions
are

S → S(S)

S → ε.

If a string w has the form uv, then u is called a prefix of w.
Notice that a string of n (’s and n )’s is in the language L if and
only if each prefix has at least as many left brackets “(” as right
brackets “)”.

Trees
Here is another interpretation of the language of brackets. Con-
sider “trees” planted in the ground and living in two dimensions.
These are called planted planar trees. The dots in the drawing
below are called vertices. A tree of n vertices has n − 1 lines
connecting the vertices; there are no circuits. Here are some ex-
amples:

Figure 19.1
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How many planted planar trees are there with n vertices? To
answer this, consider a caterpillar walking across the diagram from
left to right up and over the tree.

Figure 19.2

Each time the caterpillar moves up from one vertex to the next
we write down “(”. Each time it moves down we write “)”. If
the tree has n + 1 vertices we get a string of n left and n right
brackets in which each prefix has at least as many left brackets as
right brackets. That is, the number of planted planar trees is the
same as the number of balanced strings of brackets.

Actually, writing brackets in this way can get a bit confusing
because we must distinguish between brackets used in the string
and brackets used for the usual purpose of placing material in
parentheses. To avoid this we will write U (for up) instead of “(”,
and D (for down) instead of “)”. Then the caterpillar’s journey,
as in Figure 19.2, can be described by the string UUDDUD. Also,
the productions for this language become

S → SUSD

S → ε.

We call the strings of this language balanced strings of U ’s and
D’s.

A formula
for the

Catalan
numbers

Let cn be the Catalan numbers. Then for each n,

(19.1) cn =
1

n+ 1

(
2n

n

)
.

To prove the formula, we note that there is yet another way to
interpret and count the balanced strings of U ’s and D’s.

We draw a graph corresponding to a string u. First we put an
extra U at the start of the string. This forces each prefix to have
more U ’s than D’s.

Now we begin at the origin (0, 0) and we read the string from
left to right.

(i) Each time we read a U we move up one unit and to the right
one unit. That is we move from (x, y) to (x+ 1, y + 1).
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(ii) Each time we read a D we move down one unit and to the
right one unit. That is we move from (x, y) to (x+1, y− 1).

Since we have n + 1 U ’s and n D’s we must end up at the
point (2n+ 1, 1). The following figure is the graph for the string
u = UUDDUD. Remember we first put on an extra U to change
this to UUUDDUD.

Figure 19.3

Notice that when v is a balanced string of U ’s and D’s, the
graph of Uv has the property that after leaving the origin it is
always above the x-axis. Given any string of n+1 U ’s and n D’s
we can draw its graph. But this graph will lie above the x-axis if
and only if the string has the form Uv, where v is balanced. How
many strings of n + 1 U ’s and n D’s are there? This is just the
number of ways to choose the n places to put the D’s, i.e.,(

2n+ 1

n

)
.

Next we need to know how many of these strings are balanced.
We do this as follows. The important observation is that if we
remove the symbol from the left hand end of the string and put
it on the right hand end we still have a string of n+ 1 U ’s and n
D’s but out of the 2n+ 1 different strings that we get by cycling
the letters around only one is balanced.

To see this, begin with the graph of a string v. This goes from
(0, 0) to (2n + 1, 1) but it may touch or cross the x-axis. Now
consider a line of slope 1/(2n + 1) placed below this graph and
raise this line until it just touches the graph. This line is parallel
to the line joining the origin to the point (2n + 1, 1). The line
can only touch the graph in one place and so the place where it
touches divides the string into two pieces, say v1 and v2. The
original string is v1v2. But now the graph of the string v2v1 is
obtained by moving the first piece of the old graph to the right
hand end. That is, we just cycle around the symbols from the left
hand end to the right hand end. The graph of the new string only
touches the x-axis at (0, 0).
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Figure 19.4

For example, the graph of the string v = UDDUUDU in Figure
19.4 becomes

Figure 19.5

There are 2n + 1 places where the string can be broken and
only one of them produces a string of the form Uu, where u is
balanced. Hence the number of balanced strings is

cn =
1

2n+ 1

(
2n+ 1

n

)
=

1

2n+ 1

(2n+ 1)!

(n+ 1)!n!

=
(2n)!

(n+ 1)n!n!

=
1

n+ 1

(
2n

n

)
.

A recurrence
relation for

Catalan
numbers

Let cn be the n-th Catalan number. We shall prove the recurrence
relation:

(19.2) cn+1 = c0cn+c1cn−1+c2cn−2+· · ·+cn−2c2+cn−1c1+cnc0 .
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Let A be the set of all balanced strings of n pairs of brackets.
Then as we saw above, A can be considered to be the set of all
balanced strings of n pairs of U ’s and D’s. Next let B be the set
of strings obtained by inserting n pairs of brackets into the string

x0x1x2 . . . xn

so that within each pair of brackets there are two terms (cf.
Problem 1.7).

Before proving the recurrence relation for cn, we first establish a
one-to-one correspondence between A and B. Suppose that v ∈ A,
i.e., v is a balanced string of n pairs of U ’s and D’s. Note that v
always starts with a U and ends with a D. We put an extra U at
the start of the string v and consider the string Uv. Then we use
the following instructions to obtain a corresponding string in B.

Reading from left to right replace the U ’s by x0, x1, x2, . . . ,
xn. Then replace every D by a right bracket. Again reading from
left to right, each time we encounter a right bracket we place a
left bracket to the left of the preceding two terms.

This construction can be reversed by removing all the left
brackets, removing x0, then replacing each of the x1, x2, . . . ,
xn by a U and replacing each right bracket by a D.

For example, let v = UUDUDD ∈ A. Then the following
illustrates the above method of obtaining an element in B:

Uv = UUUDUDD → x0x1x2)x3))

→ x0(x1x2)x3))

→ x0((x1x2)x3))

→ (x0((x1x2)x3)).

Thus the above construction gives us a function f : A → B. It
is easy to see that f is one-to-one. Moreover using the reverse of
this construction we see that f is onto. Hence f is the required
one-to-one correspondence between A and B.

This correspondence shows that the Catalan number cn is the
number of ways of bracketing

x0x1x2 . . . xn

with n pairs of brackets so that within each pair of brackets there
are two terms.

Proof of (19.2): Consider the string

x0x1x2 . . . xnxn+1.
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Then cn+1 is the number of ways of bracketing the string with
n+ 1 pairs of brackets so that within each pair of brackets there
are two terms.

To obtain a bracketing of such a string, we can first bracket
x0x1x2 . . . xk, then bracket xk+1xk+2 . . . xn+1, (0 ≤ k ≤ n), and
finally place a pair of brackets around the two expressions so
obtained. For each k = 0, 1, 2, . . . , n, the number of ways to
obtain the required bracketing is ckcn−k. Hence, taking c0 = 1,
we see that

cn+1 = c0cn + c1cn−1 + · · ·+ cn−1c1 + cnc0.

The
generating
function for
the Catalan

numbers

Let cn be the n-th Catalan number and let

C(z) =

∞∑
n=0

cnz
n = c0 + c1z + c2z

2 + c3z
3 + · · · ,

be the corresponding generating function. Then

(19.3) zC(z)2 = C(z)− 1.

Proof. On multiplying C(z) by itself, we obtain

C(z)2 = c0
2 + (c0c1 + c1c0)z + (c0c2 + c1c1 + c2c0)z

2 + · · ·

= c0
2 + c2z + c3z

2 + · · · ,

using (19.2). Multiply throughout by z and use the fact that
c0 = 1, c1 = 1 to obtain

zC(z)2 = c1z + c2z
2 + c3z

3 + · · · = C(z)− 1.

By solving the quadratic equation (19.3) we obtain the following
closed form for C(z):

C(z) =
1−
√
1− 4z

2z
.

You might think about how to expand this to find the formula for
cn obtained earlier.

Summary

After reading this chapter you should know

new ways to look at old problems (Catalan numbers);

how generating functions and other techniques can be used
to find formulae for the Catalan numbers.
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Problem Set 19

1. Prove that the Catalan numbers cn satisfy the relations:

(i)

cn =
4n− 2

n+ 1
cn−1.

(ii)

cn =

(
2n

n

)
−
(

2n

n+ 1

)
.

(iii)

cncn+1 =

n∑
k=0

(
2n

2k

)
cn−kck.

*2. Suppose that a and b are positive integers. Prove that the
number of paths from (0, 0) to (a + b, a − b) which do not
cross below the x-axis is

a− b+ 1

a+ 1

(
a+ b

b

)
.
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Hints and Answers

Problem Set 1 1. (i) Not balanced, (ii) Balanced, (iii) Not balanced.

2. (i) 1, 2, 5, 14.

(ii) The arrangement 5, 1, 4, 2, 3, is possible, but not 3, 2,
4, 1, 5.

3. 1, 2, 6, 24.

4. (i) 1, 1, 2, 5. (ii) The Catalan numbers.

5. 1, 2, 5, 14 for n = 2, 3, 4, 5. (The Catalan numbers.)

6. (i) a2 = 2 and a3 = 5; (ii) an is the n-th Catalan
number.

7. 1, 2, 5, 14. (The Catalan numbers.) The numbers in the top
row give the positions of the left brackets in the string. The
numbers in the bottom row give the positions of the right
brackets.

8. 1, 2, 5, 14, 39. Not the Catalan numbers.

Problem Set 2 1. (i) A = {3, 5, 7, 9}
(ii) A = {3, 5, 7, . . . , 199} or

A = {x | x = 2y + 1, y ∈ Z, 1 ≤ y ≤ 99 }
(iii) A = {x | x = 2y + 1, y ∈ Z }
(iv) A = {x | x = 4y, y ∈ Z }

2. (i) True (ii) True (iii) False

(iv) True (v) False

3. (i) {a, b, c, d, e, {a, d}} (ii) {b}
(iii) {c, {a, d}} (iv) {a, b, {a, d}}
The sizes are 6, 1, 2, 3.
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4. Suppose x ∈ A. Since A = A ∩ B, x ∈ A ∩ B so x ∈ B.
Hence A ⊆ B.

The converse is: A ⊆ B implies A ∩B = A.

6. Take x ∈ X \ (A ∪ B) and show that x ∈ (X \ A) ∩ (X \ B)
and vice versa.

8. With three sets you can achieve 8 regions and the maximum
number of regions you get using four sets is 14. But you
would need 16 regions to depict all possible Venn diagrams
involving four sets.

Problem Set 3 1. One-to-one but not onto.

2. The first set is a function, but not one-to-one. The second
and last sets are one-to-one functions. The third and fourth
sets are not functions.

3. (i) One-to-one. (ii) Not one-to-one.

4. (i) The function g ◦ f : A → C takes the values x, y, x
and t at 1, 2, 3 and 4, respectively. That is, it can be
described by the 4-tuple (x, y, x, t).

(ii) The function h ◦ f : A→ A corresponds to the 4-tuple
(1, 1, 1, 2). The function f ◦ h : B → B is given
by (f ◦ h)(a) = c, (f ◦ h)(b) = b, (f ◦ h)(c) = b,
(f ◦ h)(d) = a.

5. (i) The two one-to-one correspondences between A and B
are

1←→ a 1←→ b
2←→ b 2←→ a

(ii) The six one-to-one correspondences between A and B
are

1←→ a 1←→ b 1←→ c
2←→ b 2←→ a 2←→ b
3←→ c 3←→ c 3←→ a

1←→ a 1←→ b 1←→ c
2←→ c 2←→ c 2←→ a
3←→ b 3←→ a 3←→ b

6. (i) Need to show that g ◦ f is one-to-one.

(ii) The permutation g ◦ f is even if both f and g are odd
or both are even; otherwise it is odd.
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7. (i) The elements of A are (x0(x1(x2x3))), (x0((x1x2)x3)),
((x0(x1x2))x3), (((x0x1)x2)x3), and ((x0x1)(x2x3)).
The set B is {((())), (())(), ()(()), (()()), ()()()}.

(ii) |A| = |B| = 5.

(iii) f is not one-to-one.

8. Hint: from a balanced string of n left and n right brackets
construct a sequence by writing numbers in place of the left
brackets. Begin at the left with 1 and increase the number
you are writing by 1 each time you pass a right bracket. |Fn|
is the n-th Catalan number.

Problem Set 4 1. (i) A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
(ii) {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3),

(3, 4), (4, 4)}.
(iii) D = {(1, 1), (2, 2), (3, 3), (4, 4)} and |D| = 4. There are

24 one-to-one correspondences between D and A.

2. 676

3. 6561

4. (i) 17576. (ii) 46656. (iii) 33696.

5. A×B = {(a, e), (a, f), (b, e), (b, f), (c, e), (c, f), (d, e), (d, f)}.
Since |A × B| = |S| = 8, there are 8! such one-to-one
correspondences.

6. 2× 263 × 103.

7. (i) 120 (ii) 240

8. Yes.

9. Show that
∑

a∈A |E(a)| = |E| and similarly for the other
sum.

Problem Set 5 1. (i) 310

(ii) There are 310 functions from a set of 10 students to a
set of 3 markers.

2. 28

3. 4(3), i.e. 24

4. 136080

5. (i) 2600 (ii) 550!/50!

6. (i) 499 (ii) 96
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7. (i) 114 (ii) 7920

8. 155

9. (i) 8! (ii) 5! 6(3)

10. Each permutation f : Cn → Cn is completely determined by
its values at 1, 2, . . . , n and so there are 2n n! of them.

Problem Set 6 1. Use the binomial theorem to expand the expressions.

2. (i) 52!
47! 5! (ii) 51!

47! 4!

(iii) 52!
32! 5! 5! 5! 5! (iv) 52!

32! 5! 5! 5! 5! 4!

3. (i) 15 (ii) 126

4. (i) 52!
39! 13! (ii) 52!

13! 13! 13! 13! 4!

5.
(
12
7

)
6.

(
14
9

)
7.

(
m+n−1

n

)
. Consider the solutions to

(x0 − 1) + x1 + · · ·+ xn = m− 1.

8. 2n−1. Consider a one-to-one correspondence in which
the sequence (k1, k2, . . . , kr) corresponds to the set
{k1, k1 + k2, . . . , k1 + · · ·+ kr−1}.

Problem Set 7 1. (i) 22 (ii) Not possible. (iii) Not possible.

2. 540

3. 20

4. (i) 3 (ii) 6

5. 55

6.
(
5
1

)(
49
4

)
−
(
5
2

)(
48
3

)
+
(
5
3

)(
47
2

)
−
(
5
4

)(
46
1

)
+
(
5
5

)(
45
0

)
=
(
50
5

)
−
(
45
5

)
7. (i) 15 (ii) 76

8. 44 =
(
9
6

)
− 4
(
5
2

)
9. 31

10.
∑n

i=0(−1)i
(
n
i

)
(n− i)m
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Problem Set 8 1. (i) 9!
2! 3! (ii) 13!

3! 2! (iii) 15!
2! 3! 2! 2!

(iv) 17!
4! 2! 2! (v) 12!

3! 2! 2! 2! (vi) 11!
4! 4! 2!

2. 20!
3! 4! 4! 2! 3! 4!

3. 3

4. 15!
5! 3! 4! 3!

5. 30!
4! 2! 8! 5! 4! 7!

6. (i) 12 (ii) 7!
2! 3! 2!

7. Put x1 = x2 = . . . = xm = 1 in the Multinomial Theorem.

8. 6

9. (i) The multinomial coefficient. (ii)
(2n)!

2n n!

Problem Set 9 1. yz′ ∨ x(y′ ∨ z)y and xy′ ∨ (z ∨ x′z′)y ∨ yx

2. xyz′ ∨ xy′z ∨ xy′z′ ∨ x′yz′ ∨ x′y′z′

3. xyz′ ∨ xy′z ∨ x′yz

4. Hint: Write xyz ∨ xyz′ ∨ xy′z ∨ x′yz ∨ x′y′z′ ∨ x′y′z as

(xyz ∨ xyz′) ∨ (x′y′z′ ∨ x′y′z) ∨ (xyz ∨ xy′z ∨ x′yz ∨ x′y′z).

Problem Set 10 1. A Boolean expression for this function is x(z′ ∨ y′) ∨ x′y.

2. A Boolean expression for this function is y ∨ x′z.

3. (i) x ∨ z (ii) w′y ∨ z′ ∨ x′y′ ∨ xy

(iii) z ∨ xy′ ∨ x′y (iv) yz′ ∨ w′z′ ∨ wx′y′ ∨ w′x′y

Problem Set 11 1. Use truth tables.

2. (i) False (ii) True (iii) True

3. Use truth tables.

4. Use truth tables.

5. Use truth tables.

6. A tautology.
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7. Let the universal set U be the set of all crocodiles x. Suppose
H(x) mean x is hungry and M(x) mean x is amiable. There
are different ways of writing the propositions in symbolic
form. Here is one of them:

(i) (∀x)(H(x)⇒ ∼M(x))

(ii) (∃x)(∼H(x)⇒M(x))

8. (i) False. For example, take x = 0.

(ii) True. For example, take x = 1.

(iii) False. For example, take x = −1.
(iv) True. For example, take x = 1.

9. Compound propositions for the 16 truth tables can be givenHint: use the
disjunctive

normal form.
by:

∼p ∨ p, p ∨ q, p ∨ ∼q, ∼p ∨ q, ∼(p ∧ q), p, q,

(∼p ∨ q) ∨ (p ∧ q), (p ∨ q) ∧ (∼(p ∧ q)), ∼q, ∼p,
p ∧ q, p ∧ ∼q, ∼p ∧ q, ∼(p ∨ q), ∼p ∧ p.

Problem Set 12 1. Easy!

2. xy ∨ y′z

3. Use the equivalent expression x′ ∨ y.

4. (i) Suppose x ↓ y means x nor y. Then x′ ≡ x ↓ x,
x ∨ y ≡ (x ↓ y) ↓ (x ↓ y) and x ∧ y = (x ↓ x) ↓ (y ↓ y).

(ii) Suppose x | y means x nand y. Then x′ ≡ x | x,
x ∨ y ≡ (x | x) | (y | y) and x ∧ y = (x | y) | (x | y).

Problem Set 13 1. Use the standard methods of mathematical induction.

Problem Set 14 1. (i) G(z) = (1 + z)n (ii) G(z) =
1

1− az

2. G(z) =
1− 4z

1− 5z + 6z2

3. G(z) =
2z2 + z3

1− 2z − z2 + 2z3

4. (i) xn = 1
2 + 1

2 · 3
n (ii) xn = 1

2n(n+ 1)

(iii) xn = (−1 + 2n)5n (iv) xn = 5
2 − 2 · 2n + 1

2 · 3
n

5. G(z) =
1

1− z
+

4z

(1− z)2

6. G(z) =
1

1− z − z2
+

z3

(1− z)2(1− z − z2)
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Problem Set 15 1. Direct substitution!

2. Sn+1 − Sn = (n+ 1)2

3. (i) xn = 2 · 7n (ii) xn = (−1 + 2n)5n

(iii) xn = 5
2 − 2 · 2n + 1

2 · 3
n

4. (i) xn = 1
2 + 1

2 · 3
n (ii) xn = 1

2n(n+ 1)

5. (i) xn = 2 · 2n − 3n (ii) xn = −4 · 1n +4 · 2n−n · 2n

Problem Set 16 1. Σ2 = {xy | x ∈ Σ, y ∈ Σ }, Σ3 = {xyz | x ∈ Σ, y ∈ Σ, z ∈ Σ},
|Σ2| = 52, |Σ3| = 53. In Σ∗, there are 55 strings of length 5.

2. 54

3. L1L2 = {abbc, abcd, acbc, accd, debc, decd}, L1L1 = {abab,
abac, abde, acab, acac, acde, deab, deac, dede}

4. (i) {a, bc, cd} (ii) {b, c, cd, cdd, cddd, . . . }
(iii) {ab, cd}∗ (iv) {dd}∗

(v) {ab}∗{db}∗ (vi) {ddd}∗

5. (i) a+ b∗ (ii) abc(abc)∗

(iii) a∗b (iv) a+ b+ c+ (ab)∗

Problem Set 17 1. (a) (i) Not accepted (ii) Not accepted

(iii) Accepted (iv) Accepted

(v) Accepted (vi) Not accepted

(b) (i) No (ii) Yes (iii) No

2. (a) (i) Accepted (ii) Not accepted

(iii) Accepted (iv) Accepted

(v) Accepted (vi) Not accepted

(b) (i) No (ii) No (iii) Yes

3. (ii) (a) Not accepted (b) Accepted

(c) Accepted (d) Not accepted

(iii) L = {b, ab}{b, ab}∗ (iv) (b+ ab)(b+ ab)∗
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Problem Set 18 1. (i) {01}∗ (ii) {aaa}∗

2. (i) G = {N, T, S, P}, N = {S}, T = {p} and
P = {S → ppS, S → ε}.

(ii) G = {N, T, S, P}, N = {S, D}, T = {p, q, r},
P = {S → Dr, D → pDq, D → pq}.

3. {abc, a2b2c, a3b3c, . . . }

4. { anbnck | n ≥ 0, k ≥ 1 }

Problem Set 19 1. (i) Use formula (19.1).

(ii) Use formula (19.1).

(iii) Use induction.
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