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THE PROBLEM.

Let 1 < p < +∞. Then, we are interested in the following question:

Does for every continuous function f : [0, 1]×R→ R, which is
Lipschitz continuous in the second variable, uniformly with respect to the
first one, each bounded solution u of

(1)

{
ut − {|ux |p−2ux}x + f (x , u) = 0 in (0, 1)×R+,
u(0, t) = u(1, t) = 0 for t ∈ R+,

converge to a solution ϕ of the stationary problem

(2)

{
−{|ϕx |p−2ϕx}x + f (x , ϕ) = 0 in (0, 1),
ϕ(0) = ϕ(1) = 0.

as t → +∞?
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HISTORY AND METHODS.

For p = 2, the question has been solved by

Zelenyak [7] (1986)

Matano [5] (1978)
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HISTORY AND METHODS.

For p = 2,

Zelenyak’s method in [7] is based on the so-called Łojasiewicz-Simon
gradient inequality ( [4, 6])

Matano’s method in [5] is based on:
the convergence u(tn)→ ϕ in C1[0, 1] of a solution u of problem (1)
to an ω-limit point ϕ,

a parabolic maximum principle on non-cylindrical open sets,

the unique solvability of the initial value problem

−ϕxx + f (x , ϕ(x)) = 0 in [0, 1], ϕ(x0) = ϕ0, ϕx (x0) = ϕ1

for given x0 ∈ [0, 1], ϕ0, ϕ1 ∈ R.
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OUR WORK.

We follow also the idea of Matano and show in [3]:

every global solution of problem (1) belongs to C((0,+∞);C1[0, 1]),

if u is a solution of problem (1), which is bounded with values in
L2(0, 1), then the set {u(t) | t ≥ 1} is relatively compact in C1[0, 1],

a comparison principle for solutions of problem (1) on non-cylindrical
open sets.
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THE MAIN THEOREM.

THEOREM 1 (2011)

If 1 < p ≤ 2, then for every continuous function f : [0, 1]×R→ R,
which is Lipschitz continuous in the second variable, w.r.t. the first one,
each global solution of problem (1), which is bounded with values in
L2(0, 1), converges to a solution of the stationary problem (2) in C1[0, 1]
as t → +∞.
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WHY ONLY 1 < p ≤ 2 ?

For given x0 ∈ [0, 1], ϕ0, ϕ1 ∈ R consider the initial value problem:

−{|ϕx (x)|p−2ϕx (x)}x + f (x , ϕ(x)) = 0, ϕ(x0) = ϕ0, ϕx (x0) = ϕ1.

We transfer the ODE in a system of first order by setting

v1 := ϕ and v2 := |ϕx |p−2ϕx

and obtain(
d
dx v1
d
dx v2

)
=

(
|v2|

2−p
p−1 v2

f (x , v1)

)
, v1(x0) = ϕ̃0, v2(x0) = ϕ̃1

This IVP admits for every x0 ∈ [0, 1], ϕ̃1, ϕ̃2 ∈ R a unique solution

provided s 7→ |s |
2−p
p−1 s is locally Lipschitz on R.

s 7→ |s |
2−p
p−1 s locally Lipschitz on R iff 1 < p ≤ 2.
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EXISTENCE OF GLOBAL SOLUTIONS.

Problem (1) can be rewritten as an abstract gradient system in
L2(0, 1) associated with the energy

E(u) = 1
p

∫ 1

0
|ux |p dx +

∫ 1

0
F (x , u(x)) dx , for all u ∈ W 1,p

0 (0, 1).

By the theory of subdifferential operators in Hilbert spaces (see
Brézis [2, Lem. 6., Prop. 7., Prop. 8.]), for every u0 ∈ L2(0, 1), there
exists a unique function

u ∈ C(R+; L2(0, 1)) ∩W 1,∞
loc ((0,+∞); L2(0, 1))

. . .
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EXISTENCE OF GLOBAL SOLUTIONS.

. . . such that
u(·, 0) = u0(·), and for all t > 0,

u(·, t) ∈ W 1,p
0 (0, 1), and |ux (·, t)|p−2ux (·, t) ∈ W 1,2(0, 1),

in every t > 0, u is differentiable from the right, and

du
dt+ (·, t)− {|ux (·, t)|p−2ux (·, t)}x + f (·, u(·, t)) = 0 in L2(0, 1),

t 7→ E(u(t)) is locally absolutely continuous on (0,+∞), and∫ t2

t1
‖ut(t)‖2L2(0,1) dt+E(u(t2)) = E(u(t1)) for all 0 < t1 < t2.
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CONTINUITY WITH VALUES IN C1[0, 1].

For all t > 0, we have |ux (·, t)|p−2ux (·, t) ∈ C[0, 1], and so

s 7→ |s |p−2s in C(R) and bijective =⇒ u(·, t) ∈ C1[0, 1].

Now, let t0 ∈ (0,+∞), (tn)n≥1 ⊆ (0,+∞) s.t. tn → t0.

We find

u(tn) ⇀ u(t0) in W 1,p
0 (0, 1), u(tn)→ u(t0) in C[0, 1],

For gn := −f (·, u(·, tn))− du
dt+ (·, tn), the sequence (gn)n≥1 is bdd.

in L2(0, 1), and for all n ≥ 1,

−{|ux (·, tn)|p−2ux (·, tn)} = gn in D′(0, 1),

By Boccardo & Murat [1] =⇒ ux (x , tn)→ ux (x , t0) a.e. on (0, 1),

Unif. Lp-integr., & Vitali’s Thm., ux (·, tn)→ ux (·, t0) in Lp(0, 1),

Thus (|ux (·, tn)|p−2ux (·, tn))n≥1 is bounded in W 1,2(0, 1).
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SKETCH OF THE PROOF OF THEOREM 1.

We assume that ω(u) is not discrete.

For every ϕ ∈ ω(u) there exists a t0 > 0 s.t.

x 7→ u(x , t)− ϕ(x) has finite sign changes in [0, 1],

For every ϕ ∈ ω(u) there is a t0 > 0 such that

t 7→ ux (0, t)− ϕx (0) does not change sign along [t0,+∞),

We take three distinct elements of ω(u); denoted by ϕ1, ϕ2, ϕ3.
Then,

ϕ1
x (0) < ϕ2

x (0) < ϕ3
x (0).

If ux (0, t) ≥ ϕ2
x (0) for all t ≥ t0, then

0 < ϕ2
x (0)− ϕ1

x (0) ≤ ‖ux (·, t)− ϕ1
x‖C[0,1].
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Thank you for your attention!!!
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THE PARABOLIC BDRY. OF A NON-CYLINDRICAL SET.

For (x0, t0) ∈ R2 and for ρ > 0, we set

Q((x0, t0), ρ) :=
{
(x , t) ∈ R2 ∣∣ |x − x0| < ρ, t0 − ρ < t < t0

}
.

For any open subset C ⊆ R2, we define by

PC :=
{
(x , t) ∈ ∂C

∣∣ Q((x , t), ρ) ∩ Cc 6= ∅ for all ρ > 0
}

the parabolic boundary of C,

for every T ∈ R, we define CT := {(x , t) ∈ C
∣∣ t < T}, and

by tbot the infimum of all t ∈ R for which there exists an x ∈ R
such that (x , t) ∈ C.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION



EVOLUTION EQUATIONS: RANDOMNESS AND ASYMPTOTICS BAD HERRENALB, OCTOBER 10, 2011

THE PARABOLIC BDRY. OF A NON-CYLINDRICAL SET.

For (x0, t0) ∈ R2 and for ρ > 0, we set

Q((x0, t0), ρ) :=
{
(x , t) ∈ R2 ∣∣ |x − x0| < ρ, t0 − ρ < t < t0

}
.

For any open subset C ⊆ R2, we define by

PC :=
{
(x , t) ∈ ∂C

∣∣ Q((x , t), ρ) ∩ Cc 6= ∅ for all ρ > 0
}

the parabolic boundary of C,

for every T ∈ R, we define CT := {(x , t) ∈ C
∣∣ t < T}, and

by tbot the infimum of all t ∈ R for which there exists an x ∈ R
such that (x , t) ∈ C.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION



EVOLUTION EQUATIONS: RANDOMNESS AND ASYMPTOTICS BAD HERRENALB, OCTOBER 10, 2011

THE PARABOLIC BDRY. OF A NON-CYLINDRICAL SET.

For (x0, t0) ∈ R2 and for ρ > 0, we set

Q((x0, t0), ρ) :=
{
(x , t) ∈ R2 ∣∣ |x − x0| < ρ, t0 − ρ < t < t0

}
.

For any open subset C ⊆ R2, we define by

PC :=
{
(x , t) ∈ ∂C

∣∣ Q((x , t), ρ) ∩ Cc 6= ∅ for all ρ > 0
}

the parabolic boundary of C,

for every T ∈ R, we define CT := {(x , t) ∈ C
∣∣ t < T}, and

by tbot the infimum of all t ∈ R for which there exists an x ∈ R
such that (x , t) ∈ C.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION



EVOLUTION EQUATIONS: RANDOMNESS AND ASYMPTOTICS BAD HERRENALB, OCTOBER 10, 2011

THE PARABOLIC BDRY. OF A NON-CYLINDRICAL SET.

For (x0, t0) ∈ R2 and for ρ > 0, we set

Q((x0, t0), ρ) :=
{
(x , t) ∈ R2 ∣∣ |x − x0| < ρ, t0 − ρ < t < t0

}
.

For any open subset C ⊆ R2, we define by

PC :=
{
(x , t) ∈ ∂C

∣∣ Q((x , t), ρ) ∩ Cc 6= ∅ for all ρ > 0
}

the parabolic boundary of C,

for every T ∈ R, we define CT := {(x , t) ∈ C
∣∣ t < T}, and

by tbot the infimum of all t ∈ R for which there exists an x ∈ R
such that (x , t) ∈ C.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION



EVOLUTION EQUATIONS: RANDOMNESS AND ASYMPTOTICS BAD HERRENALB, OCTOBER 10, 2011

THE PARABOLIC BDRY. OF A NON-CYLINDRICAL SET.

For (x0, t0) ∈ R2 and for ρ > 0, we set

Q((x0, t0), ρ) :=
{
(x , t) ∈ R2 ∣∣ |x − x0| < ρ, t0 − ρ < t < t0

}
.

For any open subset C ⊆ R2, we define by

PC :=
{
(x , t) ∈ ∂C

∣∣ Q((x , t), ρ) ∩ Cc 6= ∅ for all ρ > 0
}

the parabolic boundary of C,

for every T ∈ R, we define CT := {(x , t) ∈ C
∣∣ t < T}, and

by tbot the infimum of all t ∈ R for which there exists an x ∈ R
such that (x , t) ∈ C.

DANIEL HAUER CONVERGENCE OF BOUNDED SOLUTIONS OF A DEGENERATE EQUATION



EVOLUTION EQUATIONS: RANDOMNESS AND ASYMPTOTICS BAD HERRENALB, OCTOBER 10, 2011

A COMPARISON PRINCIPLE.

LEMMA 1

Let C ⊆ R2 be an open subset such that for all T ∈ R, CT is bounded
and topological regular, that is, the interior int

(
CT
)
= CT . If u and

v ∈ C(C ) satisfy for all bounded (a0, b0)× (t0, t1) ⊆ C,

u, v ∈ W 1,2(t0, t1; L2(a0, b0)) ∩ C([t0, t1];W 1,p(a0, b0))

and for all non-negative ξ ∈ C1
c (C),∫

C
[ut − vt ] ξ d(x , t) +

∫
C

[
|ux |p−2ux − |vx |p−2vx

]
ξx d(x , t)

+
∫
C
[f (x , u)− f (x , v)] ξ d(x , t) ≤ 0 ,

then

sup
(x ,t)∈C

e−L(t−tbot )(u − v)(x , t) ≤ sup
(x ,t)∈PC

e−L(t−tbot )
[
u − v

]+
(x , t).
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