An explicit symplectic integrator for the
zero angular momentum 3-body problem
in regularised coordinates

Danya Rose, joint work with Holger Dullin

&
.

School of Mathematics & Statistics
University of Sydney

PG Seminar
11/8/11

iy



The 3-body problem

» Problem of three bodies moving under mutual gravity:
Hamiltonian is

P;
Ly B S here 1, - x|
J 4

(summation is over cyclic permutations of (1,2, 3), denoted
by (j, k. 1))-

iy



The 3-body problem

» Problem of three bodies moving under mutual gravity:
Hamiltonian is

P;
Ly B S here 1, - x|
J 4

(summation is over cyclic permutations of (1,2, 3), denoted
by (j, &, 1)).

» Explicit solution in closed form cannot be written, but a lot
is open to enquiry.

iy



The 3-body problem

» Problem of three bodies moving under mutual gravity:
Hamiltonian is

P;
Ly B S here 1, - x|
J 4

(summation is over cyclic permutations of (1,2, 3), denoted
by (j, &, 1)).

» Explicit solution in closed form cannot be written, but a lot
is open to enquiry.

» e.g. numerical integration and [Waldvogel, 1982]
regularisation of binary collisions.

iy



The 3-body problem

» Problem of three bodies moving under mutual gravity:
Hamiltonian is

P;
Ly B S here 1, - x|
J 4

(summation is over cyclic permutations of (1,2, 3), denoted
by (j, &, 1)).

» Explicit solution in closed form cannot be written, but a lot
is open to enquiry.

» e.g. numerical integration and [Waldvogel, 1982]
regularisation of binary collisions.

» Families of collision orbits bound regions of certain
dynamics.

iy



The 3-body problem

» Problem of three bodies moving under mutual gravity:
Hamiltonian is

P;
Ly B S here 1, - x|
J 4

(summation is over cyclic permutations of (1,2, 3), denoted
by (j, &, 1)).

» Explicit solution in closed form cannot be written, but a lot
is open to enquiry.

» e.g. numerical integration and [Waldvogel, 1982]
regularisation of binary collisions.

» Families of collision orbits bound regions of certain
dynamics.

» Relative periodic orbits in Cartesian coordinates are
exactly periodic in these regularised ones.
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-25 -2 -1.5 -1 -0.5 0 0.5 1

Example 3-body configuration in complex Cartesian
coordinates, showing positions and physical momenta. Centre
of mass at origin, >, P; = 0, Im Y7, X;P; = 0.
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Symmetry-reduced coordinates
Coordinate transformation from (complex) Cartesian to
symmetry-reduced coordinates by translations and rotations

Xit — a9} aj=|X1—Xk!

¢ =1(o1+ P+ ¢3)
(P} = {pps) pi=IP |““Slff(gj;”')=...

Py =1Im ZFI X;P; = const
¢j = arg(X; — Xi), ¢; = arg(P}), 6; = ¢ — ¢ mod 27

0 01 02 03 04 05 06 07 08 09 1

Graphic of the angles ¢, ¢3, 11 and 6;.
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1.5 T T T T

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Example 3-body configuration showing geometric interpretation
of reduced coordinates a; and conjugate momenta p; as
projections.
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Regularised coordinates

Another transformation: from symmetry-reduced to regularised

{aj, (b} — {aj, ¢} a; = Oé]% + Ozlz
{pispst — Am.pet  m = 20(pc + 1)
In (o, ax, ag)-space, each possible triangle is represented four

times: ifa,b,c € Rs.t. a,b,c > 0and a, b, c # 0 simultaneously,
then

(a,b,c) = (a,—b,—c) = (—a,b,—c) = (—a, —b,c)
are positively oriented (ordered counterclockwise) and
(—a,—b,—c) = (—a,b,c) = (a,—b,c) = (a,b, —c)
are negatively oriented (ordered clockwise)

in the space of all triangles.
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Example 3-body configuration showing geometric interpretation
of regularised coordinates «;. (Conjugate momenta ; not

shown.)

1.5

-25 -2 -15 - -0.5 0 0.5
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Rescale time by dr = a;axazdr and employ Poincaré’s trick,
considering only surfaces of constant energy /.

Now K = (H — h)g—; = 0 for physically meaningful orbits.
When p, = 0, Hamiltonian becomes polynomial:

1 a;
K = 3 Z j[azﬁjg + (axm — omrk)z] — Z mgmyaga; — hajaiay,
j

where o? := on2 + oz,% + alz and a; = oz,% + alz.
Looks bad, but all binary collisions are regularised
simultaneously.
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Some theory: symplectic integration

» We want to look for periodic orbits of the 3BP in these
coordinates.
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Some theory: symplectic integration

» We want to look for periodic orbits of the 3BP in these
coordinates.

» This involves long time integration that must maintain
qualitative accuracy.

» Standard explicit integrators (e.g. Runge-Kutta) won'’t do.
Geometric integration, i.e. symplectic as this is
Hamiltonian, must be the way.

» We want an explicit integrator, for the sake of efficiency.

» Channell & Neri gave such an integrator [Channell & Neri,
1996].
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A monomial Hamiltonian of form

n
H(le'-' y4qnsP1y - - - 7pn) :AHqu]p]nj

is integrable for n;, m; € N, with integrals I; = 4;"p}’ and
solutions, when m; # n;,

n;

1
qi(t) = gjo(1 + (nj — m]AHqu]O ]n/o 1)"
k#j
1 nj—

pj(t) ij,o(l I’l —my AHqujO ij t "

k#j
and, when m; = n;,

1 i—1
qi(t) = gj0 exp( m/AHquJo Pio 1)

k#j
1 i—1
qi(t) = gioexp(—-mA [ [ kg’ Py 1)
k#j

—mj
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Taking stock

» Letz = (¢,p). Given Hamiltonian H(q,p) = Hi(q) + Ha2(p),
solution can be written

= q)(t)ZO = et{'le(‘I)}th{':Hz(P)}Zo
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Taking stock

» Let z = (¢,p). Given Hamiltonian H(q,p) = Hi(q) + Ha2(p),
solution can be written

= (D(t)ZO = et{'le(‘I)}+t{':H2(P)}ZO

» This is approximated to first order in ¢ by the map
2= P(0)z0 + O(2) = L@} 10 L O(2) (1)
» This is just symplectic Euler.
» The adjoint (¥*(z) s.t. if z; = ¥(t)z0, then zo = ¥*(—1)z1) is
2= (1)z0 + O(2) = TN LI @D L O2)  (2)
» Compose 1 and 2 with “half-steps” to get the familiar

symplectic leapfrog:

7= (020 + OF) = ez U A HI (@} o1 0HP) 7 O(F)
)



Extending

» This result doesn’t depend on the forms of H; and H, or
even that the system is Hamiltonian.
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Extending

» This result doesn’t depend on the forms of H; and H, or
even that the system is Hamiltonian.

» Soit’s trivial to extend the result to a Hamiltonian
H = H, + ---+ Hy, where each H; in the sum can be
solved explicitly.

» The generalised midpoint rule is thus
ol b t{ - Hy}

e%{'vHN} . e%{'»HZ}et{'le}eé{'vHZ} . e%{"HN} _|_ O(tB)
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Going further

» Define 7o =
nezt.

1

2_21/(2n—1

yandz; =

21/(2n—1)

T o1/(2n—1

) for some
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Going further

1/(2n—1)
2 7 for some

1 _
) and z; = 5 o1/a=

> Deﬁne 20 — W

nezr.
» Given a map ¢(r) = ¢I-H} + O(2+1)
» and ¢(t)¢(—1) = Id (i.e. a reversible map),
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Going further

v

v

v

v

1/(2n—1)
2 y for some

Define zg = ey

nezr.

Given a map ¢(t) = U1 4 O+

and ¢(1)¢(—t) = Id (i.e. a reversible map),
B(z0t)d(z11)b(z01) = e HY 4 O(20+3).

1 J—
5@y and zi = —

er



Going further

v

1/(2n—1
21 )1) for some

Define zo = 3 o1/Ga=T)

neZt.

Given a map ¢(r) = U + O+

and ¢(t)¢(—t) = Id (i.e. a reversible map),
$(z00)dz11)Blz0t) = &THY 4+ O(2+3).

This is Yoshida’s trick for arbitrary even order. [Yoshida,
1990]

1 _
2_21/Cn—T) and z; = —

v

v

v

v
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We have...

v

A Hamiltonian of form H = H, + - - - + Hy,

each H; is monomial,

a way of building a first order map for the flow of H by
composing the flows of each H;,

an adjoint map obtained by reversing the order of
composition,

composition of the first order map with its adjoint gives a
reversible second order map.

We can build a map of arbitrary even order. |.e. the
integrator we need.
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Applications

» Newton’s method on a Poincaré section to look for periodic
orbits.

» Well suited to picking events such as collinearities (o; = 0,
ag, oy # 0), binary collisions (o; = ax = 0, oy # 0).

» Label such events to build symbol sequences to identify

islands of ICs containing periodic orbits (expensively).
[Tanikawa, 2000]
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Example 1

08 B
06F 1
04r 1
02r 1

02r A
041 1
06k 4

08 b

Figure-8 choreography obtained by integrating in regularised
coordinates.
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Example 2

08f .
061 .
04t 1
02} .

02F i
04} i
06} i

08¢ -

Periodic orbit obtained by continuation of the figure-8 with
my = .95 (blue).
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Energy behaviour

x 107"

Figure: Absolute energy error vs scaled time 7 for the figure-8
choreography. Time step 7 = 1075 for 5 x 10° steps.
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Conclusion

In summary,

>

>

>

binary collisions of the 3-body problem can be regularised,
the resulting Hamiltonian is polynomial,
monomial Hamiltonians can be integrated exacily,

the flow of a Hamiltonian that is a sum of integrable
Hamiltonians can be approximated explicitly numerically
such that symplecticity is preserved, and

the resulting explicit integrator is well behaved over large
numbers of sufficiently small time steps.
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