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The 3-body problem

I Problem of three bodies moving under mutual gravity:
Hamiltonian is

H =
1
2

∑ |Pj|2

mj
−
∑ mkml

aj
, where aj = |Xl − Xk|

(summation is over cyclic permutations of (1, 2, 3), denoted
by (j, k, l)).

I Explicit solution in closed form cannot be written, but a lot
is open to enquiry.

I e.g. numerical integration and [Waldvogel, 1982]
regularisation of binary collisions.

I Families of collision orbits bound regions of certain
dynamics.

I Relative periodic orbits in Cartesian coordinates are
exactly periodic in these regularised ones.
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Example 3-body configuration in complex Cartesian
coordinates, showing positions and physical momenta. Centre
of mass at origin,

∑3
j=1 Pj = 0, Im

∑3
j=1 X̄jPj = 0.



Symmetry-reduced coordinates
Coordinate transformation from (complex) Cartesian to
symmetry-reduced coordinates by translations and rotations

{Xj} → {aj, φ} aj = |Xl − Xk|
φ = 1

3 (φ1 + φ2 + φ3)

{Pj} → {pj, pφ} pj = |Pl| sin(φj−ψl)
sin(θj)

= . . .

pφ = Im
∑3

j=1 X̄jPj = const

φj = arg(Xl − Xk), ψj = arg(Pj), θj = φl − φk mod 2π

Graphic of the angles φ2, φ3, ψ1 and θ1.



Example 3-body configuration showing geometric interpretation
of reduced coordinates aj and conjugate momenta pj as
projections.



Regularised coordinates

Another transformation: from symmetry-reduced to regularised

{aj, φ} → {αj, φ} aj = α2
k + α2

l
{pj, pφ} → {πj, pφ} πj = 2αj(pk + pl)

In (αj, αk, αl)-space, each possible triangle is represented four
times: if a, b, c ∈ R s.t. a, b, c ≥ 0 and a, b, c 6= 0 simultaneously,
then

(a, b, c) ≡ (a,−b,−c) ≡ (−a, b,−c) ≡ (−a,−b, c)

are positively oriented (ordered counterclockwise) and
(−a,−b,−c) ≡ (−a, b, c) ≡ (a,−b, c) ≡ (a, b,−c)

are negatively oriented (ordered clockwise)

in the space of all triangles.



Example 3-body configuration showing geometric interpretation
of regularised coordinates αj. (Conjugate momenta πj not
shown.)



Rescale time by dt = a1a2a3dτ and employ Poincaré’s trick,
considering only surfaces of constant energy h.
Now K = (H − h) dt

dτ ≡ 0 for physically meaningful orbits.
When pφ = 0, Hamiltonian becomes polynomial:

K =
1
8

∑ aj

mj
[α2π2

j + (αkπl − αlπk)2]−
∑

mkmlakal − hajakal,

where α2 := α2
j + α2

k + α2
l and aj = α2

k + α2
l .

Looks bad, but all binary collisions are regularised
simultaneously.



Some theory: symplectic integration

I We want to look for periodic orbits of the 3BP in these
coordinates.

I This involves long time integration that must maintain
qualitative accuracy.

I Standard explicit integrators (e.g. Runge-Kutta) won’t do.
Geometric integration, i.e. symplectic as this is
Hamiltonian, must be the way.

I We want an explicit integrator, for the sake of efficiency.
I Channell & Neri gave such an integrator [Channell & Neri,

1996].
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A monomial Hamiltonian of form

H(q1, . . . , qn, p1, . . . , pn) = A
n∏

j=1

qmj
j pnj

j

is integrable for nj,mj ∈ N, with integrals Ij = qmj
j pnj

j and
solutions, when mj 6= nj,

qj(t) = qj,0(1 + (nj − mj)A
∏
k 6=j

Ikqmj−1
j,0 pnj−1

j,0 t)
nj

nj−mj

pj(t) = pj,0(1 + (nj − mj)A
∏
k 6=j

Ikqmj−1
j,0 pnj−1

j,0 t)
mj

mj−nj

and, when mj = nj,

qj(t) = qj,0 exp(mjA
∏
k 6=j

Ikqmj−1
j,0 pmj−1

j,0 t)

qj(t) = qj,0 exp(−mjA
∏
k 6=j

Ikqmj−1
j,0 pmj−1

j,0 t).



Taking stock
I Let z ≡ (q, p). Given Hamiltonian H(q, p) = H1(q) + H2(p),

solution can be written

z = Φ(t)z0 = et{·,H1(q)}+t{·,H2(p)}z0

I This is approximated to first order in t by the map

z = ψ(t)z0 +O(t2) = et{·,H1(q)}et{·,H2(p)}z0 +O(t2) (1)

I This is just symplectic Euler.
I The adjoint (ψ∗(t) s.t. if z1 = ψ(t)z0, then z0 = ψ∗(−t)z1) is

z = ψ∗(t)z0 +O(t2) = et{·,H2(p)}et{·,H1(q)}z0 +O(t2) (2)

I Compose 1 and 2 with “half-steps” to get the familiar
symplectic leapfrog:

z = φ(t)z0 +O(t3) = e
t
2{·,H2(p)}et{·,H1(q)}e

t
2{·,H2(p)}z0 +O(t3)

(3)
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Extending

I This result doesn’t depend on the forms of H1 and H2 or
even that the system is Hamiltonian.

I So it’s trivial to extend the result to a Hamiltonian
H = H1 + · · ·+ HN , where each Hi in the sum can be
solved explicitly.

I The generalised midpoint rule is thus

et{·,H1}+···+t{·,HN} =

e
t
2{·,HN} . . . e

t
2{·,H2}et{·,H1}e

t
2{·,H2} . . . e

t
2{·,HN} +O(t3)
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Going further

I Define z0 = 1
2−21/(2n−1) and z1 = − 21/(2n−1)

2−21/(2n−1) for some
n ∈ Z+.

I Given a map φ(t) = et{·,H} +O(t2n+1)

I and φ(t)φ(−t) = Id (i.e. a reversible map),
I φ(z0t)φ(z1t)φ(z0t) = et{·,H} +O(t2n+3).
I This is Yoshida’s trick for arbitrary even order. [Yoshida,

1990]
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We have. . .

I A Hamiltonian of form H = H1 + · · ·+ HN ,
I each Hi is monomial,
I a way of building a first order map for the flow of H by

composing the flows of each Hi,
I an adjoint map obtained by reversing the order of

composition,
I composition of the first order map with its adjoint gives a

reversible second order map.
I We can build a map of arbitrary even order. I.e. the

integrator we need.
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Applications

I Newton’s method on a Poincaré section to look for periodic
orbits.

I Well suited to picking events such as collinearities (αj = 0,
αk, αl 6= 0), binary collisions (αj = αk = 0, αl 6= 0).

I Label such events to build symbol sequences to identify
islands of ICs containing periodic orbits (expensively).
[Tanikawa, 2000]
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Example 1

Figure-8 choreography obtained by integrating in regularised
coordinates.



Example 2

Periodic orbit obtained by continuation of the figure-8 with
m1 = .95 (blue).



Energy behaviour

Figure: Absolute energy error vs scaled time τ for the figure-8
choreography. Time step δτ = 10−5 for 5× 105 steps.



Conclusion

In summary,
I binary collisions of the 3-body problem can be regularised,
I the resulting Hamiltonian is polynomial,
I monomial Hamiltonians can be integrated exactly,
I the flow of a Hamiltonian that is a sum of integrable

Hamiltonians can be approximated explicitly numerically
such that symplecticity is preserved, and

I the resulting explicit integrator is well behaved over large
numbers of sufficiently small time steps.
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