
Metric Spaces Lecture 21

Recall that a subset A if a metric space X is said to be bounded if there exists a
constant K with d(x, y) ≤ K for all x, y ∈ A, and if A is bounded then the diameter of
A is defined by diam(A) = sup

x, y∈A
d(x, y).

Proposition. If A is a compact subset of a metric space X then A is bounded.
Proof. Choose any point x0 in X—the result is clearly trivial if X = ∅—and consider
the family of all open balls B(x0, n), for positive integers n. For each a ∈ A the dis-
tance d(x0, a) is some real number, and we may choose a positive integer k such that
d(x0, a) < k. Then a ∈ B(x0, k) ⊆

⋃∞
n=1 B(x0, n), and since this holds for all a ∈ A it

follows that A ⊆
⋃∞

n=1 B(x0, n). Since A is compact it follows that there exists a finite
subset J of Z+ such that A ⊆

⋃
n∈J B(x0, n). Now let K be the maximum element of

this finite set of numbers J . For all a ∈ A we have x ∈ B(x0, n) for some n ∈ J , and
so d(x0, a) < n ≤ K. This shows that A is bounded, with diameter at most 2K, since if
a, b ∈ A then d(a, b) ≤ d(a, x) + d(b, x) < 2K. �

Our next result is needed for the proof of the Heine-Borel Covering Theorem. It
should have really been proved in the section on completeness, since it is not concerned
directly with compactness (and completeness is needed).
Cantor’s Intersection Theorem. Let (X, d) be a complete metric space, and let
A1 ⊇ A2 ⊇ A3 ⊇ · · · be an infinite decreasing chain of nonempty, closed, bounded subsets
of X. Suppose further that limn→∞ diam(An) = 0. Then there exists x ∈ X such that⋂∞

n=1 An = {x}.
Proof. The sets An are all nonempty; so for each n ∈ Z+ we may choose a point an ∈ An.
Our strategy is to show that (an)∞n=1 is a Cauchy sequence; its limit will be the point x
that appears in the theorem statement.

Let ε > 0, and choose N ∈ Z+ such that diam(An) < ε for all n ≥ N ; the hypothesis
that limn→∞ diam(An) = 0 guarantees that such an N exists. Now for all m, n ≥ N we
have

am ∈ Am ⊆ AN

an ∈ An ⊆ AN ,

and therefore d(am, an) ≤ diam(AN ) < ε. Since ε was arbitrary this shows that (an)∞n=1

is a Cauchy sequence, and since X is complete it follows that limn→∞ an exists. Let x be
this limit.

Removing a finite number of terms from a sequence does not change its limit; so for
all m ∈ Z+ the sequence (an)∞n=m has limit x. All the terms of this sequence lie in Am,
since an ∈ An ⊆ Am whenever n ≥ m. By a proposition we proved in Lecture 8, it follows
that the limit x is an element of Am, the closure of Am. But Am is closed; so x ∈ Am,
and since this holds for all m ∈ Z+ it follows that x ∈

⋂∞
m=1 Am. Since

⋂∞
m=1 Am ⊆ An

for all n ∈ Z+, if y ∈
⋂∞

m=1 Am then y, x ∈ An for all n ∈ An, and so

0 ≤ d(x, y) ≤ diam(An) → 0 as n →∞.

So d(x, y) = 0, and so x = y. This shows that x is the only point of
⋂∞

n=1 An, and so⋂∞
n=1 An = {x}, as required. �

Our next objective is to prove the Heine-Borel Covering Theorem, which says that
closed, bounded subsets of Rn are compact.
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Let d = d∞ be the sup metric on Rn. Then for any any point a = (a1, a2, . . . , an) ∈ Rn

and r ∈ R the set H of all points x ∈ Rn of distance at most r from a is the Cartesian
product of the closed intervals [ai − r, ai + r] in R:

H = {x ∈ Rn | d(x, a) ≤ r } = [a1 − r, a1 + r]× [a2 − r, a2 + r]× · · · × [an − r, an + r]
= { (x1, x2, . . . , xn | ai − r ≤ xi ≤ ai + r for all i }.

This is a line segment if n = 1, a square if n = 2 and a cube if n = 3. For general n we shall
use the term “hypercube”. Observe that H can be written as a union of 2n hypercubes
of diameter 1

2 diam(H); the cases n = 1, 2 and 3 are illustrated in the following diagram:

To be specific, if for each i we define A1
i = [ai − r, ai] and A2

i = [ai, ai + r], then

H = (A1
1 ∪A2

1)× (A1
2 ∪A2

2)× · · · × (A1
n ∪A2

n)

=
⋃

ε1∈{1,2}

⋃
ε2∈{1,2}

· · ·
⋃

εn∈{1,2}

Aε1
1 ×Aε2

2 × · · · ×Aεn
n .

(There are two possible values for each εi, and so 2n terms altogether in this union.)

Heine-Borel Covering Theorem. Let C be a subset of Rn that is bounded and closed
(with respect to the usual topology). Then C is compact.

Proof. Suppose, for a contradiction, that C is closed and bounded but not compact.
Then there is some open covering of C with no finite subcovering. Choose such a covering:
(Vi)i∈I is a family of open sets such that

(i) C ⊆
⋃

i∈I Vi, and

(ii) there is no finite subset J of I with C ⊆
⋃

i∈J Vi.

Of course, (ii) implies that C is nonempty, for otherwise C ⊆
⋃

i∈J Vi would hold with
J = ∅. Note also that since C is bounded we may choose a closed hypercube H with the
property that C ⊆ H: choose any a ∈ C, and let H consist of points of distance at most
diam(C) from a. Let D = diam(H). (Recall that we are using the sup metric.)

Write C = C0. Our strategy is to produce an infinite decreasing chain of closed,
bounded, nonempty sets Ck, each covered by (Vi)i∈I but by no finite subfamily of this
family. They will be chosen in such a way that diam(Ck) → 0 as k →∞, so that Cantor’s
Intersection Theorem will be applicable. Indeed, the following properties will hold for
all k ∈ Z+.

(a) Ck ⊆
⋃

i∈I Vi;

(b) there is no finite subset J of I with Ck ⊆
⋃

i∈J Vi;

(c) Ck is closed and nonempty, and Ck ⊆ Ck−1;

(d) Ck ⊆ Hk, for some closed hypercube Hk of diameter 1
2k D.

The final contradiction will then arise as follows. Cantor’s theorem yields a point x that
lies in each Ck, and hence in some Vi. Since Vi is open there must be an ε > 0 such that
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all points whose distance from x is less than ε are in Vi, and since the diameters of the Ck

approach 0 this implies that Ck ⊆ Vi for k large enough. But this contradicts (b) above.
Write H = H0 as the union of 2n hypercubes of diameter half diam(H), in the

manner described above. Thus H0 =
⋃2n

j=1 H
(0)
j , where each H

(0)
j is a closed hypercube

of diameter 1
2D. Then since C ⊆ H,

C = C ∩H0 =
⋃

1≤j≤2n

(
C ∩H

(0)
j

)
.

Suppose that for each j ∈ {1, 2, . . . , 2n} a finite subset Jj of I exists with the property
that C ∩H

(0)
j ⊆

⋃
i∈Jj

Vi. Then

C =
⋃

1≤j≤2n

(
C ∩H

(0)
j

)
⊆

⋃
1≤j≤2n

( ⋃
i∈Jj

Vi

)
=

⋃
i∈J1∪···∪J2n

Vi,

contradicting (ii), since the set J = J1 ∪ · · · ∪J2n is a finite union of finite sets, and hence
finite. So for at least one j ∈ {1, 2, . . . , 2n} there is no finite subset J of I such that
C ∩H

(0)
j ⊆

⋃
i∈J Vi. Now if we define H1 = H

(0)
j and C1 = C ∩H1 then the properties

(a), (b), (c) and (d) above are satisfied for k = 1. Property (a) holds since C1 ⊆ C,
and C ⊆

⋃
i∈I Vi by (i). Property (b) holds by the choice of the j in the definition

of C1. Property (b) implies that C1 6= ∅, and since C1 is defined as the intersection of
two closed sets, one of which is C0 = C, it follows that C1 is closed and C1 ⊆ C0. Thus
Property (c) holds. And Property (d) holds since C1 = C ∩ H1, and H1 = H

(0)
j has

diameter 1
2 diam(H) = 1

2D.
We simply repeat this argument to establish (a), (b), (c) and (d) for all values

of k. Proceeding inductively, we assume that (a), (b), (c) and (d) hold with k − 1 in
place of k. Write Hk−1 =

⋃2n

j=0 H
(k−1)
j , where each H

(k−1)
j is a hypercube of diameter

1
2 diam(Hk−1) = 1

2 ( D
2k−1 ) = 1

2k D. Now

Ck−1 = Ck−1 ∩Hk−1 =
⋃

1≤j≤2n

(
Ck−1 ∩H

(k−1)
j

)
,

and since Ck−1 is not covered by any finite collection of the sets Vi, it follows that at least
one of the sets Ck−1 ∩H

(k−1)
j is not covered by any finite collection of the Vi’s. Choose j

accordingly, and define Hk = H
(k−1)
j and Ck = Ck−1 ∩Hk. As above, we se that (a), (b),

(c) and (d) are satisfied. By induction, they hold for all k ∈ Z+.
Since Ck ⊆ Hk for all k it follows that 0 ≤ diam(Ck) ≤ diam(Hk) → 0 as k → ∞.

Since Rn is complete, and since each Ck is closed, bounded and nonempty, and satisfies
Ck ⊆ Ck−1, it follows from Cantor’s Intersection Theorem that there exists a point x with
x ∈ Ck for all k. As

⋃
i Vi ⊇ C ⊇ C1 ⊇ C2 ⊇ · · ·, we have x ∈

⋃
i Vi, and so x ∈ Vj for

some j ∈ I. Since Vj is open there exists an ε > 0 with B(x, ε) ⊆ Vj . Since diam(Ck) → 0
as k →∞ there exists a k ∈ Z+ with diam(Ck) < ε. Note that x ∈ Ck (since x ∈ Cm for
all m). Now for all y ∈ Ck we have d(y, x) ≤ diam(Ck) < ε, and so

y ∈ B(x, ε) ⊆ Vj .

Thus Ck ⊆ Vj ; so if we put J = {j} then J is a finite subset of I and Ck ⊆ Vj =
⋃

i∈J Vi.
This contradicts Property (b) for Ck, thereby completing the proof of the Heine-Borel
Theorem. �
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