
Metric Spaces Lecture 16

Product topology
Recall that in the last lecture we defined the concept of a base for a topology: a

collection B of open sets is called a base if every open set can be expressed as a union
of sets in B. It is natural to ask what conditions a collection of subsets of an arbitrary
set X must satisfy in order to be a base for some topology on X. The next proposition
provides the answer.
Proposition. Let B be a collection of subsets of a set X. Then B is a base for a topology
on X if and only if X =

⋃
B∈B B and for all B1, B2 ∈ B the set B1 ∩ B2 is a union of

sets in B. When this condition is satisfied, the topology determined by B consists of all
subsets U of X that are expressible as unions of sets in B. That is, U is open if and only
if there is a subcollection D of B such that U =

⋃
B∈D B.

Proof. Assume first that B is a base for a topology. Then the fact that X is open ensures
that X =

⋃
B∈B B, and the fact that the intersection of two open sets is open ensures

that B1 ∩B2 is a union of sets in B whenever B1, B2 ∈ B. So B satisfies the two specified
conditions.

Conversely, suppose that B satisfies the specified conditions, and define U to be the
collection of all U ⊆ X such that U =

⋃
B∈D B for some subcollection D of B. Taking

the subcollection D to be empty shows that ∅ ∈ U , and taking D = B shows that X ∈ U .
If (Ui)i∈I is a family of sets such that Ui ∈ U for each i ∈ I, then for each i ∈ I there is
a subset Di of B such that Ui =

⋃
B∈Di

B, and since⋃
i∈I

Ui =
⋃
i∈I

⋃
B∈Di

B =
⋃

B∈D
B,

where D =
⋃

i∈I Di, it follows that
⋃

i∈I Ui ∈ U . Finally, if U and V are arbitrary
sets in U then U =

⋃
B∈D B and V =

⋃
C∈E C for some D, E ⊆ B, and it follows that

U ∩V =
⋃

B∈D
⋃

C∈E B ∩C is a union of sets in B, since each of the sets B ∩C is a union
of sets in B. Thus U ∩ V ∈ U . �

We turn now to the question of how to make the Cartesian product of two topological
spaces into a topological space. One’s first guess might be that the open sets of X × Y
should be all subsets of X ×Y of the form U ×V , where U is an open subset of X and V
an open subset of Y . However the union of a collection of sets of the form U × V is not
necessarily also of the same form; this is demonstrated below in the case X = Y = R. So
in fact the appropriate way to define a topology on X × Y is to specify that collection

B = {U × V | U is open in X and V is open in Y }

is a base for the topology, rather than the whole topology.
The open subsets of R (with the usual topology) are those sets that are disjoint

unions of open intervals; so any subset of R2 = R × R that has the form U × V with U
and V open in R will be a disjoint union of open rectangles (where an open rectangle is a
set of the form (a, b)× (c, d) = { (x, y) | a < x < b and c < x < d }, where (a, b) and (c, d)
are open intervals in R). The first diagram below depicts U × V when U is a disjoint
union of three intervals (identified with the subset of the X-axis marked in the diagram)
and V a disjoint union of two intervals (identified with a subset of the Y -axis). Now it is
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easily seen that any subset R2 that is open in the topology derived from d, the Euclidean
metric, can be expressed as a union of open rectangles. As with the proof that open sets
are unions of open balls (see last lecture), to prove this it suffices to show that each point
of a given open subset U of R2 lies in an open rectangle contained in U . Now if (x, y) ∈ U
then Bd((x, y), ε) ⊆ U for some ε > 0, and if we put δ = ε/

√
2 then it can be seen that

(x − δ, x + δ) × (y − δ, y + δ) ⊂ U . Thus sets which are expressible as unions of open
rectangles need not be expressible as disjoint unions of open rectangles: there are open
sets in R2 (such as circles) that do not have the form U × V for open subsets U and V
of R.†

The Cartesian product of (−3,−1) ∪ (0.5, 1.4) ∪ (2.3, 3.0)

and (−1.2,−0.2) ∪ (0.7, 1.4).

•

For any point x of an open set U in R2 one can find a

rectangle containing x and contained in U .

So U is the union of the rectangles it contains.

The following proposition is needed to justify the definition of the product topology
foreshadowed above.

Proposition. Let X and Y be topological spaces, and let B be the collection of all subsets
of X × Y of the form U × V such that U is an open subset of X and V an open subset
of Y . Then B is a base for a topology on X × Y .

† By contrast, in R any union of open intervals is also a disjoint union of open intervals. In
the present context this should be regarded as anomolous behaviour: it is not usually the case
that if B is a base for a topology on a set X then all open sets are disjoint unions of sets in B.
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Proof. Since X is an open subset of X and Y is an open subset of Y , it follows that
the set X × Y itself is in the collection B. Hence X × Y =

⋃
B∈B B. By our previous

proposition above, it remains to show that the intersection of any elements B1, B2 ∈ B is
a union of elements of B.

In fact it is easily seen that if B1, B2 ∈ B then B1 ∩ B2 ∈ B. To prove this, let
U1, U2 be open subsets of X and V1, V2 open subsets of Y such that B1 = U1 × V1 and
B2 = U2 × V2. Then

B1 ∩B2 = { (x, y) | (x, y) ∈ U1 × V1 and (x, y) ∈ U2 × V2 }
= { (x, y) | x ∈ U1, y ∈ V1 and x ∈ U2, y ∈ V2 }
= { (x, y) | x ∈ U1 ∩ U2 and y ∈ V1 ∩ V2 }
= (U1 ∩ U2)× (V1 ∩ V2),

and this is in the collection B since U1 ∩U2 is open in X (since U1 and U2 both are) and
V1 ∩ V2 is open in Y (since V1 and V2 both are). �

Definition. The topology on X × Y determined by the base B described in the above
proposition is called the product topology.

Let X and Y be topological spaces, and suppose that a topology is defined on X×Y
that is not necessarily the product topology. There are two obvious projection maps, πX

and πY , defined by

πX :X × Y → X

(x, y) 7→ x,
and

πY :X × Y → Y

(x, y) 7→ y.

It is natural to ask under what circumstances these mappings are continuous.
We know that πX is continuous if and only if π−1

X (U) is open whenever U is open,
and πY is continuous if and only if π−1

Y (V ) is open whenever V is open. Now observe that
if U is any open subset of X then

π−1
X (U) = { (x, y) ∈ X × Y | πX(x, y) ∈ U } = { (x, y) ∈ X × Y | x ∈ U } = U × Y,

and similarly if V is any open subset of Y then π−1
Y (V ) = X×V . So πX and πY are both

continuous if and only if U ×Y and V ×X are open subsets of X×Y for all open subsets
U of X and V of Y . Since (U × Y ) ∩ (V ×X) = U × V , if U × Y and X × V are both
open then U × V is open; conversely, if all subsets of X × Y of the form U × V , with U
open in X and V open in Y , are open in X ×Y , then, in particular, taking V = Y we see
that U ×Y is open whenever U is open, and, similarly, taking U = X, we see that X ×V
is open whenever V is open.

We conclude from this that πX and πY are both continuous precisely if U×V is open
in X × Y whenever U is open in X and V is open in Y . Since these sets U × V form
a base for the product topology, we see that the product topology on X × Y makes πX

and πY continuous. Furthermore, any other topology T on X × Y for which πX and πY

are both continuous must have the property that any subset of X ×Y that is open in the
product topology must be open in T . The product topology is the coarsest (fewest open
sets) such that the projections are continuous, every other topology with this property
must be finer (more open sets).
Remarks
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1. In future, whenever we deal with the Cartesian product of two topological spaces, un-
less explicitly stated otherwise, we shall regard the Cartesian product as a topological
space via the product topology.

2. If (X, dX) and (Y, dY ) are metric spaces then we can make X×Y into a metric space
by defining d((x1, y1), (x2, y2)) = max(d(x1, x2), d(y1, y2)). With this definition, the
open balls in X × Y are precisely the sets of the form U × V such that U is an open
ball in X and V an open ball in Y , since for all a ∈ X, b ∈ Y and ε > 0,

Bd((x, y), ε) = { (x, y) | d((a, b), (x, y)) < ε }
= { (x, y) | dX(a, x) < ε and dY (b, y)) < ε }
= BdX

(a, ε)×BdY
(b, ε).

Consequently the topology on X × Y determined by these open balls is precisely the
product topology (where the topology on X is determined by the open balls in X
and the topology on Y is determined by the open balls in Y ).
Note that there are several other ways to define metrics on the Cartesian product.
For example, for any p ≥ 1 we could define

d((x1, y1), (x2, y2)) = p
√

(d(x1, x2)p + d(y1, y2)p);

furthermore, taking the limit as p → ∞ gives back our previous definition. These
alternatives are all topologically equivalent, in that they give rise to the same collec-
tions of open sets in X × Y .‡

Theorem. Let X, Y and Z be topological spaces, and let f :Z → X and g:Z → Y be
functions. Define f × g :Z → X × Y by (f × g)(z) = (f(z), g(z)) for all z ∈ Z. If f and
g are both continuous then f × g is continuous.
Proof. Suppose that f and g are continuous, and let O be an open set in X ×Y . Then O
is a union

⋃
i∈I(Ui × Vi) (for some indexing set I), where each Ui is open in X and each

Vi open in Y . Now

(f × g)−1(O) = { z ∈ Z | (f × g)(z) ∈
⋃
i∈I

(Ui × Vi) }

= { z ∈ Z | (f × g)(z) ∈ (Ui × Vi) for some i ∈ I }

=
⋃
i∈I

(f × g)−1(Ui × Vi),

and furthermore

(f × g)−1(Ui × Vi) = { z ∈ Z | (f(z), g(z)) ∈ (Ui × Vi) }
= { z ∈ Z | f(z) ∈ Ui and g(z) ∈ Vi }
= f−1(Ui) ∩ g−1(Vi).

This is an open set, for each i, since the intersection of two open sets is open, and the fact
that f is continuous tells us that f−1(Ui) is open, and the fact that g is continuous tells

‡ Just as, for all p ≥ 1, the metrics dp on Rn all determine the same topology on Rn—see

Lecture 7.
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us that g−1(Vi) is open. Thus (f × g)−1(O) is a union of open sets, and therefore open.
As this applies for all open subsets O of X × Y , it follows that f × g is continuous. �

The converse of the above result is also valid: if f × g is continuous then f and g are
both continuous. The point is that f = πX ◦ (f × g), since for all z ∈ Z,

(πX ◦ (f × g))(z) = πX(f × g)(z)) = πX((f(z), g(z)) = f(z).

But the composite of two continuous functions is continuous; so since πX is continuous, if
f × g is also continous then it follows that f is continuous. A similar proof applies for g.

The theorem above makes it easy for us to determine if a function from R to Rn is
continuous, since such functions are usually specified by giving their component functions.
For example, the function R → R3 given by x 7→ (ex, x2 + 1, (sinx − x)2) is continuous,
since x 7→ ex, x 7→ x2 + 1 and x 7→ (sinx − x)2 are all continuous. (Strictly, to prove
this we must make two applications of the theorem, and identify R3 with R× (R×R)) or
(R× R)× R in the obvious way.)

Homeomorphisms
A homeomorphism from one topological space to another is a bijective function f

such that f and f−1 are both continuous. It is important to note that continuity of f
does not guarantee continuity of f−1; we give an example to demonstrate this before
discussing homeomorphisms.

let d be the usual metric on R and d′ the discrete metric (for which d′(x, y) = 1
whenever x 6= y). Observe that for all x ∈ R the open ball Bd′(x, 1/2) is just the
singleton set {x}. Thus all singleton sets, and consequently all sets, are open with respect
to the topology on R derived from d′. Let the topological space X be R equipped with this
topology, and let Y be R equipped with the usual topology (derived from the metric d).
Let f :X → Y be the identity function R → R. Obviously f is bijective, its inverse
g:Y → X being also the identity function. Furthermore, if U is any open subset of Y
then f−1(U) is an open subset of X, since every subset of X is open. Thus f is continous.
However, g is not continous, since {0} is an open subset of X, but g−1({0}) = {0} is not
an open subset of Y .

We give also another example, this time without resorting to the use of the discrete
topology. Let X = [0, 1] ∪ (2, 3] and Y = [0, 2], both regarded as metric subspaces of R
with the usual metric. Since Y = [0, 1]∪ (1, 2] it is easy to see that the function f :X → Y
defined by

f(x) =
{

x if 0 ≤ x ≤ 1
x− 1 if 2 < x ≤ 3,

is bijective, its inverse g:Y →X being given by

g(x) =
{

x if 0 ≤ x ≤ 1
x + 1 if 1 < x ≤ 2.

We show that f is continuous by constructing an obviously continuous function f̃ : R → Y
such that the restriction of f̃ to X coincides with f . Indeed, let f̃ : R → [0, 2] be given by

f̃(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if 1 < x ≤ 2,
x− 1 if 2 < x ≤ 3, and
2 if 3 < x.
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If one draws the graph of f̃ one sees that it is continuous; a rigorous proof is tedious
rather than difficult, and so we omit it.

1 2 3 4−1−2

1

2

−1

On the other hand, the inverse function g is not continuous. The intuitive reason for this
is that g breaks the interval into two pieces. To prove it rigorously, note first that since X
and Y are subspaces of R, the rules for the subspace topology apply: a subset of X is open
if and only if it has the form X ∩U where U is an open subset of R, and a subset of Y is
open if and only if it has the form Y ∩U with U open in R. Thus X ∩ (1/2, 3/2) = (1/2, 1]
is open in X. Now g−1((1/2, 1]) = (1/2, 1], and this is not an open subset of Y : the point
1 ∈ (1/2, 1] is not an interior point of (1/2, 1] since every open ball B(1, ε) (where ε > 0)
contains points of Y = [0, 2] that are not in (1/2, 1]. Thus it is not true that U open in
X implies that g−1(U) is open in Y ; so g is not continuous.
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