
Metric Spaces Lecture 12

It is natural to ask under what circumstances is a subspace of a complete space
complete. The following theorem provides the answer.

Theorem. Let (X, d) be a complete metric space, and Y a closed subset of X. If dY is
the metric on Y induced by d, then the metric space (Y, dY ) is complete. Moreover, if Z
is a subset of X that is not closed then the space (Z, dZ) is not complete.

Proof. Let (an) be a Cauchy sequence in Y . Then (an) is also a Cauchy sequence in X.
Since X is complete there exists an a ∈ X such that an → a as n →∞. But an ∈ Y for
all n, and Y is closed; so, by a proposition proved in Lecture 8, a = limn→∞ an ∈ Y . So
(an) converges in Y , and since (an) was an arbitrary Cauchy sequence in Y , this shows
that Y is complete.

Given that Z is not closed, there exists a point a ∈ X such that a ∈ Z but a /∈ Z.
The proposition from Lecture 8 also tells us that there is a sequence (an) in Z such that
an → a as n → ∞. It is trivial that all convergent sequences are Cauchy; so (an) is
Cauchy, and it does not have a limit in Z since its unique limit in X is a, which is not an
element of Z. �

Completions of incomplete spaces

We have seen that Q, with its usual metric, is not complete. As another example
of this consider the sequence s whose n-th term sn consists of the first n figures of the
decimal expansion of π. Thus, s = (3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .). This is a
sequence of rational numbers which in R converges to π. Since π /∈ Q, this shows that the
subset Q of R is not closed. It also shows that Q is not complete. To see this, observe first
that s is a Cauchy sequence, since for any ε > 0 there exists an N such that |sn−π| < ε/2
for all n > N , and so if n, m > N then |sn − sm| ≤ |sn − π| + |sm − π| < ε. Now since
there is no q ∈ Q such that sn → q as n → ∞ (since s cannot have two limits in R) it
follows that s is a Cauchy sequence in Q which does not have a limit in Q.

The idea that real numbers are limits of sequences of rational numbers is quite familiar
to us all: it is the very basis of the decimal notation for real numbers. To say that
π = 3.14159 . . . is surely to say exactly that π is the limit of the sequence s above! The
same idea can be used generally to construct a complete metric space from an incomplete
one. To do so, one should adjoin extra elements that, by definition, are limits of Cauchy
sequences. There is one complicating feature: it may be the case that two different Cauchy
sequences should have the same limit, and so we must not simply create one new element
for each Cauchy sequence that does not have a limit in the original space. Rather, the
elements we create must correspond to classes of Cauchy sequences that are equivalent,
in some sense.† To be precise, for this purpose we should consider Cauchy sequences (an)
and (bn) to be equivalent if limn→∞ d(an, bn) = 0. The new metric space will have one
element for each equivalence class of Cauchy sequences in the original space.

† In the construction of the reals from the rationals this complication is almost averted by
choosing a rather special class of Cauchy sequences—those sequences s = (s1, s2, s3, . . .) such
that s1 ∈ Z and si+1 = si + ai10−i with ai ∈ Z and 0 ≤ ai ≤ 9 (for all i ≥ 1)—and showing
subsequently that every other Cauchy sequence in Q is equivalent to one of these. But the fact
that different sequences can have the same limit is not totally bypassed by this device, since, for
example, the decimal expansions 2.8000. . . and 2.7999. . . represent the same real number.
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The theorem that is derived from these considerations is as follows.
Theorem. For every metric space (X, d) there is a metric space (X̂, d̂) such that
(1) (X̂, d̂) is complete,
(2) (X, d) is a subspace of (X̂, d̂), and
(3) X is dense in X̂.

The space (X̂, d̂) is called the completion of the space (X, d). We shall defer for a
while the task of proving the theorem.

Note that item (2) of the statement says that X ⊆ X̂ and d coincides with the metric
on X induced by the metric d̂ on X̂. (That is, d is the restriction of d̂.) In fact, as always
with such constructions, the space X̂ that we construct does not, strictly speaking, have
X as a subset. Rather, it has a subset X ′ which is in one to one correspondence with
X in an obvious way, and if this one to one correspondence is written as x ↔ x′, then
d(x, y) = d̂(x′, y′) for all x, y ∈ X. After this, most authors say something like “we can
use the correspondence x ↔ x′ to identify X with X ′, and this completes the proof”. If
you regard this as cheating then you can construct a space which genuinely does have the
original X as a subset, by choosing any set S which is disjoint from X and in one to one
correspondence with X̂ \X ′, so that there is a one to one correspondence between X ∪ S

and X̂ that extends the correspondence x ↔ x′ between X and X ′, and using this to
transfer the metric on X̂ to a metric on X ∪ S. Authors seldom do this, since, frankly, it
is not worth the effort.

Note that item (3) of the theorem statement says that the closure of X in X̂ is the
whole of X̂. In view of our characterization of closures (from Lecture 7), this says that
every element of X̂ is the limit of a sequence in X (and thus a limit of a Cauchy sequence
in X, since convergent sequences are necessarily Cauchy sequences).

Examples of complete and incomplete spaces
Let us look at some further examples of complete and incomplete spaces, starting

with an incomplete one. Let C be the set of all continuous real-valued functions on [0, 1],
with metric d given by d(f, g) =

∫ 1

0
|f(x)− g(x)| dx. (Recall, from Lecture 3, that this is

known as the L1 metric on C. It can be interpreted as saying that the distance between
f and g is the area between their graphs.) For all n ∈ Z+ define

fn(x) =


0 if 0 ≤ x ≤ 1

2 ,
2n(x− 1

2 ) if 1
2 < x ≤ 1

2 + 1
2n ,

1 if 1
2 + 1

2n < x ≤ 1.

It is easy to check that fn ∈ C. The graph of fn looks something like this:

0.5 1.0

1

1
2 + 1

2n

If n, m are any positive integers then, as the diagram below illustrates, d(fn, fm) can
be described as the area of a certain triangle. The base AB of the triangle has length
| 1
2n −

1
2m |, and the height is 1; so the area is 1

2 |
1
2n −

1
2m |.
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0.5 1.0

1

| 1
2n− 1

2m |
A B

Let ε > 0, and put N = 1/ε. For n, m > N we have 0 < 1
2n < 1

2N = ε/2, and
similarly 0 < 1

2m < ε/2. Thus 1
2n , 1

2m ∈ (0, ε/2), and so | 1
2n −

1
2m | < ε/2. It follows that

d(fn, fm) = 1
2 |

1
2n −

1
2m | < ε/4 < ε

whenever n, m > N . Thus (fn)∞n=1 is a Cauchy sequence in (C, d).
We shall prove that (C, d) is not complete by showing that (fn) does not have a limit

in C. We shall make use of the following fact:
if a function f is continuous on [a, b] and f(x) ≥ 0 for all x ∈ [a, b], then∫ b

a
f(x) dx = 0 only if f(x) = 0 for all x ∈ [a, b].

(Note that this property is used in the proof that d is a metric: one needs it to show that
d(f, g) = 0 implies f = g. See Question 4 of Tutorial 2.) A second fact that we shall
employ is that if an → a as n → ∞ then lim

n→∞

∫ b

an
f(x) dx =

∫ b

a
f(x) dx, provided that f

is continuous on an interval which contains a, b and all the an.
Returning now to the investigation of the squence of functions fn defined above,

suppose, for a contradiction, that fn → f as n → ∞, where f ∈ C. That is, f is
continuous on [0, 1], and limn→∞ d(fn, f) = 0. By the definition of the metric d, this says
that

∫ 1

0
|fn(x)− f(x)| dx → 0 as n →∞. Now for all n ∈ Z+,

0 ≤
∫ 1/2

0

|f(x)| dx =
∫ 1/2

0

|fn(x)− f(x)| dx (as fn(x) = 0 for x ∈ [0, 1/2])

≤
∫ 1

0

|fn(x)− f(x)| dx (since the integrand is nonnegative)

−→ 0 as n →∞.

This forces the constant
∫ 1/2

0
|f(x)| dx to be zero. Hence, by the first of the two facts

whose use we foreshadowed, f(x) = 0 for all x ∈ [0, 1/2].
Similarly, for all n ∈ Z+,

0 ≤
∫ 1

1
2+ 1

2n

|1− f(x)| dx =
∫ 1

1
2+ 1

2n

|fn(x)− f(x)| dx (as fn(x) = 1 for x ∈ [ 12 + 1
2n , 1])

≤
∫ 1

0

|fn(x)− f(x)| dx (since the integrand is nonnegative)

−→ 0 as n →∞,

and thus it follows that
∫ 1

1
2
|1−f(x)| dx = lim

n→∞

∫ 1
1
2+ 1

2n
|1−f(x)| dx = 0. So 1−f(x) = 0 for

all x ∈ [0, 1
2 ]. But now we have shown that the function f satisfies f(x) = 0 for 0 ≤ x ≤ 1

2
and f(x) = 1 for 1

2 ≤ x ≤ 1. This is a contradiction, since f(1/2) cannot simultaneously
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be both 0 and 1. So there is no such function f ∈ C, and so C is not complete for the L1

metric d.
It turns out that, on the other hand, if we define D to be the sup metric, then (C, D)

is complete. Before proving this let us consider the set B of all bounded functions on
[0, 1]. Recall that (B, D) is a metric space and that D is defined by the formula

D(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

for all f, g ∈ B. (Note that we cannot use this formula to define a metric on the set of all
functions on [0, 1], since the supremum will be undefined if { f(x) − g(x) | x ∈ [0, 1] } is
unbounded.) We show that (B, D) is complete.

Let (fn) be a Cauchy sequence in B. As a first step we show that for each t ∈ [0, 1]
the sequence (fn(t)) is a Cauchy sequence in R. To see this, let t ∈ [0, 1] and let ε be an
arbitrary positive number. Since (fn) is a Cauchy sequence in B there exists an integer
N such that D(fn, fm) < ε for all n, m > N . Now for all n, m > N we have

|fn(t)− fm(t)| ≤ sup
x∈[0,1]

|fn(x)− fm(x)| = D(fn, fm) < ε,

and because N depends only on ε, which was arbitrary, this establishes the claim that
the sequence (fn(t)) is Cauchy.

Since R is complete, the Cauchy sequence (fn(t)) has a limit in R. This is applies for
all t ∈ [0, 1]. So we may define a function f on [0, 1] by setting f(t) equal to limn→∞ fn(t).
Thus f is the pointwise limit of the function sequence (fn). We need to prove that
(fn) converges to f relative to the metric D; that is, we must show that (fn) converges
uniformly to f on [0, 1]. We must also show that f ∈ B.

Choose an integer M such that D(fn, fm) ≤ 1 for all n, m ≥ M . Since fN ∈ B there
exists B ∈ R such that fN (t) ≤ B for all t ∈ [0, 1]. So if t ∈ [0, 1] and n ≥ N then

|fn(t)| ≤ |fn(t)− fN (t)|+ |fN (t)| ≤ sup
x∈[0,1]

|fn(x)− fN (x)|+ B = D(fn, fN ) + B ≤ 1 + B,

and therefore limn→∞ |fn(t)| ≤ 1+B. That is, |f(t)| ≤ 1+B, and this shows that f ∈ B.
Let ε > 0 and choose N such that D(fn, fm) < ε/2 for all all n, m > N . Fix n > N ,

and let m vary. For all t ∈ [0, 1] we have

|fn(t)− f(t)| = lim
m→∞

|fn(t)− fm(t)| ≤ ε/2,

since if the terms of a convergent sequence lie in the set A = [0, ε/2), its limit must lie in
the closure A = [0, ε/2]. We deduce that

D(fn, f) = sup
t∈[0,1]

|fn(t)− f(t)| ≤ ε/2 < ε

for all n > N , and therefore fn → f as n → ∞ in the space (B, D). Since (fn) was an
arbitrary Cauchy sequence in (B, D), we have shown that (B, D) is complete.

To show that the space C of continuous functions on [0, 1] is complete with respect
to the uniform metric D it suffices to show that C is a closed subset of B, since we have
proved the general result that a closed subset of a complete space is complete. We have
also proved that the closure of a subset of a metric space consists of all points which are
limits of sequences in the subset. So if we can show that the limit of a convergent sequnce
whose terms are in C is also in C then it will follow that C is its own closure, hence closed,
and hence complete. So we need to show that the limit of a uniformly convergent sequence
of continuous functions is continuous. This standard result is Question 4 of Tutorial 4.
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