
Metric Spaces Lecture 5

Definition. Let S be a set and U a collection of subsets of S. We call U a topology for
S if the following properties hold.
a) ∅ ∈ U and S ∈ U .
b) If I is any indexing set and Ui ∈ U for all i ∈ I then

⋃
i∈I Ui ∈ U .

c) If I is any finite indexing set and Ui ∈ U for all i ∈ I then
⋂

i∈I Ui ∈ U .
A topological space is a pair (S,U) consisting of a set S and a topology U for S. The

elements of U are called the open sets of the topology.
By far the most important examples of topological spaces are metric spaces with the

topology of open sets defined in terms of open balls, as we have described. However, there
are very important topologies which are not of this kind. One such is the Zariski topology
on C2, which we now proceed to describe.†

A polynomial in two variables x and y is simply an expression built up using addition
and multiplication, and scalars, x’s and y’s, For example,

√
2 + 5x + πx3y2 is a polyno-

mial. Suppose that pi(x, y), i ∈ I, is any indexed family of polynomials in x and y with
coefficients in C. The zero set of this family is the set

{ (a, b) ∈ C2 | pi(a, b) = 0 for all i ∈ I }.

Let us say that a subset of C2 is closed if it is the zero set of some family of complex
polynomials in x and y, and define a subset of C2 to be open if its complement is closed.
The open sets thus defined constitute the Zariski topology on C2. (In fact, making
some fairly natural changes, instead of C2 we could have used Fn for any field F and
any positive integer n.) The Zariski topology plays a key role in the subject known as
algebraic geometry, which is beyond the scope of this course.

We proceed now to define some standard concepts used in the study of topologi-
cal spaces. The student is firmly encouraged to always think of metric spaces, and in
particular R2 with the usual metric, when trying to understand these concepts.
Definition. Let (X,U) be a topological space. A subset A of X is said to be closed
(relative to this topology) if its complement X \A is open.

Usually, most subsets of X are neither open nor closed. It is also possible for a set to
be both open and closed: for example, X and ∅ are both open and closed. But for most
common spaces X and ∅ are the only sets that are both open and closed.

Since the open sets of a topology are just the complements of the closed sets, a
topology can equally well be specified by giving the closed sets rather then the open sets.
(Indeed, for the Zariski topology it is easier to describe the closed sets than the open
sets.) In terms of closed sets the defining properties of a topology on X can be stated as
follows:
a′) ∅ and X are both closed;
b′) the intersection of any collection of closed sets is closed;
c′) the union of any finite collection of closed sets is closed.

Definition. Let (X,U) be a topological space. An interior point of a set A ⊆ X is a
point a ∈ A such that there is an open set U with U ⊆ A and a ∈ U . The set of all

† This example was not done in the lecture, and is included here only for interest. It
is not part of the syllabus of the course.
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interior points of A is called the interior of A, denoted by Int(A). A neighbourhood of a
point a ∈ X is a set A ⊆ X such that a ∈ Int(A). An open neighbourhood of a point a is
an open set containing a.

Let (X,U) be a topological space, and A ⊆ X. Let Q be the union of all the open
sets U which are contained in A. That is, Q =

⋃
{U ∈ U | U ⊆ A }. As a union of open

sets, the set Q must be open (by condition (b) in the definition of a topology). As a union
of subsets of A, the set Q must be a subset of A. Thus Q has the properties that

• Q is open and Q ⊆ A, and
• if U is open and U ⊆ A then U ⊆ Q.

So we can say that Q is the largest open set which is a subset of A.
It is fairly clear that in fact Q = Int(A). Firstly, all points of Q are interior points

of A, since Q is open and Q ⊆ A. On the other hand, if a is an interior point of A then
a ∈ U for some open U with U ⊆ A, and since U ⊆ Q this gives a ∈ Q. So all interior
points of A are in Q.

So Int(A), the interior of A, is the union of all open sets contained in A. Some-
what analogously, we define the closure A of A to be the intersection of all closed sets
containing A. We see that

• A is closed, and A ⊆ A, and
• if C is any closed set with A ⊆ C then A ⊆ C.

Thus A is the smallest closed set containing A.
Let A be an arbitrary subset of X and put B = X\A, so that A and B are comple-

ments of each other. If S is any subset of A then B is a subset of the complement of S. If
S is open then its complement is closed, and vice versa. The following diagram illustrates
the situation:

The rectangle represents the metric space X, the region hatched with vertical lines the
subset A and the region hatched with horizontal lines the subset B (the complement
of A). The blue part represents a subset S of A that is assumed to be an open set of X;
its complement (white) is then clearly a closed set containing B.

Clearly from this we can say that the complement of the largest open set contained
in A is the smallest closed set containing B. That is, if B is the complement of A then
the closure of B is the complement of the interior of A. (And, symmetrically, the interior
of B is the complement of the closure of A.)
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